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Abstract

Social media data has emerged as a useful source of timely
information about real-world crisis events. One of the main
tasks related to the use of social media for disaster man-
agement is the automatic identification of crisis-related mes-
sages. Most of the studies on this topic have focused on the
analysis of data for a particular type of event in a specific
language. This limits the possibility of generalizing existing
approaches because models cannot be directly applied to new
types of events or other languages. In this work, we study
the task of automatically classifying messages that are re-
lated to crisis events by leveraging cross-language and cross-
domain labeled data. Our goal is to make use of labeled
data from high-resource languages to classify messages from
other (low-resource) languages and/or of new (previously un-
seen) types of crisis situations. For our study we consolidated
from the literature a large unified dataset containing multi-
ple crisis events and languages. Our empirical findings show
that it is indeed possible to leverage data from crisis events
in English to classify the same type of event in other lan-
guages, such as Spanish and Italian (80.0% F1-score). Fur-
thermore, we achieve good performance for the cross-domain
task (80.0% F1-score) in a cross-lingual setting. Overall, our
work contributes to improving the data scarcity problem that
is so important for multilingual crisis classification. In par-
ticular, mitigating cold-start situations in emergency events,
when time is of essence.

1 Introduction
Social media has created new possibilities for outreach and
communications with worldwide scope. It enables users to
share information and opinions rapidly to millions of oth-
ers in just seconds. The content published in these plat-
forms is diverse in format (e.g., video, images, audio),
but also diverse in terms of the users’ backgrounds (e.g.,
language, geographic location, culture). This one-to-many
broadcast of information has played a key role in the dis-
semination of breaking news and, in recent years, of emer-
gency events (Palen and Anderson 2016). Across the dif-
ferent phases of crisis management, social media also plays
a role in planning and training, collaborative problem solv-
ing and decision making, and information gathering (Chan
2013).
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The microblogging platform Twitter has become one of
the primary data sources for real-time crisis-event informa-
tion. Its short-text messages, called tweets, have been widely
studied to extract useful and timely knowledge for crisis
management (Olteanu et al. 2014; Olteanu, Vieweg, and
Castillo 2015; Cresci et al. 2015; Imran, Mitra, and Castillo
2016; Alam, Ofli, and Imran 2018). Accurate and well-timed
information about a crisis allows emergency relief agencies
to act quickly and effectively, thus reducing the negative im-
pact on society (Graf et al. 2018). In this context, automat-
ically identifying user messages related to crises becomes
relevant. However, the noisy nature of social media and un-
reliable information quality are significant challenges in this
field. In particular, online conversations are short, imprecise,
and cover a wide range of topics, with little to no contex-
tual information (Troudi et al. 2018). Furthermore, text mes-
sage processing can be complex from a Natural Language
Processing (NLP) perspective because they contain infor-
mal language, abbreviations, spelling mistakes, multilingual
constructions, among others (Ghosh et al. 2018). All of these
issues are further exacerbated when considering multilin-
gual content (Torres and Vaca 2019).

As in many other supervised learning tasks, most research
and models address English content, which affects the avail-
ability of resources across languages (Sánchez 2021; Khare
et al. 2018; Alam et al. 2021b). In general, existing ap-
proaches require a significant amount of labeled data to learn
effective models (Alam et al. 2021a). Often, labeled data
from previous disasters is available, but in languages or cri-
sis domains different from the target event (Li and Caragea
2020). This is problematic when we address multilingual
and cross-domain scenarios where labeled data is scarce,
leading to cold-start problems in early stages of a disas-
ter (Lorini et al. 2019; Li and Caragea 2020). Furthermore,
training individual models for all possible scenario combina-
tions, in terms of languages and types of events, is compu-
tationally expensive (Khare et al. 2018). Hence, it becomes
critical to create ways to leverage existing knowledge about
crisis situations to address new or diverse types of events.

We address this problem by studying the task of classi-
fying crisis messages across languages and types of crisis
domains. Specifically, we focus on the binary classification
task of tweets that are related and unrelated to crises. We
consider this particular task to be relevant because of the
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high volume of noisy data that is found in Twitter during
crisis events. This noise consists mostly of unrelated con-
tent, such as spam and advertising, that can be found even
when message retrieval is done using event-specific key-
words (such as hashtags or locations associated with the cri-
sis) (Olteanu, Vieweg, and Castillo 2015; Graf et al. 2018).
Identifying related and unrelated messages is one of the
first and foremost tasks required by emergency practitioners
when using social media data.

We center our work in two main objectives: 1) trans-
ferring knowledge from one or more crisis domains (e.g.,
earthquakes, hurricanes, etc.) to other crisis domains, and
2) transferring knowledge from crises in one (high-resource)
language to another (low-resource) language. To achieve
this, we perform a comprehensive evaluation of transfer
learning performance, using different data representations
and transfer learning scenarios.

Our results show that it is possible to leverage crisis
data from high-resource languages, such as English, to clas-
sify crisis events in other languages, like Spanish or Ital-
ian (80.0% F1-score). In addition, we observe that informa-
tion from one or more crisis domains can contribute to the
classification of events from a new domain. These results
indicate that some characteristics of crises cross-cut differ-
ent domains and languages. This will allow researchers and
emergency practitioners to improve the reach of automated
social network analysis during crises at a low cost.

Contributions. In summary, our contributions are:

1. We introduce a new multilingual and multi-domain cri-
sis dataset, containing 53 crisis events and more than
160,000 messages. This dataset is the result of our work
to unify 7 publicly available crisis datasets, achieved by
using a systematic approach to consistently merge labels,
and to add specific event and message metadata.

2. We show empirically that it is possible to perform trans-
fer learning, using crisis data from high-resource lan-
guages, to classify data from other (low-resource) lan-
guages and from new crisis domains. This addresses the
important cold-start problem in crisis classification for
low-resource languages and new crisis domains.

3. We perform a novel comparative study of 7 state-of-
the-art data models for cross-domain and cross-language
transfer learning scenarios.

Note on reproducibility. All of the source code and data
used in this article are publicly available at https://github.
com/cinthiasanchez/Crisis-Classification.

Roadmap. In Section 2, we present the literature review fo-
cusing on crisis messages classification and transfer learn-
ing techniques. In Section 3, we detail our proposed experi-
mental framework. In Section 4, we explain the construction
of the unified dataset. In Section 5, we describe the exper-
imental setup among different domains and languages, and
in Section 6, we report the results. In Sections 7 and 8, we
present the discussion and final comments of our work.

2 Related Work
In this section, we discuss relevant prior literature for our
work. In particular, we focus on two areas: classification of
crisis-related messages and transfer learning.

Classification of Crisis-Related Messages
One of the most prevalent tasks in this area is the binary
classification of messages that are related vs. those that are
not related to a crisis (Olteanu et al. 2014; Cobo, Parra, and
Navón 2015; Alam, Joty, and Imran 2018; Torres and Vaca
2019). In the literature, the term related to a crisis event is
usually interchangeable with the terms relevant or informa-
tive. First, a message is considered as related to a crisis when
it refers implicitly or explicitly to a specific disaster (Kruspe,
Kersten, and Klan 2020). A message considered relevant to
a crisis is one that contains actual information pertaining to
the event (Kruspe, Kersten, and Klan 2020; Cobo, Parra, and
Navón 2015). It also conveys or reports information useful
for crisis response (Alam, Joty, and Imran 2018). Finally, a
message is considered informative when it contributes to a
better understanding of the situation on the ground (Olteanu,
Vieweg, and Castillo 2015). These terms have certain differ-
ences, especially in their degree of generalization and use-
fulness for humanitarian aid.

Olteanu et al. (2014) proposed a crisis lexicon for sam-
pling and filtering crisis-related messages in English during
different emergency events. Cobo, Parra, and Navón (2015)
studied user and content based features to classify rele-
vant tweets to an earthquake in Spanish (73.4% F1-score)
using Random Forest. Alam, Joty, and Imran (2018) pro-
posed a deep learning framework based on semi-supervised
learning to classify relevant messages in English. They used
two Twitter datasets, one of the Nepal earthquake (65.11%
F1) and another of the Queensland floods (93.54% F1). Li
et al. (2018) proposed a feature-based adaptation frame-
work, which considers pre-trained and crisis-specific word
embeddings, as well as sentence embeddings and differ-
ent supervised classifiers. They evaluated two classification
tasks in English reaching an average accuracy of 88.5%.
They noted that crisis-specific embeddings were more suit-
able for more specific crisis-related tasks (informative vs
non-informative), while the pre-trained embeddings were
more suitable for more general tasks (relevant vs non-
relevant). Firoj, Imran, and Ofli (2019) performed a com-
parative study among various algorithms used to classify
crisis-related messages. Their results show competitive re-
sults between Support Vector Machines, Random Forest and
Convolutional Neural Networks.

In view of the difficulty of comparing results, models and
techniques in this research area, Alam et al. (2021b) devel-
oped a standard dataset based on existing data and provided
train/dev/test partitions. In addition, the authors provided
benchmark results on English messages for informative (bi-
nary) and humanitarian (multi-class) classification tasks us-
ing deep learning algorithms. Alam et al. (2021a) created
a large-scale dataset of English-language tweets, which is
composed of 19 disaster events that occurred between 2016
and 2019. The authors report the results of the classification
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of humanitarian information using classical and deep learn-
ing algorithms. They achieved an average weighted F1 of
78.1% with the RoBERTa model.

Transfer Learning
Knowledge transfer or transfer learning involves two main
concepts, domain and task (Pan and Yang 2009). A domain
consists of a feature space and a marginal probability dis-
tribution, while a task consists of a label space and an ob-
jective predictive function. It aims to use knowledge from a
source domain and learning task to improve the learning of
the predictive function in the target domain, where source
and target domains or tasks differ. The authors categorize it
as inductive, transductive, and unsupervised, based on the
settings between source and target. In transductive transfer
learning, tasks are the same, but domains are different. It can
have two variants (Pan and Yang 2009; Ruder 2019):

• Cross-lingual adaptation: domains have different feature
spaces (e.g., documents written in two different lan-
guages).

• Domain adaptation: domains have different marginal
probability distributions (e.g., documents discuss differ-
ent topics).

Cross-Lingual Adaptation. This variant has been studied
in different Twitter message classification tasks in a multi-
lingual manner, such as election analysis, emotion recogni-
tion, crisis detection, among others. In crisis message clas-
sification, Torres and Vaca (2019) compared traditional and
deep learning models using sparse representations and word
embeddings to classify earthquake-related conversations in
English and Spanish. The best cross-lingual results were
using a Long Short Term Memory model including mul-
tilingual stacked embeddings, reporting a macro F1-score
of 85.88% from Spanish to English and 77.49% from En-
glish to Spanish. Lorini et al. (2019) evaluated pre-trained
language-agnostic and language-aligned word embeddings
with Convolutional Neural Networks for the classification
of flood-related messages in German, English, Spanish, and
French. They compared a mono-lingual classifier, a cross-
lingual classifier with cold start (using no training data in
the target language), and a cross-lingual classifier with warm
start (using 300 labeled instances in the target language).
They showed that both types of word embeddings could be
used to classify a new language for which few or no labels
are available. However, including a small set of data from the
same target language improved the cross-lingual classifica-
tion. Another approach was proposed by Khare et al. (2018),
who considered messages in English, Italian and Spanish
from 30 crisis events of different types. They proposed a
statistical-semantic crisis representation, extracting seman-
tic relationships from BabelNet and DBpedia knowledge
bases. They achieved a cross-lingual classification F1-score
of 59.9% on average. In addition, Kayi et al. (2020) trained
cross-lingual models based on contextual embeddings such
as BERT, RoBERTa and XLM-R, to detect urgency mes-
sages in low-resource languages, specifically in Sinhala and
Odia.

Domain Adaptation. Regarding domain adaptation using
Twitter data, Agrawal and Awekar (2018) analyzed cy-
berbullying detection across Twitter, Wikipedia and Form-
spring. They reported poor performance when transferring
knowledge from Twitter to the other two datasets reaching
around 10% F1-score. Similarly, Arango, Pérez, and Poblete
(2020) evaluated the cross-dataset classification of hateful
tweets, showing that the models do not generalize well over
different Twitter datasets obtaining an F1-score of just 21%
for the positive class. In the crisis classification problem,
Imran, Mitra, and Srivastava (2016) validated the impact of
adding training examples from a different domain than the
target. They classified messages related to earthquakes and
floods published in several languages. Their experiments
showed that in scenarios where there is not enough data,
increasing training examples with tweets from other lan-
guages can be useful if both are very similar (e.g., Italian
and Spanish). In the case of domain adaptation, they con-
cluded that using tweets from a different domain did not ap-
pear to improve performance. Li and Caragea (2020) pro-
posed a domain adaptation with reconstruction to classify
disaster tweets. This adaptation based on semi-supervised
learning aims to reduce the shift between source and target
data distributions. For this, the classifier is trained with la-
beled source data, together with unlabeled target data.
Differentiation from prior work. Our work differs in that
we perform a systematical study of transfer learning for cri-
sis message classification for scenarios in which little to no
data is available. We focus on the case of how to leverage
labeled data from high-resource languages to low-resource
languages, as well as from well-known crisis domains to
new domains. We do not focus on the classification al-
gorithms, but on the data and experimental methodology.
Moreover, we investigate which document representations
and models work best for each particular target, putting to-
gether the most comprehensive dataset to date for this goal.

3 Proposed Approach
We propose an experimental analysis of transfer learning
approaches across several crisis domains and different lan-
guages. In detail, we address the following specific objec-
tives: 1) determine if it is possible to transfer knowledge
from one language to another, 2) determine if it is possible
to transfer knowledge from one crisis domain to another do-
main, and 3) explore how to achieve (1) and (2) effectively.

We focus on the task of classifying microblog messages
into the binary categories related and not related to crisis
events1, within several transfer learning scenarios. We adopt
the definition used by Kruspe, Kersten, and Klan (2020) that
considers a message as related to a crisis when it refers im-
plicitly or explicitly to the specific disaster event for which
it was retrieved. However, we generalize this definition to
consider messages as related if they meet the above criteria
for any disaster, not only a particular specified event. In ad-
dition, we define a domain as a type of disaster (or hazard)
such as earthquakes or floods.

1We consider an event as a unique occurrence in time and place
(McMinn, Moshfeghi, and Jose 2013).
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Figure 1: Overview of our proposed approach.

Figure 1 provides an overview of the main steps followed
in this work, both for dataset construction and experimenta-
tion. We explain these steps more in detail next.

Transfer Learning Scenarios
We study 7 different classification scenarios that span across
several transfer learning configurations. These scenarios aim
to measure the impact on learning–of both domains and
languages–for the classification of new crisis events. We in-
clude as baseline the scenario where there is no domain or
language transfer learning. To avoid overfitting, we split the
training and testing data at event level, ensuring that events
that are used for training are not used for testing. More in
detail:

• Monolingual & Monodomain (MonoL & MonoD).
This is our baseline, where we train a classification model
with messages from events of a specific crisis domain
(e.g., earthquakes) all in the same language (e.g., En-
glish). We evaluate the model on messages from the same
original domain and language, but from new events.

• Monolingual & Cross-Domain (MonoL & CrossD). In
this scenario, we only perform domain transfer learning
within the same language. The objective is to evaluate
the effect of training with data from past events of a spe-
cific domain and language (e.g., earthquakes in English)
to then classify messages from a different domain (e.g.,
explosions in English). This scenario evaluates the cold-
start problem at domain level. This is, when a new type
of disaster occurs for which there is no domain-specific
labeled data.

• Monolingual & Multi-Domain (MonoL & MultiD). In
this scenario we increase the amount of training data for a
specific (low-resource) domain by using additional, same
language, labeled data from other domains. For instance,
we train a model using English earthquake, flood and ex-
plosion data. We then evaluate this model on English data
from a new flood event.

• Cross-Lingual & Monodomain (CrossL & MonoD).
In this scenario, we perform cross-lingual adaptation
within the same domain. The objective is to evaluate the
effect of training a classification model with data from
the target domain (e.g., floods) in a language (e.g., En-
glish) that is different from the target language (e.g.,
Italian). This simulates the real-world scenario in which
there is only labeled data from a high-resource language
for one domain and a new event occurs in the same do-
main, but in a different language.

• Cross-Lingual & Cross-Domain (CrossL & CrossD).
In this scenario we perform cross-lingual and domain
adaptation. The objective is to evaluate the effect of train-
ing a classification model with data from a set of crisis
domains (e.g., earthquakes and floods) in one language
(e.g., English). Then, use this model to classify data of
a different domain (e.g., explosions) in another language
(e.g., Spanish). This simulates the case in which there is
a need to classify messages of a new crisis domain in a
language for which there is no labeled data.

• Cross-Lingual & Multi-Domain (CrossL & MultiD).
In this scenario we perform cross-lingual adaptation and
increase training data using other domains. The objec-
tive is to evaluate the effect of training a model using
data from multiple domains in one language (e.g., floods,
earthquakes, and hurricanes in English), to then classify
a new event in another language (e.g., flood in Italian).
This simulates the case in which there is a need to clas-
sify a well known type of event that occurs in a new lan-
guage for which there is no labeled data.

• Multilingual & Multi-Domain (MultiL & MultiD). In
this scenario we perform cross-lingual and domain data
enrichment. This case is similar to the Cross-lingual &
Cross-domain scenario with the addition of data from
the target domain and language. For example, we train a
model with English and Italian data about floods, earth-
quakes, and hurricanes, to then classify flood-related
messages in Italian.

Data Representations
We focus on message representations and state-of-the-art
models that allow us to convey multilingual data in a sin-
gle feature space. Our representations correspond to 7 ap-
proaches described below.

• Linguistic Features (LF). This representation models
each message as a set of linguistic features. We consider
48 features2 represented in numerical and binary form.
Some of these features have been previously used for
classification of crisis messages (Graf et al. 2018; Khare
et al. 2018). These features describe traditional message
characteristics such as the number of characters, words,
links, mentions, hashtags, question marks, among others.
Furthermore, we consider attributes that are specific to
each language, including sentiment polarity, Named En-
tities and Part-of-Speech (POS) (Al-Rfou et al. 2015). We

2The full description can be found in our repository.
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also include binary features such as has mention and has
location.

• Machine Translation (MT) + GloVe. This representa-
tion is based on modeling messages using English as a
pivot language. Hence it implies translating all messages
that are not written in the pivot language into English3.
We choose English as our starting point for two reasons:
1) the high-quality of pre-trained embeddings in English,
and 2) the trade-off of translating other languages to En-
glish, which is predominant in our dataset, as opposed to
the other way around. Text in the pivot language is then
tokenized and vectorized using the pre-trained GloVe4

model with 100-dimensions, trained on tweets (Penning-
ton, Socher, and Manning 2014).

• MUSE. This representation uses MUSE5. MUSE con-
sists of multilingual language-aligned word embed-
dings of 300-dimensions, based on fastText embeddings
trained on Wikipedia (Lample et al. 2017).

• MUSE + Linguistic Features (MUSE+LF). This rep-
resentation is a combination of MUSE and LF features.
We use this to evaluate if the combination of semantic
and statistical features improves model performance.

• mBERT. This representation models each message using
the BERT-Base Multilingual Cased model6 trained with
the top-104 languages on Wikipedia (Devlin et al. 2019).

• Machine Translation (MT) + BERT. This representa-
tion is similar to (MT) + GloVe, but instead of GloVe,
we use BERT7 which has been trained for English using
Wikipedia and BookCorpus (Devlin et al. 2019).

• XLM-R. This representation uses XLM-RoBERTa8, a
multilingual version of RoBERTa trained on 100 lan-
guages of CommonCrawl (Conneau et al. 2020).

For Glove and MUSE, we combine single word em-
bedding using mean aggregation, and for words Out-Of-
Vocabulary, we create vectors with zero. On the other hand,
when using mBERT, BERT and XLM-R (all 768-dimension
models, with no fine-tuning), we combine the contextual-
ized word embeddings using mean aggregation, ignoring the
padding of zeros.

4 Unified Dataset Construction
We created a new dataset with 164,625 unique messages that
is the result of collecting 7 crisis datasets from the literature
(see Table 1 for details). These datasets met the criteria of
having labeled data and being publicly available. The con-
solidated dataset, which we refer to as Multi-Crisis Dataset
(available in our repository), contains Twitter messages from
several crisis domains and events in different languages. To
unify labels and to achieve an enriched, consistent dataset,

3We use the Google Translate API: https://cloud.google.com/
translate/

4https://nlp.stanford.edu/projects/glove/
5https://github.com/facebookresearch/MUSE
6https://huggingface.co/bert-base-multilingual-cased
7https://huggingface.co/bert-base-uncased
8https://huggingface.co/xlm-roberta-base

Dataset Lang. Tweets Events
CrisisLexT6 (Olteanu et al.
2014)

English 60,082 6

CrisisLexT26 (Olteanu,
Vieweg, and Castillo 2015)

Multiple 27,933 26

CrisisNLP R1 (Imran, Mitra,
and Castillo 2016)

English,
Spanish,
French

49,596 14

Ecuador-Earthquake (Torres
and Vaca 2019)

English,
Spanish 8,360 1

SoSItalyT4 (Cresci et al.
2015)

Italian 5,642 4

ChileEarthquakeT1 (Cobo,
Parra, and Navón 2015)

Spanish 2,187 1

CrisisMMD (Alam, Ofli, and
Imran 2018)

English 11,400 7

Multi-Crisis Dataset (Ours) Multiple 164,625 53

Table 1: Datasets used to create our Unified Dataset.

we performed a process that consisted of several data cu-
ration steps. These mainly consisted of label merging, cri-
sis categorization, and language detection. Next, we provide
relevant details of this process9.

Label Merging. We based our dataset unification process
on prior work in the area of crisis informatics that has ad-
dressed the label merging problem. In particular, in order to
merge the 7 different datasets used in our study we followed
the systematic label mapping approach used by Khare et al.
(2018); Alam et al. (2021b); Sarmiento and Poblete (2021).
This methodology maintains data consistency by unifying
labels into a more general class according to their seman-
tic meaning (Alam et al. 2021b). Specifically, the datasets
used in our study had different types of labels, both binary
and categorical at diverse granularities. We therefore merged
these labels at a higher generalization level, which in this
case was their relatedness to crisis events (i.e., related and
not-related messages). These new labels correspond with the
binary task required for our current work, and are similar to
those already used in the CrisisLexT6, ChileEarthquakeT1
and Ecuador-Earthquake datasets.

For instance, examples of original labels that we mapped
to the not-related category in our dataset were: “not re-
lated”, “not relevant”, “not related or irrelevant”, “off-
topic”, “not informative”, “not applicable”, and “not phys-
ical landslide”. On the other hand, examples of labels
mapped to the related category were: “related”, “rele-
vant”, “damage”, “no damage”, “on-topic”, “informa-
tive”, “related and informative”, “related but not informa-
tive”, among others. Furthermore, we manually relabeled
messages from the CrisisMMD and CrisisLexT26 datasets
originally labeled as “not informative” and “Not applica-
ble” to accurately match our current task definition. The
detailed mappings and relabeled data can be found in our
repository.

9The in-depth procedure can be found in our repository.

758



Lang. Count %
English 137,743 83.67
Spanish 12,025 7.30
Italian 7,002 4.25
French 1,144 0.70
Portuguese 771 0.47
Tagalog 502 0.31
Russian 238 0.15
German 124 0.08
Indonesian 111 0.07
Dutch 101 0.06
Others 4,864 2.96
Total 164,625 100.00

(a) Messages by language.

Domain Count %
Earthquake 41,931 25.47
Flood 31,923 19.39
Hurricane 19,578 11.89
Typhoon 13,674 8.31
Explosion 12,004 7.29
Bombings 11,012 6.69
Tornado 9,992 6.07
Landslide 4,492 2.73
Wildfires 3,533 2.15
Viral disease 3,512 2.13
Others 12,974 7.88
Total 164,625 100.00

(b) Messages by domain.

Table 2: Number and percentage of messages in the Unified
Multi-Crisis Dataset detailed by (a) language and (b) crisis
domain separately.

Crisis Categorization. We annotated each message ac-
cording to the crisis dimensions of the event that it be-
longs to. We used a similar pipeline to Olteanu, Vieweg, and
Castillo (2015). We categorized crises by hazard types (such
as “earthquake” or “explosion”), hazard categories (“natu-
ral” or “human-induced”), sub-categories (e.g., “geophysi-
cal”, “hydrological”, “accidental”, etc.), temporal develop-
ment (“instantaneous” or “progressive”), and geographic
spread (“focalized” or “diffused”). We decided to include
this information because it will allow the study of communi-
cation patterns along the different dimensions. For example,
to study the similarities and differences in communication
during natural events versus human induced events. Further-
more, we aggregated information about the crisis, such as
country and year.

Unified Dataset Description. Our dataset is mainly com-
posed of messages in English (83.67%), followed by Span-
ish (7.30%) and Italian (4.25%). With regard to the do-
main, it is mainly composed of earthquake (25.47%), flood
(19.39%) and hurricane (11.89%) domains. Table 2 shows
more detailed information per language and domain.

5 Experimental Setup
In this section we explain our experimental setup for evalu-
ating the proposed transfer learning scenarios and data rep-
resentations (see Section 3). For our experiments we used a
portion of the Multi-Crisis Dataset, selecting messages from
the top-3 most represented languages in the dataset (En-
glish, Spanish and Italian). In addition, we discarded mes-
sages corresponding to events that 1) contained very lit-
tle data, or 2) were from hazard domains not available for
more than one language. This resulted in a dataset with
67,001 tweets from various regions in 3 languages and from
3 hazard domains: earthquakes (46.9%), floods (38.4%) and
explosions (14.7%). Additionally, our experimental dataset
contains 80.0% of English messages, 11.3% in Spanish, and

8.7% in Italian. Regarding the label distribution, 36.0% were
categorized as not-related to crisis while 64.0% were labeled
as related.

For evaluation, each event was distributed into a training
or test set. To provide more representative examples for gen-
eralization, training sets prioritized events with the highest
and most balanced number of instances in our dataset. We
did not use English as a target language for cross-language
evaluation because it is a high-resource language. The de-
tailed training/testing partitions for each evaluation scenario
can be found in our repository.

Table 3 shows the number of instances used for model
training across scenarios (after balancing the classes),
grouped by target language and domain. This data displayed
an important imbalance between the positive (related) and
negative (not related) classes, where the positive was ap-
proximately 27% more represented than the negative class.
To handle this we applied random subsampling and over-
sampling of the positive and negative classes, respectively.

We trained all models using a Random Forest classi-
fier from the Scikit-Learn implementation10 by considering
the following default parameters: n estimators = 100 that
represents the number of trees in the forest, gini criterion,
and nolimit for the maximum tree depth, so nodes expand
until all leaves are pure or until all leaves contain less than
two samples. We chose Random Forest because previous
works have shown competitive results for tweet classifica-
tion tasks and practical applications (Firoj, Imran, and Ofli
2019; Li et al. 2018; Cobo, Parra, and Navón 2015; Arango,
Pérez, and Poblete 2020; Alam et al. 2021a). Nevertheless,
the scope of our current work is not on comparing classifi-
cation algorithms, but on classifier initialization approaches
for low-resource languages, which could help train more ro-
bust classifiers.

Table 4 shows the number of instances related to the
events that remained for model testing. As in our training
data, testing data also showed an important class imbalance.
Due to the smaller amount of messages in our negative class
for testing, oversampling to improve class balance was not
a feasible solution. To deal with this situation we opted to
augment the negative class by including a random sample
of negative instances from the complete testing set (i.e., not
only from the test event for that scenario). As negative in-
stances are by definition messages not related to any crises,
this does not affect evaluation. In the cases where this type of
augmentation was not possible due to language restrictions
for the scenario, we augmented with translated negative in-
stances from English (translated using Google Translate).

6 Results
We present a comprehensive summary of the results of
our evaluation following our experimental setup. There are
many additional results based on the combinations of scenar-
ios, domains and languages, which we cannot include due
to space constraints. However, the exhaustive evaluation re-
sults can be found in our repository, including an evaluation

10https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html
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Lang. Domain MonoL &
MonoD

MonoL &
CrossD

MonoL &
MultiD

CrossL &
MonoD

CrossL &
CrossD

CrossL &
MultiD

MultiL &
MultiD

English
Earthquake 11,214 35,720 46,238 - - - -
Explosion - 51,662 - - - - -
Flood 10,346 34,418 46,916 - - - -

Spanish Earthquake 2,822 150 - 18,324 35,720 56,346 67,260
Explosion - 4,182 - 9,282 51,662 63,460 69,768

Italian Earthquake 1,520 414 - 20,426 35,720 63,122 67,520
Flood - 2,114 - 26,674 34,418 63,244 67,686

Table 3: Number of training instances by target (language and domain) used in each scenario, considering the balanced sets.
The symbol “-” means that no experiments were performed.

Lang. Domain Related Not related

English
Earthquake 8,611 1,225
Explosion 4,415 4,641
Flood 8,272 5,747

Spanish Earthquake 2,507 453
Explosion 747 50

Italian Earthquake 698 198
Flood 1,759 138

Table 4: Data for testing each target (before augmentation).

of XLM-T11 (model fine-tuned to multilingual Twitter data),
which was outperformed by XLM-R. We begin this section
by describing the results obtained by target language and do-
main, running each model five times and averaging their val-
ues. Finally, we present an exhaustive analysis to determine
the best performance for each classification scenario.

English Classification
We evaluated the classification of crisis related messages in
English. Specifically, monolingual scenarios for the same
domain, cross-domain (domain adaptation) and multiple do-
mains (data enrichment). We did not evaluate cross lingual
scenarios with English as a target language as we consider it
as a high-resource language in our setup. However, we per-
formed cross-lingual adaptation for low-resource languages
using English as a source, detailed in the following sections.

Table 5 details the results obtained per scenario for each
data representation and each of the three domains: earth-
quakes, explosions and floods, respectively. The overall re-
sults show that models achieved their best performance by
using XLM-R, followed by MT+GloVe and MT+BERT,
while using LF, MUSE and mBERT did not work as well
in this case. However, mBERT’s performance would proba-
bly improve if we not only use its representations (as with
the other pre-trained models), but also use its capabilities to
adapt the model to the crisis domain.

The best performing model for earthquake message clas-
sification (evaluation included messages from Chile 2014,
California, Pakistan and Ecuador events) was 89% F1-score

11https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base

in the cross-domain scenario. In this scenario, we developed
domain adaptation from explosion and flood domains. In
particular, this scenario obtained an average improvement of
5% over the baseline scenario (monodomain). For explosion
message classification, our dataset only contained one event
(West Texas event). Using this event as target we evaluated
the only possible scenario, i.e., cross-domain (training was
done with earthquakes and floods), yielding an F1-score of
92% with the best data representation (GloVe). Recall that
this scenario simulates the case in which we need to classify
events from a new type of crisis event.

For flood message classification (evaluation included
events of Queensland, Pakistan and India), the best scenario
was the baseline with F1-score of 90% using MUSE+LF.
Although, cross-domain (87% F1) showed good perfor-
mance, similar to that of earthquake classification. On the
other hand, multi-domain (89% F1) or domain enrichment
achieved competitive results.

Overall, we observe that domain adaptation appears to
work well within a high-resource language. This would al-
low us to use past knowledge to classify new and unex-
pected events in the same language. Therefore, it indicates
one could use a pre-trained classifier to detect new types of
crises that emerge. In addition, data augmentation (multi-
domain) by including data from other domains can poten-
tially improve model performance, or in the worst-case per-
form similar to the baseline.

Spanish Classification
We consider this language as low-resource, since the amount
of labeled data is significantly less than for English (see Ta-
ble 2). Our experiments included monolingual, cross-lingual
and multilingual scenarios. Table 6 presents the results
for earthquake and explosion domains, respectively, broken
down by the data representations. Overall, MT+BERT and
XLM-R obtained the best results, followed by MT+GloVe
and mBERT, while LF and MUSE did not perform as well.

In the case of earthquake messages classification, the best
performance scenarios with an 86% F1-score (on events
from Ecuador, Guatemala and Costa Rica) used MT+BERT
features, improving over the (Monolingual & Monodomain)
baseline in average a 3%. We observed this improvement for
the cross-lingual and multilingual scenarios that used some
sort of cross-language adaptation from English. Among
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Scenario LF MT+
GloVe MUSE MUSE+

LF mBERT MT+
BERT XLM-R

MonoL & MonoD 0.77 0.82 0.82 0.82 0.81 0.81 0.84
MonoL & CrossD 0.84 0.87 0.86 0.87 0.88 0.89 0.89
MonoL & MultiD 0.83 0.87 0.85 0.86 0.87 0.89 0.88

(a) F1-score (Earthquake)

Scenario LF MT+
GloVe MUSE MUSE+

LF mBERT MT+
BERT XLM-R

MonoL & CrossD 0.89 0.92 0.86 0.89 0.87 0.86 0.90

(b) F1-score (Explosion)

Scenario LF MT+
GloVe MUSE MUSE+

LF mBERT MT+
BERT XLM-R

MonoL & MonoD 0.84 0.88 0.88 0.90 0.85 0.88 0.89
MonoL & CrossD 0.82 0.86 0.84 0.86 0.84 0.87 0.86
MonoL & MultiD 0.83 0.88 0.87 0.88 0.86 0.89 0.89

(c) F1-score (Flood)

Table 5: Comparison of the data representations’ performance in (a) earthquake, (b) explosion, and (c) flood domains for English
message classification. For each domain, the best data representation is highlighted in bold and the best scenario in a gray cell.

these best scenarios, there is the Cross-Lingual & Cross-
Domain scenario, which simulates classifying messages of
a new type of crisis domain in a new language. Hence, there
does not appear to be additional improvement when includ-
ing data from the target domain and from the target lan-
guage. In addition, the worst performance was for the Mono-
lingual & Cross-Domain scenario, which simulates the case
when we attempt to classify messages from a new domain
in the same language. This most likely occurs due to the
small amount of training data in Spanish, which limits cross-
domain learning within that language.

For the explosion message classification in Spanish, we
only had one event’s worth of data (an event in Venezuela).
Therefore, we were not able to evaluate the baseline sce-
nario (Monolingual & Monodomain). We observed that the
best performance scenario, with 85% F1-score, was the Mul-
tilingual & Multi-Domain scenario using XLM-R as fea-
tures, and data in English and Spanish as the source. As
with earthquakes, the worst performance scenario was train-
ing with another domain in the same language as the tar-
get (i.e., Monolingual & Cross-Domain). The worst perfor-
mance feature along all scenarios was MUSE. In general,

Scenario LF MT+
GloVe MUSE MUSE

+LF mBERT MT
+BERT XLM-R

MonoL & MonoD 0.73 0.80 0.81 0.80 0.80 0.83 0.79
MonoL & CrossD 0.66 0.72 0.75 0.75 0.78 0.79 0.75
CrossL & MonoD 0.68 0.79 0.75 0.75 0.76 0.83 0.80
CrossL & CrossD 0.78 0.84 0.81 0.81 0.84 0.86 0.85
CrossL & MultiD 0.77 0.84 0.80 0.81 0.84 0.86 0.84
MultiL & MultiD 0.75 0.84 0.74 0.77 0.79 0.86 0.83

(a) F1-score (Earthquake)

Scenario LF MT+
GloVe MUSE MUSE

+LF mBERT MT
+BERT XLM-R

MonoL & CrossD 0.73 0.77 0.69 0.72 0.76 0.69 0.77
CrossL & MonoD 0.75 0.84 0.64 0.74 0.72 0.79 0.79
CrossL & CrossD 0.73 0.81 0.74 0.77 0.82 0.77 0.75
CrossL & MultiD 0.74 0.82 0.74 0.78 0.82 0.82 0.80
MultiL & MultiD 0.76 0.83 0.75 0.79 0.83 0.83 0.85

(b) F1-score (Explosion)

Table 6: Comparison of the data representations’ performance in (a) earthquake and (b) explosion domains for Spanish message
classification. For each domain, the best data representation is highlighted in bold and the best scenario in a gray cell.
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Scenario LF MT+
GloVe MUSE MUSE+

LF mBERT MT+
BERT XLM-R

MonoL & MonoD 0.67 0.72 0.75 0.72 0.70 0.74 0.72
MonoL & CrossD 0.67 0.73 0.77 0.76 0.78 0.76 0.77
CrossL & MonoD 0.56 0.77 0.78 0.77 0.75 0.79 0.70
CrossL & CrossD 0.63 0.78 0.79 0.76 0.68 0.77 0.77
CrossL & MultiD 0.62 0.78 0.80 0.77 0.71 0.78 0.76
MultiL & MultiD 0.67 0.79 0.76 0.79 0.73 0.82 0.75

(a) F1-score (Earthquake)

Scenario LF MT+
GloVe MUSE MUSE+

LF mBERT MT+
BERT XLM-R

MonoL & CrossD 0.72 0.72 0.74 0.78 0.76 0.77 0.81
CrossL & MonoD 0.79 0.81 0.73 0.82 0.53 0.68 0.83
CrossL & CrossD 0.74 0.75 0.73 0.76 0.65 0.74 0.82
CrossL & MultiD 0.77 0.79 0.75 0.80 0.63 0.73 0.84
MultiL & MultiD 0.75 0.81 0.79 0.83 0.78 0.80 0.79

(b) F1-score (Flood)

Table 7: Comparison of the data representations’ performance in (a) earthquake and (b) flood domains for Italian message
classification. For each domain, the best data representation is highlighted in bold and the best scenario in a gray cell.

our results indicate that baseline performance can be im-
proved by augmenting a low-resource language with high-
resource language data, including multiple domains.

Italian Classification
For Italian, we performed a similar evaluation to Span-
ish. Table 7 presents the classification results for earth-
quake and flood domains, respectively. We observed that the
MT+BERT representation performed better in the classifica-
tion of earthquake messages, while XLM-R performed bet-
ter with the flood domain. The other representations showed
behavior that varies according to the target domain. For ex-
ample, for classifying earthquakes, LF features obtained the
worst performance, and MUSE features obtained the best
performance in most scenarios. However, such behavior was
different when classifying floods.

For earthquakes the best performance (on L’Aquila event)
was achieved in the Multilingual & Multi-Domain scenario
(82% F1) using MT+BERT and for floods (on Sardinia
and Genova events) it was in the Cross-Lingual & Multi-
Domain scenario (84% F1) using XLM-R. In general, the
cross-lingual adaptation and augmentation using English
(a high-resource language) improved performance. Also,
adding multiple domains from English and the target lan-
guage increased this improvement.

Results by Classification Scenario
We present the aggregated results for Spanish and Italian
languages, grouped by scenario and detailed by features in
Table 8. We exclude the baseline scenario since not all tar-
gets were evaluated in that scenario due to the scarcity of
data. The best performance was achieved in the Multilingual
& Multi-Domain scenario, i.e., when we trained our model
with all available data in English and the target language

from multiple domains, followed by the Cross-Lingual &
Multi-Domain scenario. On the contrary, the lowest perfor-
mance was obtained in the Monolingual & Cross-Domain
scenario. As for the data representations, we observed that
the baseline feature (LF) presents the lowest score in all sce-
narios, while MT+BERT achieved the highest score. How-
ever, XLM-R and MT+GloVe performed better in most sce-
narios. Overall, we found that increased training data with
multiple domains in English language contributed positively
to the construction of multilingual and multi-domain mod-
els. Given the constraints posed by the diversity of data
sources and the disparities in the size of the data, this im-
proved our results. However, with better quality data we may
observe larger effects on the improvements.

7 Discussion
Our findings indicate that Multilingual & Multi-Domain
adaptation is an effective way to improve the classification
of low-resource languages. When no labeled data is avail-
able for a target language, a good option is to perform cross-
lingual adaptation from a high-resource language using all
available domain data. Most importantly, we show that it is
possible to classify messages that correspond to a new, pre-
viously unseen, crisis event when they are in an unknown
language. This can be very useful in identifying unexpected
emerging crisis situations for early response. However, the
similarity of the studied languages, selected according to
the availability of data, can aid in classification results. Even
though English belongs to the Germanic language family, it
shares a significant number of cognate words with Spanish
and Italian, which are Romance languages (Comrie 1987).
This similarity is attributed to the influence of Latin, which
has a shared origin between these languages (Whitley 2002;
Maiden and Robustelli 2014). Thus, the suitability of En-
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Scenario LF MT+
GloVe MUSE MUSE

+LF mBERT MT
+BERT XLM-R

MonoL & CrossD 0.69 0.73 0.74 0.75 0.77 0.75 0.78
CrossL & MonoD 0.69 0.80 0.73 0.77 0.69 0.78 0.78
CrossL & CrossD 0.72 0.80 0.77 0.78 0.75 0.79 0.80
CrossL & MultiD 0.72 0.81 0.77 0.79 0.75 0.80 0.81
MultiL & MultiD 0.73 0.82 0.76 0.79 0.78 0.83 0.81

Table 8: Average F1-score by classification scenario and feature for the low-resource languages Spanish and Italian, including
their different crisis domains. The test examples are the same in all scenarios. The best result per scenario is highlighted in bold
and the best overall result is in a gray cell.

glish as a high-resource language is uncertain for other lan-
guages with significant grammatical and syntactical differ-
ences.

We propose and evaluate data augmentation (or enrich-
ment) mechanisms that encompass a suite of techniques that
enhance the size and quality of training datasets such that
better models can be built using them. Data augmentation
relies on creating a larger input data size to reduce the shift
between the source and target distributions. However, incor-
porating new data on training sets could decrease the ac-
curacy of the classification models because of the lack of
the ability to generalize adequately. In this sense, rather than
adding noise when we included new content, our results in-
dicated that data augmentation from multiple domains and
languages could provide an opportunity in scenarios when
data is insufficient for specific types of events.

A comparison of cross-domain results for Spanish and
Italian reveals that transferring knowledge from one or more
domains to another is useful from high-resource languages,
such as English. Nevertheless, it does not help if we use as
a source low-resource languages (e.g., training with Spanish
explosion to classify earthquakes in the same language).

Regarding the most effective ways to represent data for
knowledge transfer, translating the content into English and
using BERT or GloVe models provides the most accurate
results for Spanish messages in most scenarios. However,
for Italian, XLM-R and MUSE+LF provide the best results.
This can be due to variability in the quality of machine trans-
lation, for example. In practice, translating messages to En-
glish may not be cost-effective. However, this analysis al-
lows us to understand the available alternatives. In terms
of F1-score, the observed difference between MT+GloVe,
MT+BERT and XLM-R models is not statistically signif-
icant at a 95% confidence level. In addition, translating the
content into English and then using the BERT model (trained
in English corpus), obtained statistically superior results to
using the mBERT model (trained on multilingual corpus).

Aligned embeddings, such as MUSE, are a promising
less expensive approach for low-resource language classifi-
cation. We also observe that the LF representation was not as
competitive across scenarios. However, when this feature is
combined with MUSE, it improves results, specifically for
Italian. Regarding mBERT, we show that it provides com-
petitive results for some classification scenarios, but this is
not consistent. For future work, we will apply fine-tuning to

Figure 2: Predictions on Spanish and Italian test sets using
the MT+BERT model. The test examples are the same in all
scenarios. TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative.

this model (as well as to XLM-R) to explore whether the
performance increases.

For explosion in Spanish and flood in Italian, we observed
a decrease in performance for the Cross-Lingual & Mon-
odomain scenario, using the MUSE and mBERT compared
to LF. This could be due to: 1) the dependence of specific
words to the crisis domain and 2) the similarity of the repre-
sentations of those words in both languages (English and the
target language). The latter could be explained by the gen-
eral corpus used to train MUSE and mBERT (Wikipedia).

Analysis of Predictions
We consider the analysis of the predictions to focus on the
errors and suggest future improvements. Figure 2 shows the
rate of correct and incorrect predictions for the Spanish and
Italian languages using the MT+BERT model. We chose this
model because it achieved the best overall performance for
these languages (see Table 8). We observe that the last sce-
nario (Multilingual & Multi-Domain) presents the lowest er-
ror rate (FN + FP), where the rate of false negatives is lower
than that of false positives. These rates vary depending on
the feature used. For example, with the MUSE+LF classi-
fier, this scenario has a higher false positive-rate.

We performed a manual analysis of some classification
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Tweet text Crisis Lang.
(A) Idk why these things are happening
but I know god is with us !!!

West Texas
explosion

EN

(B) Svegliato dal terremoto, non sarà un
bel giorno per molti.

L’Aquila
earthquake

IT

(C) Cifra de muertos en Japón aumenta
a 41 tras terremoto: Equipos apuran el
rescate https://t.co/uQJVU3ijDf

Ecuador
earthquake

ES

(D) 15 Germania: sparatoria in tri-
bunale, almeno due morti e diversi fer-
iti: Il conflitto a fuoco nell’aula di Lan..
http://tinyurl.com/cdb73r

L’Aquila
earthquake

IT

Table 9: Examples of misclassified messages in their original
languages. (A) and (B) represent false negatives and (C) and
(D) false positives.

errors. This analysis can provide insights into what might
be the errors we need to address for future research. Table 9
shows some misclassified examples for all three languages.
Examples (A) and (B) are false negatives mainly belong-
ing to the original label: related - but not informative (Cri-
sisLexT26), on-topic (CrisisLexT6) and related (Ecuador-
Earthquake). This reveals that false negatives are some-
times expressions of personal opinions, prayers, sympathy
and emotional support. Examples (C) and (D) show false
positives mainly belonging to: off-topic (CrisisLexT6), not
related (CrisisLexT26) and not related or irrelevant (Cri-
sisNLP R1). In the first example, the message contains ex-
plicit information about an earthquake in Japan, but since
it had been collected for the Ecuadorian earthquake, it was
considered as not related, which could be considered as a
mislabeled example for our task definition. Likewise, (D) is
related to a shooting event, but not to L’Aquila earthquake.
In both cases, the classification model correctly marked
them as being related to crises. However, these messages
were (incorrectly) labeled in the dataset as not related, be-
cause in their original datasets they were not related to the
crisis that was being collected at the time.

We recognize within the limitations of our work, the uni-
fication of datasets from different sources. We have done our
best to achieve coherent labels, but there may be inconsisten-
cies. Moreover, it is worth noting that automatic translation
tools, such as Google translate, may not yield completely
accurate results in all instances, particularly due to the non-
structural and informal nature of social media content. While
alternative translation tools may provide superior accuracy,
we did not have access to them due to the high costs associ-
ated with their use for a significant volume of data. Finally,
we evaluated our approach only on the binary task by relat-
edness to crises. We expect that our methodology allows to
generalize other fine-grained tasks, such as the classification
of types of humanitarian information.

8 Conclusion
The main goal of this work was to assess the impact of trans-
fer learning in the multilingual and multi-domain classifica-
tion of messages relating to crises. In particular, data from

a high-resource language such as English can contribute to
the classification of messages from low-resource languages
such as Spanish and Italian. Furthermore, adding messages
from the target language also helps in some cases. Our find-
ings indicate that there exist patterns in crisis communica-
tions that expand across crisis domains and languages. As
a result we can increase our ability to classify data in lan-
guages and domains for which we have little to no labeled
data. However, the most efficient data representations may
vary depending on the target language.

For future work we want to explore in-depth different
deep learning classifiers and techniques for cross-lingual and
domain adaptation. In addition, we would like to further im-
prove our dataset by manually relabeling certain mislabeled
messages that are effectively related to crises according to
our task definition. This will allow us to have a data col-
lection that is oriented towards crises in general, rather than
event oriented. Moreover, we will explore this transfer learn-
ing approach in a more fine-grained task, such as categoriz-
ing actionable humanitarian information.

Ethical Statement
We use existing social network data, clearly indicating the
source and respecting the policies on data sharing and
anonymity. Our overarching goal is to expand crisis infor-
matics applications to low-resource languages. However,
there exist inequalities in access to the Internet, especially
prevalent in low-income countries. These geographical and
socio-demographic biases are present in the source of the
data and create important challenges for crisis informatics.
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