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Abstract

Online social connections occur within a specific conversa-
tional context. Prior work in network analysis of social media
data attempts to contextualize data through filtering. We pro-
pose a method of contextualizing online conversational con-
nections automatically and illustrate this method with Twitter
data. Specifically, we detail a graph neural network model
capable of representing tweets in a vector space based on
their text, hashtags, URLs, and neighboring tweets. Once
tweets are represented, clusters of tweets uncover conversa-
tional contexts. We apply our method to a dataset with 4.5
million tweets discussing the 2020 US election. We find that
even filtered data contains many different conversational con-
texts, with users engaging in multiple conversations. While
users engage in multiple conversations, the overlap between
any two pairs of conversations tends to be only 30-40%, giv-
ing very different networks for different conversations. Even
accounting for this variation, we show that the relative so-
cial status of users varies considerably across contexts, with
τ = 0.472 on average. Our findings imply that standard net-
work analysis on social media data can be unreliable in the
face of multiple conversational contexts.

Introduction
Social network analysis relies on proper contextualization
of social interactions. For offline social networks, contex-
tualization has been traditionally done by scoping the mea-
surement of social interactions within a physical space: a
conference, an office, a school, etc. Situating a social net-
work within a single context both provides a clean dataset
and allows for interpretable analysis.

Central members in a network of interactions within an
office place can be seen as information brokers within the
office. Including information about how the workers interact
outside of the office provides more information but can also
muddy the analysis. Adding out-of-office connections to the
initial network is likely to affect who the central actors are,
what the community structure is, and the general topology
of the network. While this denser network encodes more in-
formation, it also conflates two types of edges; workers will
interact with each-other differently according to where they
are. Thus, it is more appropriate to study the contextualized
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networks and the relationship between them. This may in-
clude studying changes in centrality and community struc-
ture from one context to another. Contextualization not only
improves the specificity of the claims that can be made from
the original network analysis, but also adds new information
about the relationship between contexts.

This problem is illustrated in Figure 1. This simple sce-
nario details 3 different social contexts with one having
much different community structure than the others. A stan-
dard or decontextualized analysis mixes all of the edges to-
gether and hides all community structure. Networks analy-
ses are known to be sensitive to data quality, making this an
important problem (Borgatti, Carley, and Krackhardt 2006).

Methods for contextualizing social networks to date have
leveraged simple property of offline networks: people can
only be in one place at one time. The result of this obvious
fact is that offline social contexts occur in sequences. For
example, someone might go to work, then go to a restaurant
to meet their friends, and finally return home to their fam-
ily. This then creates 3 sequential social contexts: interac-
tions among co-workers, friends, and family. Dynamic net-
work analysis methods have leveraged this sequential struc-
ture can be leveraged to identify network “states,” effectively
contextualizing these interactions.

Online communication is different. Social media plat-
forms such as Twitter are designed for users to engage in
vastly different discussions simultaneously1, ruining the se-
quential structure of contexts. Without this sequential struc-
ture, existing dynamic network approaches are inapplicable.

Researchers attempt to account for this by scoping the
data collection to a specific topic or event. On Twitter, the
available filters for data collection include keywords, spe-
cific users, and geographical bounding boxes. After apply-
ing these filters, researchers can obtain reasonably contex-
tualized datasets about a certain event or topic. However, a
related area of research, story-detection, has demonstrated
that multiple events or “stories” have separate discussions

1Technically, people can only send one tweet at a time, so they
are actually oscillating between conversations rather than simulta-
neously being engaged in them. The distinction for online interac-
tions is the time-scale of state changes. Online discussions play-out
over hours, while users switch between conversations within min-
utes. This mismatch in timescales creates the ability for users to be
in multiple discussions “simultaneously”
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Figure 1: An illustration of different social contexts having different network structure. Before accounting for context, no
community structure is apparent. After contextualization, all contexts appear to have community structure, with context 3’s
structure being very different from that of 1 and 2.

occurring even within filtered datasets.
Properly contextualizing online conversational networks

is critical given their importance within the field of So-
cial Cybersecurity (Carley et al. 2018; Carley 2020). On-
line conversational networks are deeply integrated into the
methods for studying and understanding information opera-
tions (Lazer et al. 2018; Grinberg et al. 2019; Uyheng et al.
2019). Thus, accurate representations of the conversational
networks are necessary to understand the information space.

This brings us to our first research question. RQ1: Given
a set of Tweets, can we cluster them into different con-
versations? Methods that answer this question may be sim-
ilar to topic or story detection. However, these approaches
do not typically ensure that direct interactions like replies or
quotes are given the same assignment as the content they in-
teract with. At the same time, the work in story detection has
shown the importance of URLs for capturing the context of
a conversation. Thus, the method that we develop to answer
RQ1 must account for the text, conversational structure, and
the URLS involved. We develop such a method which works
with multiple languages, is unsupervised, and also accounts
for hashtags.

The contextualization model enables us to build and study
the contextualized networks shown in Figure 1. Our pri-
mary objective is to test whether this separation of network
data affects the outcome of a network analysis. To meet this
objective, we ask two more research questions: RQ2: Do
different conversational contexts have the same active
users? and RQ3: How does user status vary across con-
texts? The answers to these questions will show whether
contextualized analysis is actually needed to understand
large social media data.

By applying our methodology on a real Twitter dataset
consisting of 4.5 million tweets, we show that multiple con-
versational contexts are present in the data and that the com-
bination of these contexts leads to misleading measurements
of user centrality and network structure. Thus, standard net-
work analyses may be unreliable in the face of the multitude
of conversations present in large social media datasets.

Related Work
Social connections must occur in the same context for social
network analysis to work effectively. What constitutes the
“same context” depends on the study. For example, if a study
seeks to understand the spread of information in the work-
place, the inclusion of connections outside the workplace

may be inappropriate. If the study instead was looking to
measure epidemic spreading, all interactions are appropriate
to include. In many settings, and particularly for offline net-
works, this is an extremely easy requirement to meet which
is easily satisfied though data collection processes such as
observing connections in a specific place.

For offline networks, dynamic analysis methods have
been developed to detect sequences of network states, find-
ing that datasets observed over longer time periods contain
multiple contexts (Peixoto and Rosvall 2017; Masuda and
Holme 2019; Magelinski and Carley 2019). In one example,
changes can be observed from how students interact at lunch
compared to in the classroom (Peixoto and Rosvall 2017;
Masuda and Holme 2019). Students interact differently in
the lunch context than they can in the classroom context.
In another example, changes are observed in how Ukrainian
legislatures cooperate before and after the Euromaidan revo-
lution (Magelinski and Carley 2019). An upheaval in socio-
political context disrupted friendships and rivalries between
politicians. These studies find that the community structure
and central actors can be very different from context to con-
text, and that combining contexts leads to an inaccurate rep-
resentation of the network. Accounting for contexts has also
led to improvements in the modeling of processes occurring
on the networks (Peixoto and Gauvin 2018).

For online social networks, however, contextualization is
not an easy task. Two related fields have shown that social
media data often contains multiple entangled contexts: topic
modeling and story detection. Topic modeling seeks to un-
cover a selection of different semantic contexts, or “topics”
which occur within a collection of documents (Blei, Ng,
and Jordan 2003). Traditional topic models such as LDA
are poorly suited for the extremely short documents in Twit-
ter data, leading to topic models specifically designed for
short texts (Hong and Davison 2010; Zuo et al. 2016; Cheng
et al. 2014). Alvarez-Melis and Saveski found tweets can
aggregate information from their conversational context to
improve topic representation (Alvarez-Melis and Saveski
2016). Other topic detection models have been developed
which specifically leverage the hashtag feature of Twitter
data to obtain topics (Wang et al. 2014; Magelinski, Bar-
tulovic, and Carley 2020; Feng et al. 2015). Methods differ,
but all of these works successfully demonstrate the presence
of multiple semantic contexts in Twitter conversations.

Topic modeling demonstrates that entirely different things
may be discussed in the same Twitter dataset, while story-
detection shows that different contexts can occur even within
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very similar topics. Story detection seeks to uncover “sto-
ries” or discussions tied to specific events (Petrović, Os-
borne, and Lavrenko 2010; Srijith et al. 2017; Alshaabi et al.
2021a,b). First-story detection and event-detection are very
related, as they seek to identify the first tweets breaking the
news of a story developing, compared to more general story-
detection, which detects all the tweets in the discussion of
that story (Walther and Kaisser 2013; Petrović, Osborne, and
Lavrenko 2010; Osborne et al. 2012). In any case, detected
stories are separate contexts which could otherwise be con-
sidered the same topic. For example, story detection applied
to Donald Trump’s twitter timeline can distinguish within-
party arguments from between-party arguments, which both
belong to the topic of federal US politics (Dodds et al. 2021).
Another example applies story detection to the Twitter dis-
cussion following the police killing of Michael Brown (Sri-
jith et al. 2017). Here, fine distinctions of context are made,
such as the difference in discussion of the police-lead smear
campaign against Michael Brown from the discussion of the
robbery that Brown committed early in the day of the shoot-
ing. This is to say that both topic modeling and story detec-
tion develop methods of uncovering discrete conversational
contexts on social media, and thereby demonstrate that these
contexts exist. These works do not, however, investigate the
implications of this finding for social network analytics.

While dynamic analysis can leverage the sequential struc-
ture of human movement in offline networks, this is not
possible with online networks. The studies in topic mod-
eling and story detection show that conversations within
these conflicts can occur simultaneously, with users rapidly
switching between contexts. And while methods from topic
modeling and story detection can be used to uncover con-
versational contexts, existing methods don’t typically lever-
age all of the available indicators of context simultaneously:
tweet text, hashtags, URLs, and the conversational graph.
Further, existing methods classify tweets with discrete la-
bels, rather than represent them in a continuous space. Dis-
crete labeling is useful for network analysis, but gives no
way of measuring things like distance between contexts.

Advancements in graph neural networks enable us to de-
velop a new architecture for unsupervised Tweet represen-
tation which leverages all of the available data and places
tweets in a continuous space. Older methods of unsupervised
node representation relied on random walks or “surfs” to ob-
tain local information which can be encoded in node vectors
(Grover and Leskovec 2016; Perozzi, Al-Rfou, and Skiena
2014; Cao, Lu, and Xu 2016). These methods do not rely on
node features to obtain their representations, in contrast to
the graph convolutional networks that are typically used in
the semi-supervised or supervised setting (Kipf and Welling
2016; Hamilton, Ying, and Leskovec 2017). Node features
are necessary for tweet representation because they are used
to represent the actual contents of a tweet, the tweet’s text.

Methods leveraging node features have been used applied
to model social media users in a number of supervised set-
tings, including the detection of hateful users, and the pre-
diction of locations. (Pan and Ding 2019; Ribeiro et al. 2018;
Do et al. 2018). Perhaps the closest related model to ours
is that of Nguyen et al., who used unsupervised embedding

methods such as BigGraph for users, hashtags, and URLs,
before combining them in a supervised retweet prediction
model (Nguyen et al. 2020; Lerer et al. 2019).

While models leveraging node features have been devel-
oped for social media, a mechanism for training them in an
unsupervised manner was not available. Deep Graph Info-
max (DGI) filled this gap by outlining an unsupervised train-
ing procedure for feature-leveraging approaches through the
principle of mutual information (Velickovic et al. 2019).
Similar to Stuctural Deep Network Embedding (SDNE),
DGI derives an objective function in the unsupervised set-
ting so that the architecture has something to optimize
(Wang, Cui, and Zhu 2016).

Because DGI is a methodology for training, the specific
architecture for node embedding is customizable, similar
to the HARP procedure (Chen et al. 2017). In this work,
we develop a custom GCN-based architecture for represent-
ing tweets, which uses the conversational network, hashtags,
and URLs. The architecture is then trained with DGI on a
real dataset. We use the obtained tweet representations to
contextualize user-to-user interactions and demonstrate the
importance of contextualized network analysis.

Data
Data Collection
The data collection strategy for this study is intended to
match the typical procedures used in the field of Social-
Cybersecurity, which relies heavily on network analysis of
social media discussions (Uyheng et al. 2019). Thus, the
data was captured using a keyword-based stream of Twit-
ter’s API from November 2 2020 to November 8 2020.
This allowed for the capture of data one day before election
night, which was November 3 2020, and one day after ma-
jor news outlets declared Joe Biden the winner on Novem-
ber 7 2020. The keywords2 were selected in order to max-
imize conversation around the election. This includes gen-
eral hashtags, campaign hashtags, and mentions of promi-
nent election figures such as Trump, Pence, Biden, and Har-
ris. It also includes hashtags relating to anticipated election-
related issues, such as the Black Lives Matter movement, US
Sanctions on Iran, issues with voting-by-mail, and claims
of voter fraud. The collection resulted in 4.5M tweets, 75k
hashtags, and 47k URLs. The dataset approximately con-
tains 2M retweets, 1.3M quotes, and 1.3M replies. Hashtags
were used in tweets 886k times, whereas URLs were used in
tweets 75k times.

Data Cleaning
Tweet text was cleaned by first removing all URLs, hash-
tags, and mentions. Next, punctuation was removed. Finally,
text was tokenized in preparation for the text embedding dis-
cussed in the Methodology section.

2#election2020, #presidentialelection, #JoeBiden, #Biden,
#BidenHarris2020, #MAGA, #KAG, #democrats, #repub-
licans, #VoteByMai, #USPS, #SaveTheUSPS, #voterfraud,
#reopen, #reopenamerica, #BLM, #BlackLivesMatter, #QAnon,
#WWG1WGA, #IranSanctions, “natural born,” and relevant
politician’s handles.
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The procedure for URL normalization was as follows.
First, text before the domain name was removed. Next,
URL parameters were removed for links with domains other
than “facebook”, “google”, and “youtube.” These parame-
ters commonly store information about the user who shared
the link, among other things. The presence of these param-
eters prevents direct matching between URLs. For “face-
book”, “google”, and “youtube,” however, these parame-
ters are used to point to the actual destination, so cannot
be removed. “Amp” links were converted to non-amp links.
Lastly, youtube.com, and yout.be links were all converted to
the yout.be format.

All links to twitter.com were not considered to be typical
URLs, as they are either links to media or quotes of other
tweets. Links to media were not included, while the meta-
data from quote-links was used to add the appropriate quote-
edges in the tweet-tweet network discussed below. Hashtags
were lower-cased, as case does not affect their functionality.

Heterogeneous Network Construction
We construct our heterogeneous Twitter network with three
node types (tweet, hashtag, and URL) and three edge types
(tweet-URL, tweet-hashtag, and tweet-tweet). When a URL
or hashtag is used in a tweet, an edge is drawn between them.

The third relationship, tweet-tweet, occurs through replies
or quotes. While these are slightly different operations, they
both create the effect of continuing the conversation with a
new tweet connected to the original. Future work may in-
vestigate leveraging slight differences between replies and
quotes. Edges between tweets can be modeled as directed
or undirected as a setting within the model. A directed edge
allows the reply or quote’s representation to be affected by
the original tweet’s representation while keeping the original
tweet’s representation isolated. This is an intuitive model-
ing approach; however, modeling this relation with an undi-
rected edge allows for base tweets to obtain some con-
text, which can push similar but disconnected conversations
closer together. To find out which approach worked best, we
quantitatively compare them in the Model Selection section.

Retweets are simply copies of tweets, so they will provide
no additional information from a tweet-representation point
of view. Worse, they are such a large fraction of the dataset
that they could have adverse effects on the training process.
Instead, we give retweets the same representation as their
original tweet. Thus, retweets will always be considered in
the same context as the original tweet, where the user-to-user
implications of retweets are studied.

Methodology
Tweet Text Embedding
Graph convolutional networks require some form of node-
features. We derive features for tweets using the tweet text.
To limit the scope of analysis to our proposed architecture
and to enable the use of multi-language text embedding, we
used the pre-trained3 and language-aligned vectors trained
using fastText on the Wikipedia corpus (Joulin et al. 2018;

3https://fasttext.cc/docs/en/aligned-vectors.html

Bojanowski et al. 2017). The use of language-aligned vec-
tors allows us to place similar tweets in the same discussion,
even if they are tweeting in different languages.

We rely on the Twitter language detection output for the
classification of tweet language. Many tweets, however, do
not have an available language label. This often occurs when
tweets do not have text, but instead only have URLs, emo-
jis, images, and sometimes hashtags. In our case, 15.6% of
tweets in the dataset do not have an available label, and
therefore cannot be yet embedded.

For each tweet with a label, we perform a normalized tf-
idf weighting of the fastText word vectors to obtain a 300-
dimensional tweet-text embedding. The tf-idf weights were
calculated within-language to prevent language-based ab-
normalities. We use this procedure to embed tweets in Ara-
bic, English, French, German, Hebrew, Italian, Portuguese,
Romanian, Russian, Spanish, and Turkish, covering over
95% of the reachable tweets.

The initial embeddings for hashtags and URLs are ob-
tained similarly. Aggregating the text from all the tweet’s us-
ing a hashtag has been shown to be useful in topic modeling
(Steinskog, Therkelsen, and Gambäck 2017). Following this
result, we concatenate all same-language texts for each hash-
tag and URL. Next, for each hashtag or URL, a weighted
average of the word vectors was applied to each language’s
document to obtain a language-specific vector. Finally, the
language-specific vectors were averaged to give a single vec-
tor for each hashtag and URL. The same tf-idf weighting
scheme applied to Tweets performed poorly in this context
due to the length of the documents. In the case of #elec-
tion2020, the top 25 terms had tf-idf weights one or more
orders of magnitude higher than the following 15000. How-
ever, because the 25 terms were so outnumbered, their sum
only accounted for 10% of the final representation. Raising
the weights to a higher power, p = 3 lessened this effect
such that the important 25 terms accounted for over 90% of
the final representation. Because of the difficulty that graph
convolution has representing nodes with very high degree,
we keep these representations fixed in training.

Finally, we use feature propagation to obtain a feature
vector for the remaining tweets (Rossi et al. 2022). Feature
propagation holds known feature vectors fixed while iter-
ative updating unknown feature vectors. In each iteration,
each node with an unknown feature vector updates its vec-
tor by taking the average features of its neighbors. Nodes
with unknown features which have not been reached by the
propagation are not counted in the update step. After few it-
erations, all features converge. Rossi et al. demonstrate that
this approach yields good results in downstream tasks such
as node classification even in the face of extreme missing
data, when 99% of nodes are featureless. The task of filling
in features for 15.6% of nodes is much less formidable. Fea-
ture vectors converged within 40 iterations on our dataset.

Deep Tweet Infomax
We propose an unsupervised approach for tweet representa-
tion. The flow of information in 1 step of the graph neural
network architecture can be seen in Figure 2. A tweet aggre-
gates information from tweets that it is connected to (replies,
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Figure 2: The flow of information in one layer of DTI.

or quotes), hashtags, and URLS, where the representations
of Hashtags and URLs were obtained by aggregating from
the tweets that they are used in. This model is trained using
Deep Graph Infomax, leading to the informal name of our
approach of Deep Tweet Infomax (DTI). The architecture
will now be described in detail.

Let t, u, and h represent nodes of the type tweet, URL,
and hashtag, respectively. They will be indexed using sub-
scripts, e.g., ti corresponds to the ith tweet. Feature vectors
are represented with the letter x, using subscripts to indi-
cate the corresponding node and superscripts to indicate the
layer. For example, x0

ti , represents the 0th-layer vector (oth-
erwise known as the feature vector) for the ith tweet. We
will make use of a neighborhood function N , which takes
in a node and returns the set of its neighbors. Subscripts of
the neighborhood function allow for the return of only a spe-
cific type of neighbor. For example, Nu(ti) returns all of the
URLs connected to the ith tweet.

Tweets aggregate from their heterogeneous neighbor-
hoods as shown in Equation 1, where AGG is a learnable
aggregation function, and σ is an activation function. Sepa-
rate aggregation functions are learned for the tweets, hash-
tags, and URLs that a tweet is connected to, which are then
averaged, and an activation function is applied. Note that al-
though a simple average is taken in Equation 1, it is possible
that the learned aggregation schemes scale the components
such that certain nodesets, e.g. URLs, play a larger role in
the representation.

x1
ti = σ(

1

3
(AGG({x0

hi
, ∀hi ∈ Nh(ti)})

+ AGG({x0
ui
, ∀ui ∈ Nu(ti)})

+ AGG({x0
ti , ∀ti ∈ Nt(ti) ∪ {ti}})))

(1)

The process thus far defines the network over which fea-
tures are passed and the order in which to pass them. The se-
lection of the aggregation function, AGG, is the main topic
of debate within graph neural network research. In future
work, AGG, can be expected to be substituted for the new
state-of-the-art aggregation schemes. We first employ the
GraphSAGE aggregation, which is the initial aggregation
scheme applied in the Deep Graph Infomax work (Hamil-
ton, Ying, and Leskovec 2017). This aggregation scheme is
detailed for the tweet-to-tweet relationship in Equation 2,
where W are trainable weight matrices, and b is a trainable
bias vector.

x1
ti = W1x

0
ti +

1

|N (ti)|
∑

tj∈N (ti)

W2x
0
tj + b (2)

GraphSAGE is a relatively simplistic aggregation scheme,
where all neighbors are treated equally. More recent aggre-
gation schemes add attention, which allows for a weighted
average of neighbors. Thus, we compare results with those
from the attention function detailed by Brody, Alon, and
Yahav, which improved on the original graph-attention net-
work from Veličković et al (Brody, Alon, and Yahav 2021;
Veličković et al. 2017). This aggregation function is shown
in equations 3 and 4, where Θ is a matrix of learnable
weights, a is a learnable vector, and α gives the attention
score between two tweets. The comparison between aggre-
gation functions is given in the Model Selection section.

x1
ti =

∑
tj∈Nt(i)∪{ti}

αt0i ,t
0
j
Θx0

tj (3)

αti,tj =
exp(aT LeakyReLU(Θ[xti ||xtj ]))∑

tk∈N(i)∪{ti} exp(a
T LeakyReLU(Θ[xti ||xtk ]))

(4)

Finally, we must select a nonlinear activation function.
Again following the original Deep Graph Infomax work, we
use the PReLU, activation function (He et al. 2015). After-
wards, the vectors are L2 normalized, to enable easy com-
parison with cosine similarity.

The process up to here details a single-layer of the archi-
tecture, where Tweets will only obtain information from 1-
hop away. Stacking these layers enables further information
spread. Due to experiments not shown for space considera-
tions, we chose a depth of 3. On Twitter, the vast majority
of replies are replies to a base-tweet, rather than replies to
replies. So, 3 layers capture nearly all the context of a Tweet.

As a final step, the hashtags and URLs were projected into
the same space as the Tweets by applying their respective
final-layer aggregation functions in Equation 1.

To train this architecture, we use Deep Graph Infomax
(DGI), an approach for learning unsupervised node repre-
sentations by maximizing mutual information between patch
representations and corresponding high-level summaries of
graphs (Velickovic et al. 2019). We note that a version of
DGI has been developed specifically for heterogeneous net-
works (Ren et al. 2019). Because of our focus on tweet rep-
resentations and the lack of features available for URLs and
hashtags, we proceed with the original formulation of DGI.

The DGI training process involves four steps. First, a nor-
mal forward pass on the data is performed, giving tweet rep-
resentations, xt. Next, a readout function is applied to give
a graph-level summary vector, s. Velickovic et al. applied
a sigmoid function to a simple averaging of the node vec-
tors but suggest that more sophisticated methods such as
the Set2Vec method could perform better on larger graphs
(Vinyals, Bengio, and Kudlur 2015). So for the summariza-
tion step, we compare the mean function with Set2Vec using
5 processing steps: s = σ(Set2Vec({xti∀ti})), where σ is
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the sigmoid function. For the third step, a forward pass is
performed on corrupted data, giving corrupted tweet repre-
sentations, x̃t. We use the same corruption function as the
original work, a shuffling of the tweet features while keeping
edges intact. Finally, to classify tweets as corrupted or not a
scoring function is given as dti = σ(xT

tiWs), where W is a
trainable scoring matrix and σ is the sigmoid function, pro-
viding a score between 0 and 1. Binary cross entropy loss
was used on the score, d, and the label (corrupted or not) to
train the model.

The model was implemented using the PyG library (Fey
and Lenssen 2019). All hidden and output layer dimen-
sions were set to 300 to match the initial features. The
model was trained using mini-batches of 2500 due to limited
GPU memory. PyG’s “NeighborLoader” was used to han-
dle the neighborhood sampling within minibatches, where
20 neighbors of each edge-type were sampled for 3 itera-
tions. The ADAM optimizer was used during gradient de-
scent with an initial learning rate of α = 0.001 for 50 epochs
with early stopping4 (Kingma and Ba 2014).

Clustering
Once tweets are represented in a continuous space through
DTI, they can be clustered with a variety of clustering algo-
rithms. Tweet clusters, then, are the discrete contexts that
conversational networks can be studied within. Given the
size of Twitter datasets k-Means clustering is one of the only
available choices though it requires a set number of clus-
ters (Lloyd 1982). The “elbow method” heuristic is a use-
ful way of selecting this number, wherein the mean cluster
distance is plotted against the number of selected clusters,
and the “elbow” or point of diminishing returns is selected
(Thorndike 1953). The number of clusters can also be deter-
mined externally. Here, we will use the number of clusters
obtained through a hand-annotation of the data explained
in the following section. For smaller datasets, methods like
HDBSCAN are a better choice since they can find the opti-
mal number of clusters (McInnes, Healy, and Astels 2017;
McInnes and Healy 2017).

Results
Model Selection
We have detailed 4 levels of design choices: directed vs.
undirected edges, GraphSage vs. GAT aggregation, and
mean vs. set2vec summarization. This leads to 8 possible
configurations for our model. We evaluate these configura-
tions based on their ability to capture the relationships in
the heterogeneous conversation network. This ability can be
quantitatively evaluated by first calculating the cosine simi-
larity of neighbors in the network. Then, non-edge pairs are
sampled and the cosine similarity of these pairs is calculated.
Finally, the average difference is taken from edge pair simi-
larity and non-edge pair similarity; the higher the difference
the better the model. This task quantifies how well the first-
order neighbors of the heterogeneous network are captured

4For reference, the model could be trained in about 12 hours on
an Intel E5-2687W v3 CPU.

by the embeddings, which is necessary to construct the con-
versation networks detailed in Figure 1.

Results are shown in Table 1. The best performing model
is the directed network aggregated with Graph-Attention and
summarized with Set2Vec. We select this as the model going
forward. This model is clearly the top performer for the most
important relationship, tweet-tweet. At the same time, it per-
forms reasonably well in capturing the relationship between
Tweets and the hashtags and URLs they use.

Validity of Embeddings
To answer RQ1 with a “yes,” the embeddings from Deep
Tweet Infomax must be validated. The model selection re-
sults of the previous section provide an initial test of valid-
ity. For all edge-types, the embeddings clearly differentiate
edges from non-edges, as evidenced by their positive scores.
Thus, the structure of the conversational network is well-
captured in the embeddings.

We further demonstrate the validity of embeddings in
two ways. First, we use a simplistic data annotation scheme
and see how 5 categories of tweets fall within the embed-
ded space, where we find that the clusters in the tweet-
embedding space are well-correlated with the annotated
groups. Then, we perform a nearest-neighbors analysis and
confirm that that the nodes closest in the embeddings space
are similar, even when comparing Tweets across languages.

Validation With Hand-Labeled Data The 100 URLs re-
ceiving the most cumulative retweets in our dataset were
hand-labeled with the story that they pertain to, as were
the 100 Tweets with the most likes were hand annotated
according to their conversational context. This procedure
resulted in 38 conversational contexts, the top 5 of which
were Claims of Fraud, Spam, Election Updates Biden Cam-
paign and Trump Campaign. Spam is seen as a popular cat-
egory because spammers often tweet the same URL many
times. In Claims of Fraud, users discussed false accusations
about election Fraud carried out by Democrats. Election
Updates included live dashboards and other news breaking
about the election process. The respective campaign discus-
sions included advertisements, endorsements, and informa-
tion about the candidate’s platforms. The 6th context, which
was used to replace Spam, was Vote Info, where information
about how to vote was discussed.

The labeled tweets and URLs were then used to annotate
tweets through a 2-step label propagation. This process as-
sumes that tweets using a URL are part of the discussion that
URL refers to, and that tweets directly connected to a tweet
with URL are also part of that discussion. The assumption
is similar for replies. Further propagation is possible, but the
assumption that tweets further and further from the initial
URL should still have the same label becomes harder to jus-
tify. Tweets that have conflicting labels were not included,
though these made up less than 1% of the tweets. Each la-
beled tweet was projected into a 2-dimensional space using
t-SNE on their initial text embeddings and their final embed-
dings in Figures 3a and 3b, respectively, where tweets are
colored by their label (Van der Maaten and Hinton 2008).

The text embedding in Figure 3a, is similar to Sia et al.’s
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S-D-M S-D-S S-U-M S-U-S A-D-M A-D-S A-U-M A-U-S
Tweet 0.013 -0.002 0.278 0.006 0.599 0.273 0.293 0.192

Hashtag 0.095 0.065 0.110 0.067 0.084 0.086 0.081 0.094
URL 0.248 0.152 0.249 0.158 0.216 0.215 0.185 0.223

Table 1: Model selection results. The configuration keys are as follows: S is GraphSage, A is GraphAttention, D is Directed, U
is Undirected, M is Mean, and S is Set2Vec. The best results are emboldened.

(a) Text Embedding (b) DTI Embedding

Figure 3: 2-dimensional t-SNE representation of tweets before and after DTI training. These are the tweets within 2-hops of a
hand-annotated URL or Tweet. The tweets are colored with their associated hand-annotation.

approach to topic modeling and is used as a baseline (Sia,
Dalmia, and Mielke 2020). We observe that the text embed-
ding is mostly unable to recover the conversational contexts
we set out to find. This is likely due to the facts that these
contexts have similar word distribution and that a text-only
approach cannot leverage replies, hashtags, or URLs. Next,
we observe in Figure 3b that there are a number of well-
formed tweet clusters which correspond to different con-
versational contexts. We observe that some of these clus-
ters form tight balls, almost perfect circles in the embedded
space. Investigation into these regions finds that this occurs
when many tweets reply or quote a popular tweet. The orig-
inal tweet anchors the conversation, while the additional in-
formation in replies or quotes move these secondary quotes
in different directions within the embedded space, but not
far from their neighboring tweet. We also see that not all of
the clusters are so simple, pointing to more interesting con-
textual structure.

Importantly, the majority of tweet clusters have homoge-
neous labels. We see many clusters with 100% label agree-
ment labeled with Claims of Fraud and Trump Campaign.
Many of the instances of Vote Info or Biden Campaign
tweets are also surrounded by Claims of Fraud. This follows
from the observation that many tweets about the election or
statements in support of Biden were replied or quoted with
lies about voter fraud and the Democrat’s efforts to steal the
election.

Hashtag 1 Hashtag 2
#bidencrimesyndicate #laptopfromhell

#jewsfortrump #womenfortrump
#wethepeople #wwg1wgaworldwide

#japanisready* #returnoftheusa
#presidenttrumpwins #returnoftheusa

Table 2: Pairs of hashtags that are closest in the embed-
ded space. Only the top 500 hashtags are considered, and
perfect matches are excluded. #japanisready was translated
from Japanese.

Nearest-Neighbor Analysis We list the nearest neighbors
in the embedding space for each nodeset in Tables 2, 3, and
4. In the case of Tweets, we show the neighbors for off-
language pairs to highlight the method’s ability to work in
the multi-lingual setting

We observe that the hashtag pairs have similar meaning or
usage. Both #bidencrimesyndicate and #laptopfromhell are
anti-Biden hashtags. Similarly, #jewsfortrump and #women-
fortrump express support form Trump from groups outside
his base. The hashtags #japanisready, #returnoftheusa, and
#presidenttrumpwins, stem from a bot-driven conversation
mostly in Japanese falsely stating that Trump has won the
election and that Japan is welcoming this result.

The nearest URLs are also extremely similar. The clos-
est URLs are the NBC News election dashboards for Ari-
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URL 1 URL 2
https://www.nbcnews.com/politics/2020-elections/
arizona-results

https://www.nbcnews.com/politics/2020-elections/
arkansas-results

https://www.nbcnews.com/politics/2020-elections/
california-results

https://www.nbcnews.com/politics/2020-elections/
arkansas-results

https://www.nbcnews.com/politics/2020-elections/
california-results

https://www.nbcnews.com/politics/2020-elections/
arizona-results

https://www.vote.org/polling-place-locator/ https://vote.gop/
https://www.newsweek.com/why-i-will-vote-trump-
opinion-1543803

https://vote.gop/

Table 3: Pairs of URLs that are closest in the embedded space. Only the top 500 URLs are considered, and perfect matches are
excluded.

Tweet
QT: BREAKING: Michigan USPS Whistleblower Details Directive From Superiors: Back-Date Late Mail-
In-Ballots As Received November 3rd, 2020 So They Are Accepted “Separate them from standard letter
mail so they can hand stamp them with YESTERDAY’S DATE & put them through” #MailFraud
this is outright voter fraud. twitter will no doubt block direct video evidence.
where is the doj???
this is outright voter fraud. twitter will no doubt block direct video evidence.
President Trump needs to talk about this. Game changer.
election fraud alleged by whistleblower in michigan. btw, do we still have a justice department?

Table 4: Pairs of different-language tweets that are closest in the embedded space. All shown tweets are closest to the following
text translated from Japanese using Google Translate: “Breaking: At a post office in Michigan, a bureau clerk said, Whistle-
blowing. My boss instructed me to postmark the ballot that arrived at the post office today with yesterday’s date. In this regard,
it looks like an investigation will begin. As soon as I called my boss, I was cut off.”

zona, Arkansas, and California. Clearly all of these URLs
are very similar and fall under the Election Updates con-
versation. The next pair are two URLs giving information
about how to find your polling place, one partisan and one
not. Lastly, we see the pro-GOP voting information link is
neighbors with a Newsweek editorial on why someone is
voting for Trump. These links were shared in close proxim-
ity as Trump supporters attempted to convince others to vote
for him and provided information on how to do so.

Lastly, the closest pairs of different language tweets in the
embedding space are given in Table 4. Off-language pairs
were chosen to highlight the method’s ability to work in the
multi-lingual setting, while the overall neighbors are omit-
ted given space restrictions. All of the pairs included one
Japanese tweet claiming there was fraud. The closest neigh-
bor repeats the claim in English. The following neighbors
are direct replies to the claim. These examples show that
similar tweets across language are given similar representa-
tions and that conversational structure is captured.

User Overlap Across Conversational Contexts
We now turn to RQ2. Users are active within a conversa-
tional context if any of their Tweets or Retweets are clus-
tered in that context. We calculate the pairwise percentage
of overlap in membership and plot the results in Figure 4.
Overall, there is low (25-35%) overlap of active users be-
tween clusters. There are exceptional pairs of contexts with
40-55% overlap, which is still low.

Figure 4: Pairwise overlap of active users in the conversa-
tional contexts. The diagonal is set to 0% for readability.

This finding has important ramifications for conversa-
tional network analysis. The presence of non-overlapping
contexts highlight that global properties of conversational
networks are being affected by context. Placing users from
the first cluster of contexts in the same network as those in
the second is a misleading representation of the data. It is
possible that users from these different contexts may even
be placed in the same component of a decontextualized net-
work. As the number of active users increases, it becomes
more likely that the two contexts will be merged into a sin-
gle component under decontextualized analysis.
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Figure 5: Pairwise Kendall-Tau correlation of user PageR-
ank in the conversational contexts, accounting for differ-
ences in nodesets.

More importantly, there are contexts with low but not neg-
ligible overlap, around 15%. This means that the local prop-
erties of the de-contextualized network are affected. With
15% overlap, we can expect that about 15% of users will
have connections from users in both contexts with no way
of distinguishing them. This has negative effects on every
aspect of network analysis. Path-based centralities, for ex-
ample, will be calculated on paths that could not occur in
the data because they span contexts. The impact of this is
further studied in the following section.

Status Correlation Conversational Contexts
Finally, we address RQ3. From the previous analysis, we
have seen that contextualized networks are very different
than uncontextualized nodesets. The most basic property, the
nodeset, has extreme variation from one context to the next.
However, for many social media network studies, the users
with high status are of primary concern. For example, two
conversations may have many different users in them, but if
they both have the same 5 influencers dominating the dis-
cussion the other differences may not matter. We now ask
how users’ social status varies between conversations.

To answer our third research question, we measure the
correlation of the social status ranking of users across con-
versations. If correlation is low, then we can again say that
contextualized analysis provides different results than of
non-contextualized analysis.

To measure status correlation, we first control for differ-
ences in nodesets. For a pair of conversations, we construct
the conversational sub-graphs only considering users that are
active in both conversations. From there, PageRank central-
ity is used to quantify user status in both contexts (Page et al.
1999). Lastly, the correlation of status rankings is quantified
using Kendall-Tau correlation. Non-significant results (those
with p < 0.05) were set to 0.

The pairwise correlations are shown in Figure 5. The
mean correlation between contexts is 0.472. As we would
expect, users who are important in one conversation tend to
be important in the next. However, with a correlation be-
low 0.5 and with many pairwise instances below 0.5, this is
far from a one-to-one mapping. This difference can be es-

pecially important for those performing qualitative analysis
on the top n users according to their status. With correla-
tions below 0.5, the top n users in the uncontextualized set-
ting may vary significantly from the important users in the
conversations of interest to the researcher. We controlled for
the vastly different nodesets between contexts but compar-
ison of the full networks would likely lead to much lower
correlations, due to the lack of robustness of centrality mea-
sures (Borgatti, Carley, and Krackhardt 2006). This is to say
that status varies from one conversation to the next and per-
forming a contextualized analysis is the only way of fully
accounting for this variation.

Discussion
Tweet representation through Deep Tweet Infomax appears
to be a well-validated approach to clustering Tweets into
their respective conversations. This validation stems from a
3-part analysis, where tweets, URLs, and hashtags were all
tested. The embeddings were shown to capture all three edge
relationships in the heterogeneous social graph. From there,
the embedding clusters were demonstrated to agree with
hand-labeled data of conversational contexts. Lastly, exam-
ples of multi-lingual nearest neighbors showed that Tweets
with similar content across languages are given similar rep-
resentations. With this validation in mind, we move to dis-
cussion of the network results.

When considering both the overlap in active users and
the correlation of status between conversational contexts, we
note that there appears to be two higher-level clusters in the
dataset. The conversations within these clusters have slightly
higher status correlation and user overlap than those between
clusters. The presence of these clusters implies the existence
of hierarchical conversational contexts. Prior work in story
detection, which the present work builds on, have also ac-
knowledged the hierarchical nature of stories (Srijith et al.
2017). Here, we identify 2-layers of this hierarchy, which
is of use when qualitatively analyzing the data within these
contexts. Future work that explicitly models the hierarchical
nature of conversational contexts is of interest.

Next, we find that combined network analysis of multi-
ple contexts severely corrupts measurements of important
actors. The average correlation of status between different
conversations is below 0.5. So, while important users in one
conversation tend to be important in others, there are many
exceptions to this trend. The conditions under which users
carry status across contexts is of interest in future work. The
development of centrality measures which account for node
position within and between contexts could quantitatively
address this question. These may be developed in a simi-
lar manner to community-aware centrality measures, which
account for node position within and between communi-
ties (Magelinski, Bartulovic, and Carley 2021; Rajeh et al.
2021).

We have demonstrated that each conversation in a so-
cial media dataset may have unique and important conversa-
tional structure. To understand the entire dataset, it is clear
that the information given by these networks is complimen-
tary. For example, understanding the active and important
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users in the Claims of Fraud and Trump Campaign dis-
cussions help us understand the overall dataset. Methods
that explicitly leverage this complimentary information to
answer questions about the overall conversational network
structure are of interest for future work.

Limitations and Future Work
There are a number of limitations to this work. First, the data
was collected using a keyword-based collection, resulting in
only a sample of the true conversational network. Twitter’s
new API provides functionality to build out the full conver-
sational graph after the initial sample is collected5. This is a
powerful data collection tool that will be leveraged in future
work; obtaining the full conversational network will provide
more edges for information to flow between.

Additionally, the initial feature representations of tweets
are derived from a relatively simple language embedding
scheme which does not include attached images or video.
The scheme was selected due to its scalability and its ability
to embed tweets written in different languages within the
same vector space. This approach embedded tweets from
11 languages, but 4% of the reachable tweets were still not
reached. The lack of image or video representation is the
more important limitation, particularly because many tweets
with images or video do not have text. While this is largely
the case for replies and not original tweets, the full space
is affected due to the transfer of information from reply to
base tweet and vice-versa. Even though a pre-trained model
can be used to obtain image or video representations, the
process of including this information in initial tweet feature
representation is unclear. Most tweets lack images, so fea-
ture concatenation will not be effective. Combining the fea-
ture vectors is also not straightforward because the vector
spaces are not aligned. A process which gives a feature rep-
resentation of both text and images is left for future work.

All tweets are treated equally in current methods, how-
ever, social signals such as the number of retweets or fa-
vorites a tweet gets could inform more sophisticated aggre-
gation schemes for GNNs. This is left for future work. Fur-
ther, methods which incorporate URLs domain name could
improve embeddings but are also left for future work.

Another limitation of the current analysis is the lack of
mention representation. Mentions are a core feature of Twit-
ter, allowing for users to directly tag other users in their
Tweets. Incorporating mention nodes into Deep Tweet In-
fomax should improve tweet representation, since mentions
are so commonly used to tag major players in a discussion.
This was not done in the present work because of the qual-
ity of the data available. In the first version of Twitter’s API,
replying to a tweet adds a “mention” of the user that is be-
ing replied to, and often adds “mentions” to several other
user higher in the conversation tree. These are not actual
“mentions,” just artifacts of the already modeled tweet-tweet
graph, so their inclusion could harm our results. This prob-
lem is resolved in the new API. Future work applying DTI

5https://blog.twitter.com/developer/en us/topics/tools/2020/
introducing new twitter api

to datasets collected with the new API will model mentions
in a similar way to hashtags and URLs.

The last major limitations of the approach are that the
method still derives discrete conversational contexts and that
these are compared with noisy human annotations. Specifi-
cally, the fact that our annotations were given by a single
annotator poses a limitation. Next, we have seen that in-
teractions can be represented as occurring in a continuous
context space. However, all existing network approaches as-
sume discrete context spaces. Given the appropriate meth-
ods, the continuous context space could be used to measure
things such as conversational drift and contextual persis-
tence of links. Thus, methods directly operating in contin-
uous space are of interest in future work.

Broader Perspectives and Ethics
Contextualizing data allows for more accurate representa-
tion of user’s importance within a discussion. Social media
analysis can have high stakes when it is used to determine
the importance, or presence, of users within information op-
erations. While this work moves closer to properly attribut-
ing users to the conversations that they are actually active
in, there is a question of interpretability. The move towards
deep graph neural networks makes interpretability challeng-
ing. While the initial layer of our model is easy to interpret,
this becomes more challenging as layers are stacked. We
have tried to validate that our model is appropriately rep-
resenting the data by checking even the intermediate node
representations of hashtags and URLs, but if this work is to
be applied to qualitative work looking to attribute accounts
a high-stakes setting, much more in-depth checks about how
specific users fit into a conversation must be taken.

Conclusion
We provide a method of contextualizing conversational net-
works on Twitter. This method represents tweets in a vec-
tor space using their text, hashtags, URLs, and the conver-
sational network. Vectorized tweets are then clustered into
conversational contexts. We apply our approach to a dataset
of 4.5 million tweets and validate the results through in-
spection of nearest-neighbors in the embedded space, and
by comparison with a label propagation procedure.

Conversational contexts have been shown to have low
overlap in user participation. Thus, distinguishing between
contexts allows for more accurate analysis about which users
are participating in the same discussions. Further, we see
that it allows for more accurate analysis of which users are
important within conversations, as contextualized networks
are then demonstrated to have different central actors. This
points to an area of future work: quantification of user im-
portance within and between conversational contexts.

While we analyzed Twitter data, the approach is readily
extensible to other mediums. We hope that this work has
demonstrated the importance of uncovering the context in
which social connections are made online and will spark fu-
ture work both in detecting and understanding the implica-
tions of such contexts.
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ter topic modeling by tweet aggregation. In Proceedings of
the 21st nordic conference on computational linguistics, 77–
86.
Thorndike, R. 1953. Who belongs in the family? Psychome-
trika, 18(4): 267–276.
Uyheng, J.; Magelinski, T.; Villa-Cox, R.; Sowa, C.; and
Carley, K. M. 2019. Interoperable pipelines for social cyber-
security: assessing Twitter information operations during
NATO Trident Juncture 2018. Computational and Mathe-
matical Organization Theory, 1–19.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
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