
BotBuster: Multi-Platform Bot Detection Using A Mixture of Experts

Lynnette Hui Xian Ng1, Kathleem M. Carley1

1Carnegie Mellon University
{huixiann,carley}@andrew.cmu.edu

Abstract

Despite rapid development, current bot detection models still
face challenges in dealing with incomplete data and cross-
platform applications. In this paper, we propose BotBuster,
a social bot detector built with the concept of a mixture of
experts approach. Each expert is trained to analyze a por-
tion of account information, e.g. username, and are com-
bined to estimate the probability that the account is a bot.
Experiments on 10 Twitter datasets show that BotBuster out-
performs popular bot-detection baselines (F̄1 = 73.54 vs
F̄1 = 45.12). This is accompanied with F1=60.04 on a Red-
dit dataset and F1=60.92 on an external evaluation set. Fur-
ther analysis shows that only 36 posts is required for a stable
bot classification. Investigation shows that bot post features
have changed across the years and can be difficult to differ-
entiate from human features, making bot detection a difficult
and ongoing problem.

Introduction
Social bots accounts are partially or fully controlled by al-
gorithms. Social bot detection have been extensively studied
for more than a decade and many machine learning frame-
works have sprung up to address this problem (Cresci 2020).

Despite this progress, two important issues remain: deal-
ing with incomplete data and a multi-platform bot detector.
Bot detectors rely on account features from content informa-
tion to user metadata to perform a prediction. However, dur-
ing fast-moving events like elections or protests, data collec-
tion on accounts is often incomplete. It is near impossible to
perform an extensive collection of all fields required by most
bot detection algorithm, especially when there are at least a
million accounts. Other times, it is simply impossible to col-
lect all required data: the account may have been suspended
or turned protected, forcing analysts to rely on available data
or previously collected historical data. A popular method to
fill incomplete data is to make missing values zero, but that
may affect the prediction as zero or null are valid values that
do occur in the data. Additionally, most bot detectors are
currently tuned for the Twitter platform, leaving other social
media platforms vulnerable.

In this work, we advance the problem of bot detec-
tion modules through a mixture of experts architecture that

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can handle incomplete account information. Given an ac-
count’s information of username, screenname, description,
user metadata, posts, where some information in this set may
be missing, our goal is to classify the account into one of two
classes: bot, human. Each expert is trained to analyze one
pillar of data and are combined to estimate the probability
that the account is a bot. The proposed solution, BotBuster,
aims to overcome the limitations of requiring the entire set
of account information for effective bot prediction and ex-
pand bot prediction to multi-platforms.

Contributions Our contributions include:

1. We introduce the concept of a mixture of experts ap-
proach to bot prediction, which overcomes the limita-
tion of requiring data for all features and make a decent
prediction given available data. The proposed BotBuster
reaches state-of-the-art performance (F̄1=72.23), outper-
forming baselines (F̄1=49.61, 40.63).

2. We extend bot prediction from one platform to multi-
ple platforms, incorporating bot prediction across Twitter
and Reddit. BotBuster stabilizes after 36 posts and per-
forms robustly on an external validation set (F1=60.92).

3. Finally, we investigate the difficulty of the bot detection
task through the blurred distribution of features between
bots/humans, and the changing distribution of features
across the years.

Related Work
Bot Detection Common supervised Twitter bot-detection
mechanisms are feature-based, using account details such as
tweet frequency (Yang et al. 2020), tweet content (Beskow
and Carley 2018), temporal features (Chavoshi, Hamooni,
and Mueen 2016) and network features (Yang et al. 2019).
Popular bot-detection libraries are: Botometer (Varol et al.
2017), BotHunter (Beskow and Carley 2018). Botometer
uses a supervised ensemble classification based on user,
tweet and network features extracted for each account.
BotHunter uses a multi-tiered random forest method, with
each tier making use of more features as before, from con-
tent to user to network features.

However, Botometer queries Twitter live, meaning it is
unable to work with archived data, BotHunter requires the
full feature set for prediction. We bridge this gap by building

Proceedings of the Seventeenth International AAAI Conference on Web and Social Media (ICWSM 2023)

686



a bot prediction algorithm that can work with incomplete
and historical data.

Bot detection has been widely studied on Twitter; it is less
so on Reddit. Past work includes exploiting temporal and
network information to detect political bots (Ferraz Costa
et al. 2015; Hurtado, Ray, and Marculescu 2019). While
there have been research on cross-platform analysis of social
bot trends (Mittos et al. 2020), to the best of our knowledge,
there has not been a bot prediction model that successfully
combines bot prediction for Twitter and Reddit platforms.

Mixture of Experts Mixture of experts models have been
used in ensemble learning: for translation (Peng et al. 2020),
sequence learning (Shazeer et al. 2017) and text generation
(Shen et al. 2019). A close cousin is multi-task learning,
where there are shared parameters among the tasks (Ruder
2017). This approach has been used in stance detection (Li
and Caragea 2021) and offensive language detection (Ben-
ton, Mitchell, and Hovy 2017). To the best of our knowl-
edge, no bot detection approach has harnessed this model
for bot detection. We adapt these ideas from the natural lan-
guage community for bot detection.

BotBuster Architecture
Figure 1 illustrates our proposed BotBuster architecture
flow. Given the set of user account information: (user name,
screen name, description, user metadata, posts), we first
evaluate the bot probability score (P (bot)) through a Known
Information Expert. If known information is present in the
information pillars, P (bot) is returned.

If known information is not present, P (bot) is evaluated
as a weighted sum of bot probabilities evaluated through
5 other experts, one for each information pillar. Each ex-
pert takes in an expert-specific input representation, an em-
bedding vector of their corresponding information pillar. It
returns a 64-d Expert Representation Vector and the Ex-
pert’s Bot Probability Score (P (bot|Expert)), the probabil-
ity of the account being a bot given the expert’s informa-
tion. The Expert Representation Vectors serve as inputs to
a gating network which calculates a bot probability score,
P (bot) ∈ [0, 1]. The experts are grouped by fields that are
commonly retrieved together; should one of the fields the
expert requires be absent, the expert is not activated. The
gating weights change accordingly to the number of pillars
present, accounting for incomplete data.

Known Information Expert is the first gate which eval-
uates bot or not based on definite known information.
If the signals from these definite known information are
not present, the collected user data processes through the
rest of the BotBuster architecture. The expert are acti-
vated under the following two conditions: (1)P (bot)=0 if
the “is verified” field is True for Twitter accounts, and
(2)P (bot)=1 if the accounts has the word “bot” in the ex-
tracted user features (eg. “xxUpdateBot”). Although the fi-
nal probability of the account has been determined through
these definite signals, these information are still used to train
the other experts.

Username, Screenname, Description Experts are mod-
elled similarly and trained on their respective data pillars.
Their input representation is a 768d-vector of BERT embed-
dings of their data pillars, which is then fed into a pre-trained
BERT model with a Multi-Layer Perceptron (MLP) network
for fine-tuning that outputs a 64d Expert Representation for
the gating network and P (bot|Expert).

User Metadata Expert takes in user metadata as a vector
into a 4-layer MLP with a dense layer. It returns a 64d Expert
Representation for the gating network and P (bot|Expert).

Post Expert derives P (bot|Expert) and a 64d-
representation from post texts. We test two types of
post experts: account-level and post-level.

In the pre-processing step, we first filter for posts that are
origin posts, ie. posts that are not quotes or retweets. This
step gives us an insight into the post information and lin-
guistic style originating from the agent. We then remove any
hashtags, @-mentions, URLs and stop words. We derive lin-
guistic values from the post text as features which are de-
scribed in Feature Engineering.

A post consists of two portions: post texts and post meta-
data (eg., retweet count, like count etc. and derived linguis-
tic values). For post texts, we tokenize sentences using the
default tokenizer of the BERT language model to obtain se-
quence embeddings. For post metadata and derived linguis-
tic values, we construct a normalized float vector each.

Account-Level Post Expert. In this variation, we con-
struct two sub-post experts: one representing the post texts
and another representing post metadata. We feed the post
texts expert into a BERT model and fine-tuned it with a
dense layer. We feed the post metadata expert into a 4-layer
MLP followed by a dense layer. We then combine the out-
put of the two sub-posts experts in a uniform manner to ob-
tain the probability P (bot|expert). We concatenate the 32d-
representation of both sub-post expert to form a 64d- post
Expert Representation for use in the gating network.

Post-Level Post Expert. The post-level post expert is a
joint model in a Siamese network structure. We first feed the
post text into a BERT model and fine-tuned it with a dense
layer to obtain an intermediate embedding of the post text.
We next feed post metadata into a 4-layer MLP and obtain an
intermediate embedding of post metadata. We concatenate
the outputs of the intermediate embeddings, then trained a
dense layer on top, to output the required information.

For each type of post expert, we experimented with and
without the inclusion of derived post linguistic values as
features. The account-level experts aggregates information
from multiple posts as input, while the post-level expert uses
information from each post singularly. As such, we do not
construct a mixture that combines both types of post experts
which will use information from a post twice.

Expert Importance Gating The ideal BotBuster input is
all five pillars of data: (User Metadata, Posts, Username,
Screenname, Description). Other combinations of data input
include: (Username, Posts), (Screenname, Posts, Username)
etc., in which one pillar of data is missing. In total, there are
5! = 120 combinations, each of which has a different weight

687



Bot Probability Score: P(bot)

Known 
Information 

Expert

User 
Metadata 

Expert
Posts Expert Username

Expert
Screenname

Expert
Description

Expert

User Metadata, Posts, Username, Screenname, Description

Evaluate bot 
probability score 

through other experts

Known 
Information 

present

YES

NO

Embedding layer

Expert Importance 
Gating

Expert 
Representation

Expert’s Bot 
Probability Score
P(bot | Expert)

Ʃ
w1

w2 w3
w4

w5

Pillars of account 
information

Figure 1: Diagram of the BotBuster Architecture.

distribution to the experts.
We adapt the approach from Peng et al. (2020) to assign

weights to each expert for a combined ensemble model. We
first concatenate the 64-dimension Expert Representation
from each expert and average them in the sequence direc-
tion, producing one representation per expert. Then we form
an input vector that concatenates these average representa-
tions as input into the gating network. The gating network
is a two-layer MLP, interspersed with tanh activation layers.
It has a final softmax layer that normalizes the layer weights
to output an n-dimensional vector that sums to 1, where n
is the number of input data pillars. The magnitude of each
vector element represents the relative strength of the experts.

We trained this gating network to produce weights for all
combinations of data input. For each combination, we run
this training for three times and take the average weights.
This Expert Importance Gating can be seen as a learned
probability distribution over the experts, assigning more re-
sponsibility to the experts that are more important in bot de-
tection to contribute more to P (bot).

Datasets
We trained and tested our models on 10 public Twitter
datasets from 2017 to 2020. These datasets are human anno-
tated with bot/human labels and are publicly available on a
bot repository 1. The datasets range from accounts collected
from the US elections to bots that were manually discovered
on Twitter, covering a wide range of bot activities. We hy-
drate these accounts with the Twitter V2 REST API in July
2021, collecting user information and the latest 40 tweets
per user. The bot repository provides a user data file of some
user metadata of the accounts at the time of dataset creation.
For some accounts, we are unable to retrieve information as
they have been suspended by Twitter or became a protected

1http://botometer.org/botrepository

accounts. We use the bot repository’s user data file to enrich
account information with data gaps.

We also construct an additional dataset for Reddit. Un-
like Twitter accounts, user information for Reddit accounts
only consists of user names, providing us without informa-
tion for screen name, posts and user metadata. We select the
500 highest ranked “bad bot” in BotRank2, a crowdsourced
bot curation list that provides a good/bad bot ranking based
on community approval (Trujillo et al. 2021).

For Reddit humans, we collected users from 5 subred-
dits that generally require conscious writing and thought and
manually verified the users are likely to be humans. We then
use the Pushshift Reddit API (Baumgartner et al. 2020) to
collect user information and the latest 20 posts of each ac-
count’s timeline.

Table 6 provides a dataset overview and indicates the
fields with incomplete data. An ontology map unifies the
field names to account for different naming conventions
across social media platforms.

Feature Engineering

We perform feature engineering to exploit account’s infor-
mation. Table 5 lists the features.

Extracted User Features describe the user account in
terms of user biography information (username, screen-
name, description), user statistics (number of followers/fol-
lowing, total number of posts, listed count) and account in-
dicators (verified, protected flag).

Extracted Post Features are gathered from the plat-
form’s API, includes post texts and its statistics (number of
retweets, likes, quotes, replies).

2http://botrank.pastimes.eu

688



Derived Post Features BotBuster-2/4 also uses derived
post features, which are linguistic characterization of the
texts. This builds on past studies that observed bots used
simpler language than humans (Uyheng, Ng, and Carley
2021) and differ in the use of pronouns.

Sentiment of the text is calculated using the Pysenti-
mento library (Pérez, Giudici, and Luque 2021). The library
fine-tunes a BERT-based network on a Twitter dataset anno-
tated with positive, negative and neutral sentiments.

The Flesch-Kincaid reading difficulty score standard-
ized by the U.S. Military gauges the ease of readability of a
text by the number of words and syllabus of the words 3.

EPA scores are affective social identities represented via
three values: Evaluation (good vs. bad), Potency (strong vs.
weak) and Activity (active vs. passive). These scores are ex-
tracted from a dictionary developed using surveys in 2012-
2014 (Smith-Lovin et al. 2016).

LIWC features are derived from the Linguistic In-
quiry and Word Count (LIWC) lexicon that summarizes
emotional, cognitive, and structural components in a text
(Tausczik and Pennebaker 2010). We use the 2015 version
and focus on the time, affect, social, drives and pronouns
components.

Experiments
Experimental Setup In order for the BotBuster to learn
from the diverse dataset acquired, we used a merged train-
ing strategy by training a single model on all the training
data. Our model is implemented with Tensorflow. For train-
ing and hyperparameter tuning of each expert, we select ac-
counts that have a value for that expert. We partition the en-
tire dataset into 80:10:10 train:validation:test ratio. There is
a disproportionately larger number of bots in the dataset, so
we use stratified sampling to ensure there is an equal pro-
portion of bot/human accounts in each set. After individual
expert training, we perform joint training for the Expert Im-
portance Gating network, in which we similarly partition the
dataset into 80:10:10 with stratified sampling.

For all experiments, we use ADAM as the learning opti-
mization with a learning rate of 0.001. We run for 20 epochs
with a batch size of 32. For the username, screenname, de-
scription, user metadata and account-level post experts, we
use the binary cross-entropy loss. For the post-level post ex-
pert, we use the binary cross-entropy loss from logits, in or-
der to back propagate the gradients to the individual posts.

Models We perform experiments on four variations of the
BotBuster architecture. In all variations, the structure of the
user name, screen name, description and user metadata ex-
perts remain the same; we mainly vary the post expert be-
tween an account-level post expert and a post-level post ex-
pert and on the inclusion of derived post linguistic values.
The four model variations are:

1. BotBuster-1: account information + account-level post
experts

3reading difficulty = 0.39 × average words per sentence + 11.8
× average syllabus per word - 15.59

2. BotBuster-2: account information + account-level post
experts with derived post linguistic values

3. BotBuster-3: account information + post-level post ex-
perts

4. BotBuster-4: account information + post-level post ex-
perts with derived post linguistic values

Evaluation
In the evaluation phase, we use the BotBuster model to per-
form predictions. With BotBuster, we classify accounts as a
bot when P (bot) ≥ 0.50 and human otherwise, stemming
from the use of a binary classification model.

The micro-F1 score is adopted for model evaluation. It
gives the same importance to each sample, accounting for
the class imbalance situation. We ran each experiment three
times and report the mean F1-score.

Individual Expert Baseline For each expert, we perform
baseline comparisons of our neural network based formu-
lation against common classifiers. For the text-based clas-
sifiers like user name, screen name, description and posts
experts, we used a Term Frequency-Inverse Document Fre-
quency (TF-IDF) vectorizer as a preprocessing step before
fitting the data into the classifier. For the numeric data such
as user metadata expert, we formulate the numeric data into
a vector and normalize each numeric category before fitting
the data into the classifier. For post experts that make use of
the post text and derived values, we concatenate the TF-IDF
vector with a vector of post derived values.

Ensemble Baseline For the mixture of experts formu-
lation of BotBuster, we perform baseline comparisons to
two commonly used commercial bot-detection algorithms:
Botometer (Varol et al. 2017) and BotHunter (Beskow and
Carley 2018). Both algorithms provide a bot probability
score between 0 and 1. These algorithms have been continu-
ally updated since their development in 2017-18. They have
been widely used in social bot detection studies.

For Botometer, we queried their API4 to retrieve the uni-
versal score returned as P (bot). We set a threshold of 0.5
for bot classification (i.e., P (bot) ≥ 0.5 = bot, as sug-
gested by its authors (Varol et al. 2017). For BotHunter, we
obtained its library from its authors to perform bot detec-
tion. We set a threshold of 0.7 for bot classification (i.e.,
P (bot) ≥ 0.7 = bot (Ng, Robertson, and Carley 2021).
We report the results of these baseline predictions for each
dataset where it exists (i.e. the baseline algorithms return
results). We also report the average of these baseline predic-
tions across all datasets.

Individual dataset analysis In this phase, we train and
test the BotBuster model on each dataset one by one. Each
dataset is partitioned into a 80:10:10 stratified split and
trained singularly using the same architecture. We compare
the predicted classification against the original bot/human
annotations and report the results as BotBuster-singular.

4https://botometer.osome.iu.edu/

689



Individual dataset analysis with combined data We also
perform individual dataset analysis with a combined data
setup for training. In the combined data setup, we ag-
gregate the data instances from all datasets. During each
dataset run, we partition 10% of the targeted dataset for test-
ing. We partition the remaining combined data into 90:10
train:validation, accounting for the distribution of bots/hu-
mans in the combined dataset. We use the remaining com-
bined data for training. We compare the predicted classifi-
cation against the original bot/human annotations and report
the results as BotBuster-Full.

We opted for this strategy as it mimics the baseline bot
detection algorithms. These algorithms are continually up-
dated by training on diverse datasets, including those se-
lected in this work. As we cannot retrain these state-of-the-
art models on separate train-test data subsets, although we
would love to, we adopt a setup where we train on data from
all datasets and test on data from each dataset separately.

Evaluation against baseline returns The two baseline al-
gorithms do not return results for all queried accounts. We
thus collect P (bot) for accounts the algorithms returned
without modifying any data fields. Using the set of accounts
in which the baselines returned P (bot), we construct two
sets of BotBuster-Subset based on the respective returns.
We then compare our approach against the results returned
by the baselines. We also perform proportion z-tests to test
whether the proportion of bots derived from BotBuster and
baseline models are the same. We first identify bot accounts
for each model according to their respective threshold val-
ues, and compare the proportions of bots identified by each
model. We adopt this approach over significance testing via
bot probability means as bot classifiers are typically used to
identify bot/human instead of for the absolute score.

Evaluation against external dataset We perform an ex-
ternal validation by predicting bot probability using the Bot-
Buster model on an unknown dataset. We run the BotBuster-
4 prediction model on the TwiBot-20 test data set, consist-
ing of 1183 users (Feng et al. 2021). This dataset was con-
structed in 2020, whereas BotBuster was trained on datasets
collected up to 2019. This evaluation helps us ascertain the
robustness of the architecture towards newer bot behavior
and an unknown set of annotations. For BotBuster, we used
the tweets and user data provided in the dataset. We also ran
the dataset through the baseline algorithms. For the Botome-
ter baseline algorithm, we did not use the historical data pro-
vided; the API does an online pull of account data at the
point of query.

Results
Individual expert training We present the performance
of training each Expert on accounts with all pillars of ac-
count information in Table 1. The BotBuster formulation
performs better than traditional classifiers, validating our ap-
proach. Individual experts perform as well as the ensemble
results, showing that each expert can make a fairly accurate
prediction of P (bot).

Individual dataset analysis In comparison to the BotH-
unter and Botometer baseline algorithms, BotBuster has
better coverage: analyzing 100% of Twitter accounts and
also covers Reddit accounts (Table 2). BotBuster analyzes
P (bot) based on the available information. In contrast,
BotHunter requires the presence of the entire feature set it
is trained upon, while Botometer fetches information from
Twitter in real-time, hence suspended accounts will return
no results despite having previously data collected.

We present the results of BotBuster-Singular and
BotBuster-Full in Table 3. In general, singular runs of each
dataset (BotBuster-Singular) perform better than the base-
lines, but does not perform as well as the merged training
model (BotBuster-Full). Thus, augmenting the training data
by merging all the datasets for model training and hyper-
paramter tuning enhances the model performance.

Out of the three model variations trained, the BotBuster-
4 variation performed the best (F1=72.23±18.84) across
all the test datasets. It outperforms the baselines of BotH-
unter (F1=49.61±30.10) and Botometer (F1=40.63±26.33).
From the independent dataset analysis, we observe that the
standard deviation of F1 scores of BotBuster is smaller than
the baseline algorithms. BotBuster classifier is thus less sus-
ceptible to cross dataset variances.

Observing that BotBuster-3/4 variations performed better
than BotBuster-1/2 variations lends to the fact that a post-
level post expert differentiates post information between
bots and humans better than an account-level post expert.
While the use of derived post linguistic values does not sig-
nificantly improve model accuracy for account-level post ex-
pert (BotBuster-1 vs BotBuster-2), it does so for the post-
level post expert (BotBuster-3 vs BotBuster-4). BotBuster
performs most poorly are datasets from 2017, suggesting the
mutable behavior of bots over time (Luceri et al. 2019).

Our input-agnostic BotBuster architecture requires only
specification of matching field and does not rely on any
specific data format and opens up possibilities for multi-
platform bot-detectors. As such, BotBuster is able to per-
form predictions on Reddit data, despite it not having the
same fields as Twitter data. Observing that BotBuster-4 per-
forms well on both the Reddit and Twitter datasets supports
our architecture and opens up discussion for the similar be-
haviour of bots on both platforms.

Known Information Expert On average, our datasets
have 16% of accounts containing known information, indi-
cating the merit of incorporating knowledge about the so-
cial media platforms. The breakdown of accounts detected
through known information is shown in Table 6. These infor-
mation should be updated as platforms improve their service
and include more indicators.

Evaluation against external dataset The results of the
external evaluation against the TwiBot-20 dataset are pre-
sented in Table 4. BotBuster outperforms the baseline mod-
els (F1=60.92 vs avg F1=34.94), illustrating the robustness
of the model in characterizing bots.

Understanding expert importance P (bot) is a weighted
sum of the experts. Figure 2 summarize the expert weights

690



Expert Decision tree SVM Random Forest BotBuster
User name 54.96 54.96 54.96 62.01
Screen name 59.70 60.79 59.56 62.01
Description 63.19 60.79 60.79 69.33
User metadata 44.52 55.63 55.63 62.38
Posts (account-level) 61.48 59.34 59.34 64.22
Posts (post-level) 59.22 63.59 63.32 64.79
Posts (post-level) + de-
rived values

67.44 71.25 72.15 74.50

Posts (account-level) +
derived values

68.74 68.65 61.81 72.98

Table 1: Macro F1 accuracy scores of individual experts.

Dataset Bot
Hunter

Bot
ometer

Bot
Buster

astroturf 27.65 34.02 100
botometer-
feedback-2019

61.44 71.07 100

botwiki-2019 90.34 92.90 100
cresci-rtbust-2019 74.97 78.78 100
cresci-stock-2018 40.57 47.03 100
gilani-2017 72.39 0 100
midterm-2018 11.26 1.31 100
political-bots-2019 0 20.60 100
varol-2017 83.17 72.28 100
verified-2019 88.60 98.15 100
reddit 0 0 100
Average 55.04±

31.32
51.61±
34.49

100

Table 2: Percentage of dataset analyzed by each algorithm.

for all combinations of data input to BotBuster-4 derived by
the Expert Importance Gating network. A higher value re-
flects a higher importance for the expert.

The input weights are almost evenly distributed across the
experts, suggesting an almost equal importance on each ex-
pert for final prediction. However, there is more emphasis on
post information and descriptions and lesser value on screen-
names and usernames, which suggests that longer writing is
a key determinant of P (bot). Screennames and usernames
are typically single words. In our dataset, the average user
name length is 3.02±5.15 characters, and the average screen
name length is 3.28 ± 6.23 characters. The average Lev-
enshtein distance between both values across our dataset is
2.36±4.89, suggesting users typically use similar strings for
both these names. An account’s description is more lengthy,
usually a sentence with 3.62 ± 6.33 words, and the maxi-
mum allowed tweet length ranges from 40-70 words. The
gating network places more emphasis on text input pillars
compared to metadata, and particularly on longer text-input
pillars that contain more information.

Discussion
In this work, we built a social bot detection model, Bot-
Buster, leveraging on the mixture of experts architecture.

Figure 2: Distribution of expert importance of BotBuster-4
architecture

Generalizable feature engineering and model design
We performed the same feature engineering on 10 Twitter
datasets and one Reddit dataset, demonstrating that the fea-
tures are generalizable across datasets and platforms. These
features are general to the social media space, because every
user in all social media platforms have a username, posts
and other account metadata. In the event any of the feature
is missing because the platform does not have the feature
tagged to the user, the expert is not used in the evaluation to
whether the user is a bot or not. Thus, this method is scal-
able to general bot detection and only requires a mapping of
feature names.

Our results identify that a merged training strategy per-
forms better than individual dataset training strategies.
Training the model on an augmented dataset aids in model
generalizability where the model learns features across a va-
riety of data types. BotBuster demonstrated its robustness
in achieving a 2-4 times better accuracy than the baseline
algorithms on an external dataset. Although BotBuster was
trained on older datasets, it is sufficiently robust enough for
bot detection on the newer TwiBot-20 dataset. The accuracy
achieved by BotBuster is lower than the model built by the
TwiBot-20 authors, which may be due to the use of network
information in prediction. Given that BotBuster can detect
newer bot styles reasonably well, the generalizability and
performance of BotBuster seems acceptable.

Difficulty of differentiating bot and humans We con-
catenate all features used as input to BotBuster into vec-
tors and perform Principal Component Analysis before vi-
sualizing the top 2 components. Through this, we discern

691



Dataset BotHunter Botometer BotBuster-
Singular

BotBuster-
Full

BotBuster-
Subset
(BotHunter
returns)

BotBuster-
Subset
(Botometer
returns)

BotBuster-1: username, screenname, descriptions, user metadata experts + account-level post expert
astroturf 15.60 33.50 50.00 65.90 15.72 33.60
botometer-feedback-2019 74.10 53.68 49.52 29.10 25.19 25.20
botwiki-2019 53.13 92.89 45.31 79.03 79.00 79.02
cresci-rtbust-2019 62.90 60.10 61.84 51.78 51.78 51.78
cresci-stock-2018 37.36 38.12 61.22 71.49 56.17 54.53
gilani-2017 63.91 - 53.62 47.88 52.55 -
midterm-2018 15.30 11.90 46.64 84.80 8.00 16.06
political-bots-2019 - 20.60 45.45 98.38 - 95.03
varol-2017 73.80 65.30 44.74 32.18 32.89 33.40
verified-2019 100 30.20 46.80 87.10 97.29 80.34
reddit - - 43.51 53.21 - -
Average 55.12 45.14 49.87 63.71 46.51 52.11
BotBuster-2: username, screenname, descriptions, user metadata experts + account-level post expert with derived post values
astroturf 15.60 33.50 43.13 68.24 16.50 33.54
botometer-feedback-2019 74.10 53.68 22.05 29.11 29.23 25.20
botwiki-2019 53.13 92.89 44.88 79.12 78.93 79.36
cresci-rtbust-2019 62.90 60.10 51.32 51.78 51.67 51.00
cresci-stock-2018 37.36 38.12 65.89 71.50 56.17 54.53
gilani-2017 63.91 - 50.04 47.88 52.55 -
midterm-2018 15.30 11.90 66.14 84.80 8.02 16.00
political-bots-2019 - 20.60 97.45 98.38 - 99.23
varol-2017 73.80 65.30 42.02 32.20 32.90 33.40
verified-2019 100 30.20 47.36 87.05 98.60 88.40
reddit - - 48.32 57.02 - -
Average 55.12 45.14 52.60 64.28 47.17 53.41
BotBuster-3: username, screenname, descriptions, user metadata experts + post-level post expert
astroturf 15.60 33.50 50.34 80.96 18.90 29.95
botometer-feedback-2019 74.10 53.68 28.30 29.67 25.46 29.23
botwiki-2019 53.13 92.89 38.57 80.96 78.93 79.51
cresci-rtbust-2019 62.90 60.10 42.32 51.57 52.10 51.66
cresci-stock-2018 37.36 38.12 70.33 71.49 56.17 54.53
gilani-2017 63.91 - 55.09 48.00 - 52.56
midterm-2018 15.30 11.90 83.89 84.87 8.10 6.26
political-bots-2019 - 20.60 52.36 49.59 - 97.95
varol-2017 73.80 65.30 47.80 32.18 32.89 33.40
verified-2019 100 30.20 47.37 87.00 97.29 88.44
reddit - - 52.87 57.03 - -
Average 55.12 45.14 51.74 59.39 46.23 52.35
BotBuster-4: username, screenname, descriptions, user metadata experts + post-level post expert with derived post values
astroturf 15.60 33.50 58.00 76.90 17.21* 34.28*
botometer-feedback-2019 74.10 53.68 41.82 54.20 68.62* 59.90*
botwiki-2019 53.13 92.89 70.00 80.90 78.90* 79.51*
cresci-rtbust-2019 62.90 60.10 63.14 67.20 72.23* 70.20*
cresci-stock-2018 37.36 38.12 62.19 79.35 75.44 71.13
gilani-2017 63.91 - 57.04 48.80 53.23* -
midterm-2018 15.30 11.90 83.93 94.13 90.20* 73.48*
political-bots-2019 - 20.60 100 98.38 - 97.95*
varol-2017 73.80 65.30 41.83 45.50 48.78* 51.39*
verified-2019 100 30.20 100 89.15 99.72 90.62
reddit - - 69.77 60.04 - -
Average - - 67.97 72.23 - 69.83
Avg (BotHunter returns) 55.12 - 64.21 63.61 67.14 -
Avg (Botometer returns) - 45.14 70.68 76.19 - 69.83

Table 3: Macro-F1 scores for three variations of BotBuster and the baseline comparisons. BotBuster results better than all
baselines are bolded and results better than only one baseline are underlined. For BotBuster-4, we also report the average
BotBuster scores compared to the datasets the baselines return results in addition to the overall average score, and an * means
a significant difference in results at the p < 0.05 level.

692



Model Perc analyzed Macro-F1
BotHunter 99.15 49.02
Botometer 91.38 20.86
BotBuster-4 100 60.92
BotHunter returns 99.15 56.97
Botometer returns 91.38 52.89
TwiBot-20 100 85.46

Table 4: Macro-F1 scores of external evaluation dataset

Figure 3: Change in BotBuster-4 scores

the level of feature separation between bots and humans. In
datasets where BotBuster performs poorly, we observe poor
separation. This is consistent with past work where the same
datasets are do not achieve high performance in generalized
bot detectors (Yang et al. 2020).

The changing nature of bots BotBuster performs best on
datasets curated from 2018-2020 and worst on datasets cu-
rated prior to 2017. It also does not perform as well as the
newer bot detection model, TwiBot-20, which was devel-
oped on the 2020 dataset. This alludes to the changing na-
ture of bot account features. Figure 5 plots the the difference
in linguistic values in bot/human accounts in our datasets
across the years, signalling changes in writing styles. In
2017, bot and human accounts have many significantly dif-
ferent features as compared to the following years. The re-
duction and change in significantly different features in-
creases the challenge of developing lasting bot detection
algorithms. We note that this analysis is restricted to the
datasets in our study, although the datasets are widely used.

Stability of BotBuster One key characteristic of a good
bot detection algorithm is the stability of its Bot Probability
Score. A stable bot score changes minimally across an in-
vestigation time frame, thus providing reliable characteriza-
tion of bots for downstream tasks like detection of influence
campaigns (Ng, Robertson, and Carley 2021).

We empirically study the amount of data required for a
stable BotBuster score. We randomly select 500 still-alive
bots and 500 non-bots from the dataset and collected their
latest 100 posts using the Twitter V2 REST API. We then
run the BotBuster-4 algorithm beginning with one post then
by incremental steps of 5 posts, up to 100 posts. We analyze
the percentage change in BotBuster score across the number
of posts (Figure 3). The difference in scores initially changes

drastically from an initial change of −0.286 ± 0.0871, then
drops to a change of 3.70E-5±1.15E-2 at 21 posts, and tends
to 0 after 36 posts (−7.80E-6 ± 6.86E-3). Thus, BotBuster
scores do stabilize, lending confidence in the algorithm. The
observations provide evidence for usage of BotBuster esti-
mation: at least 36 posts should be collected for a score that
changes minimally.

Limitations and Future Work The changing nature of
bot characteristics requires continual research to continu-
ally update and build new algorithms. The supervised learn-
ing construct of BotBuster relies on human annotations of
accounts as a supervised learning approach. Additionally,
the bot/human labels are manually annotated, meaning there
could be false positives in either of the classes where hu-
mans are unable to distinguish bot and human account. Fu-
ture work can exploit network structure or temporal activity
as additional experts. It can explore incorporating human ex-
pertise through a feedback mechanism.

Ethical Considerations Social bot detection through au-
tomated means bring about a key ethical consideration: ac-
curacy, transparency and robustness of a social bot detec-
tion algorithm collectively forms a “devil’s triangle” (Thielt-
ges, Schmidt, and Hegelich 2016). Accuracy is paramount as
misclassification can lead to the deplatforming of legitimate
social media users. At the same time, a positive bot classi-
fication does not indicate a malicious account users should
further discern the account characteristics to be sure to weed
out malicious accounts only. To enable wider usage, the al-
gorithm should be transparent. However, an increase in al-
gorithm transparency provides bot-operators information to
adapt bot account characteristics to evade detection, increas-
ing the variation of bot characteristics. The alteration of bot
behavior based on the knowledge of the bot detection algo-
rithm creates a drop in the robustness and accuracy of the
algorithm in the detection of new and evolved bot accounts.
Bot detection is a cat-and-mouse game; transparency must
be balanced with robustness (Fazzolari et al. 2020). All three
pillars must be balanced because excessive focus on any of
them can give the reign of social media space to malicious
bot operators.

Conclusion

Given the prevalence of bots on social media platforms and
the possibility of incomplete data collection, improved plat-
form API data formats, there is a the need for an improved
bot detection method to be format-agnostic and handle in-
complete data. Bot detection is still an open research prob-
lem, as our analysis show bot/human differentiation can be
difficult and bot features change over time. We develop Bot-
Buster, a novel mixture of experts bot detection approach
that handles incomplete data collection. Its performance on
cross-platform datasets gives hope to generalizability of bot
detectors and suggests that bots operate similarly across
these two platforms.

693



Figure 4: PCA Plot of datasets show the difficulty of bot detection and provide clues to the performance of BotBuster

Figure 5: Change in linguistic features over years of bot datasets. * denotes significant difference (p < 0.05) between bot/human

694



Feature Type Reference library
Extracted User Features
username string -
screenname string -
description string -
number of followers integer -
number of following integer -
total number of posts integer -
listed count integer -
is verified boolean -
is protected boolean -
Extracted Post Features
post text string -
number of retweets integer -
number of likes integer -
number of quotes integer -
number of replies integer -
Derived Post Features
sentiment float (Pérez, Giudici, and Luque 2021)
reading score float (Kniffin 1979)
EPA scores integer (Smith-Lovin et al. 2016; Tyagi 2021)
LIWC features: time, affect, social, drives, pronouns values integer (Tausczik and Pennebaker 2010)

Table 5: List of features used in BotBuster

Dataset Bots Humans Reference User
name

Screen
name

Desc Posts User
Meta
data

Known
Informa-
tion (%)

astroturf 585 0 (Sayyadiharikandeh
et al. 2020)

0.3

botometer-
feedback-2019

143 386 (Yang et al. 2019) 7.0

botwiki-2019 704 0 (Yang et al. 2020) 49
cresci-rtbust-
2019

391 368 (Mazza et al. 2019) 0.53

cresci-stock-2018 18508 7479 (Cresci et al. 2018) 0.058
gilani-2017 1130 1522 (Diesner, Ferrari,

and Xu 2017)
28

midterm-2018 42446 8092 (Yang et al. 2020) 0.93
political-bots-
2019

62 0 (Yang et al. 2019) 1.6

varol-2017 826 1747 (Varol et al. 2017) 1.7
verified-2019 0 2000 (Yang et al. 2020) 1.3
reddit 500 167 - 87
Total 65295 21761 - 16±28
TwiBot-20 (ext
evaluation)

640 543 (Feng et al. 2021) 28

Table 6: Dataset composition. The datasets are hydrated in July 2021 and the greyed-out cells indicate where fields with
incomplete data. We also list the percentage of accounts where there is known information and thus processed by the Known
Information expert.

695



Acknowledgments
The research for this paper was supported in part by the
Knight Foundation, the Office of Naval Research (Bot
Hunter, Grant N000141812108, Group Polarization in So-
cial Media N000141812106), Additional support was pro-
vided by the Center for Computational Analysis of So-
cial and Organizational Systems (CASOS) and the Center
for Informed Democracy and Social Cybersecurity (IDeaS)
at Carnegie Mellon University. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of Knight Foundation, the
Office of Naval Research, or the U.S. Government.

References
Baumgartner, J.; Zannettou, S.; Keegan, B.; Squire, M.; and Black-
burn, J. 2020. The Pushshift Reddit Dataset. arXiv:2001.08435.
Benton, A.; Mitchell, M.; and Hovy, D. 2017. Multitask Learn-
ing for Mental Health Conditions with Limited Social Media Data.
In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1, Long
Papers, 152–162.
Beskow, D. M.; and Carley, K. M. 2018. Bot-hunter: a tiered ap-
proach to detecting & characterizing automated activity on twit-
ter. In Conference paper. SBP-BRiMS: International Conference
on Social Computing, Behavioral-Cultural Modeling and Predic-
tion and Behavior Representation in Modeling and Simulation, vol-
ume 3, 3.
Chavoshi, N.; Hamooni, H.; and Mueen, A. 2016. Debot: Twitter
bot detection via warped correlation. In IEEE International Con-
ference on Data Mining (ICDM), 817–822.
Cresci, S. 2020. A Decade of Social Bot Detection. Commun.
ACM, 63(10): 72–83.
Cresci, S.; Lillo, F.; Regoli, D.; Tardelli, S.; and Tesconi, M. 2018.
FAKE: Evidence of spam and bot activity in stock microblogs on
Twitter. In Twelfth international AAAI conference on web and so-
cial media.
Diesner, J.; Ferrari, E.; and Xu, G. 2017. Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining 2017.
Fazzolari, M.; Pratelli, M.; Martinelli, F.; and Petrocchi, M. 2020.
Emotions and Interests of Evolving Twitter Bots. In 2020 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS),
1–8. IEEE.
Feng, S.; Wan, H.; Wang, N.; Li, J.; and Luo, M. 2021. TwiBot-20:
A Comprehensive Twitter Bot Detection Benchmark. In Proceed-
ings of the 30th ACM International Conference on Information &
Knowledge Management, 4485–4494.
Ferraz Costa, A.; Yamaguchi, Y.; Juci Machado Traina, A.; Traina,
C.; and Faloutsos, C. 2015. RSC: Mining and Modeling Tempo-
ral Activity in Social Media. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, 269–278. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450336642.
Hurtado, S.; Ray, P.; and Marculescu, R. 2019. Bot Detection in
Reddit Political Discussion. In Proceedings of the Fourth Interna-
tional Workshop on Social Sensing, SocialSense’19, 30–35. New
York, NY, USA: Association for Computing Machinery. ISBN
9781450367066.
Kniffin, J. D. 1979. The New Readability Requirements For Mili-
tary Technical Manuals. Technical Communication, 26(3): 16–19.

Li, Y.; and Caragea, C. 2021. A Multi-Task Learning Framework
for Multi-Target Stance Detection. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, 2320–2326.
Online: Association for Computational Linguistics.
Luceri, L.; Deb, A.; Giordano, S.; and Ferrara, E. 2019. Evolution
of bot and human behavior during elections. First Monday, 24(9).
Mazza, M.; Cresci, S.; Avvenuti, M.; Quattrociocchi, W.; and
Tesconi, M. 2019. Rtbust: Exploiting temporal patterns for botnet
detection on twitter. In Proceedings of the 10th ACM Conference
on Web Science, 183–192.
Mittos, A.; Zannettou, S.; Blackburn, J.; and Cristofaro, E. D. 2020.
Analyzing Genetic Testing Discourse on the Web Through the Lens
of Twitter, Reddit, and 4chan. ACM Transactions on the Web
(TWEB), 14(4): 1–38.
Ng, L. H. X.; Robertson, D. C.; and Carley, K. M. 2021. Stabi-
lizing a Supervised Bot Detection Algorithm: How Much Data is
Needed for Consistent Predictions? Special Issue on Information
and Opinion Diffusion in Online Social Networks and Media.
Peng, H.; Schwartz, R.; Li, D.; and Smith, N. A. 2020. A Mixture
of h-1 Heads is Better than h Heads. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
6566–6577.
Pérez, J. M.; Giudici, J. C.; and Luque, F. 2021. pysentimiento:
A Python Toolkit for Sentiment Analysis and SocialNLP tasks.
arXiv:2106.09462.
Ruder, S. 2017. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098.
Sayyadiharikandeh, M.; Varol, O.; Yang, K.-C.; Flammini, A.; and
Menczer, F. 2020. Detection of novel social bots by ensembles
of specialized classifiers. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management,
2725–2732.
Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.; Hin-
ton, G.; and Dean, J. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538.
Shen, T.; Ott, M.; Auli, M.; and Ranzato, M. 2019. Mixture models
for diverse machine translation: Tricks of the trade. In International
conference on machine learning, 5719–5728. PMLR.
Smith-Lovin, L.; Robinson, D. T.; Cannon, B. C.; Clark, J. K.;
Freeland, R.; Morgan, J. H.; and Rogers, K. B. 2016. Mean af-
fective ratings of 929 identities, 814 behaviors, and 660 modifiers
by university of georgia and duke university undergraduates and
by community members in durham, nc, in 2012-2014. Univer-
sity of Georgia: Distributed at UGA Affect Control Theory Website:
http://research. franklin. uga. edu/act.
Tausczik, Y. R.; and Pennebaker, J. W. 2010. The Psychological
Meaning of Words: LIWC and Computerized Text Analysis Meth-
ods. Journal of Language and Social Psychology, 29(1): 24–54.
Thieltges, A.; Schmidt, F.; and Hegelich, S. 2016. The devil’s tri-
angle: Ethical considerations on developing bot detection methods.
In 2016 AAAI Spring Symposium Series.
Trujillo, M.; Rosenblatt, S.; de Anda Jáuregui, G.; Moog, E.; Sam-
son, B. P. V.; Hébert-Dufresne, L.; and Roth, A. M. 2021. When
the Echo Chamber Shatters: Examining the Use of Community-
Specific Language Post-Subreddit Ban. In Proceedings of the 5th
Workshop on Online Abuse and Harms (WOAH 2021), 164–178.
Online: Association for Computational Linguistics.
Tyagi, A. 2021. Challenges in Climate Change Communication on
Social Media. Ph.D. thesis, Carnegie Mellon University.

696



Uyheng, J.; Ng, L. H. X.; and Carley, K. M. 2021. Active, aggres-
sive, but to little avail: characterizing bot activity during the 2020
Singaporean elections. Computational and Mathematical Organi-
zation Theory.
Varol, O.; Ferrara, E.; Davis, C.; Menczer, F.; and Flammini, A.
2017. Online human-bot interactions: Detection, estimation, and
characterization. In Proceedings of the international AAAI confer-
ence on web and social media, volume 11.
Yang, K.-C.; Varol, O.; Davis, C. A.; Ferrara, E.; Flammini, A.; and
Menczer, F. 2019. Arming the public with artificial intelligence to
counter social bots. Human Behavior and Emerging Technologies,
1(1): 48–61.
Yang, K.-C.; Varol, O.; Hui, P.-M.; and Menczer, F. 2020. Scal-
able and generalizable social bot detection through data selection.
In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 1096–1103.

697


