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Abstract
Clinical NLP tasks such as mental health assessment from
text, must take social constraints into account - the perfor-
mance maximization must be constrained by the utmost im-
portance of guaranteeing privacy of user data. Consumer pro-
tection regulations, such as GDPR, generally handle privacy
by restricting data availability, such as requiring to limit user
data to ’what is necessary’ for a given purpose. In this work,
we reason that providing stricter formal privacy guarantees,
while increasing the volume of user data in the model, in most
cases increases benefit for all parties involved, especially for
the user. We demonstrate our arguments on two existing sui-
cide risk assessment datasets of Twitter and Reddit posts. We
present the first analysis juxtaposing user history length and
differential privacy budgets and elaborate how modeling ad-
ditional user context enables utility preservation while main-
taining acceptable user privacy guarantees.

Introduction
A growing body of work shows that NLP models can ef-
fectively support professional human counselors in identi-
fying mental health risk markers in online user behavior,
for example to aid suicide risk assessment (McCarthy 2010;
De Choudhury et al. 2016; Reger, Stanley, and Joiner 2020;
Shing et al. 2018). An early intervention by a counselor can
be crucial, as 80% of patients at suicidal risk do not undergo
medical treatment. On the contrary, people turn to online
platforms, with 8 out of 10 people disclosing their suici-
dal plans (Golden, Weiland, and Peterson 2009; Robinson
et al. 2016). It is therefore desirable to train analytical mod-
els for these platforms, however, without unnecessarily ex-
posing personal details of the patients in the training data.

State-of-the-art models for this task typically employ
large contextual models (Matero et al. 2019; Losada,
Crestani, and Parapar 2019; Zirikly et al. 2019). Leverag-
ing additional data, such as user’s history on social me-
dia, augments the predictive power (Zirikly et al. 2019;
Sawhney et al. 2021). However, as every machine learning
model, these can be prone to learning undesired data arti-
facts, for example users mentioning certain locations, per-
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sons, or other rare pieces of information can be systemati-
cally misclassified as suicidal.

Moreover, privacy risks in such NLP models might lead
to severe individual consequences. Not only can adversaries
exploit sensitive artifacts from the models, but in extreme
cases they can target vulnerable users (Hsin, Torous, and
Roberts 2016).

Although consumer data laws address protection of vul-
nerable users to some extent, e.g., by limiting the amount
of necessary personal data for processing, data minimiza-
tion does not ensure increased privacy protection. In con-
trary, this can be even counterproductive, as reducing user
data may lead to less robust classifiers and more artifacts
learned. At the same time, advanced approaches such as dif-
ferentially private learning (Dwork and Roth 2013) can be
taken to abstain from using the privacy-breaching informa-
tion in the learning process. However, these approaches typ-
ically lead to lower predictive power, making the classifiers
less useful in practice (Alvim et al. 2011).

This raises an obvious empirical research question - how
much user data shall we use? If data minimization does not
increase privacy protection of users, can we include more
data instead and protect its privacy by design? If so, which
decisions do we need to consciously make in the model de-
sign? What are the trade-offs between increasing formal
user privacy preservation guarantees, maintaining pre-
dictive power, and minimizing users’ training data? Is
there a way to find optimal thresholds for these?

In this paper, we present the first empirical analy-
sis juxtaposing user history length and differential pri-
vacy budgets, demonstrating how modeling additional
user context can compensate the performance loss while
keeping acceptable privacy guarantees. Specifically, we
demonstrate our approach on two suicide risk assessment
datasets of Twitter and Reddit posts, as these tasks are vul-
nerable to user harm by privacy leaks (O’Loughlin et al.
2019; Rubanovich, Zisook, and Bloss 2022; Mikal, Hurst,
and Conway 2016).We qualitatively inspect data points
where enforcing differential privacy leads to performance
changes, quantitatively estimate the privacy leakage by ad-
versarial attacks, and examine the impact of different levels
of class imbalance. Based on our experiments, we argue that
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providing stricter formal privacy guarantees, while increas-
ing the volume of user data in the model, in most cases in-
creases the benefit for all parties involved, and that this effect
shall be taken into account by future policy makers.

Background and Prior Work
A straight-forward approach to privacy protection in text
is to identify sensitive user-revealing passages in a docu-
ment and replace them with more general expressions (Hill
et al. 2016; Alawad et al. 2020). However, removing per-
sonally identifiable information is typically not sufficient,
as the summary statistics of the dataset provide means to
infer individual’s membership with high probability (Jones
et al. 2007; Sweeney 1997). Not only datasets, but also
trained NLP models are vulnerable to attacks reconstruct-
ing the training data (Shokri et al. 2017). Privacy preserva-
tion efforts in NLP mostly follow adversarial approaches to
obscure sensitive user characteristics at training time, such
that the representations learned are invariant to these at-
tributes (Li, Baldwin, and Cohn 2018; Friedrich et al. 2019;
Coavoux, Narayan, and Cohen 2018). However, this ap-
proach offers only empirical privacy improvements, without
any formal guarantees.

Differential Privacy (DP) has been adopted as a stan-
dard framework to provide a quantifiable privacy guarantee
(Dwork and Roth 2013). Intuitively, a randomized algorithm
is differentially private if the output distributions from two
neighboring input databases, that are identical in all but a
single training example, are indistinguishable (Fig. 1). The
basic idea is that the output of the mechanism is “not much
different” whether or not a single individual (example) is
present in the dataset. The amount of “not much different”
is controlled by the parameter ε, the privacy budget, and has
a probabilistic interpretation of how much privacy of a single
individual can be “lost” in the worst case.

In NLP, this paradigm is being mainly applied in the
context of learning private word representations (Fernan-
des, Dras, and McIver 2019; Beigi et al. 2019; Coavoux,
Narayan, and Cohen 2018) to prevent memorization in
large language models (Carlini et al. 2019; Canfora et al.
2018) rather than directly in the downstream NLP classifiers,
which we explore in this paper.

DP and performance drop. An increased privacy pro-
tection comes with a performance cost, typically leading to
a decreased utility of the model (Alvim et al. 2011; Bass-
ily, Smith, and Thakurta 2014; Shokri and Shmatikov 2015;
Shokri et al. 2017), mainly due to memorization being pre-
vented (van der Veen et al. 2018). While this effect has been
described in machine learning research, its practical quali-
tative implications in the NLP field remain largely underex-
plored.

DP and disparate impact. Another challenge for ap-
plying privacy-preserving algorithms arises with data im-
balance. Machine learning studies on other types of data
(e.g. clinical records and images) show that the performance
degradation is disparate, with minority subgroups of data
suffering more utility loss (Shokri et al. 2017). Moreover,
when stricter privacy guarantees are imposed, the utility gap
widens disproportionally, i.e. the performance gap between

Model weights

Adjacent
Datasets

, ,( )
training sample

Figure 1: Essence of DP: With changes in a single train-
ing sample, the probability of obtaining a set of model
weights remains approximately the same. Particularly, the
ratio bounded by eε, and that difference bounded by δ.

the minority and majority subgroups is increasing (Bag-
dasaryan, Poursaeed, and Shmatikov 2019). In other words,
the less represented groups which already have lower ac-
curacy end up losing more utility. This disparate impact of
DP can occur even where classes are only slightly imbal-
anced, and isn’t limited to strict privacy budgets (Farrand
et al. 2020).

DP and the choice of privacy budget. The question of
how to set the privacy budget (ε) has been present since
the introduction of differential privacy and perceived as a
“social question” (Dwork et al. 2006) with numerous math-
ematical answers proposed, such as utility-maximization
optimizers (Geng and Viswanath 2014) and interval es-
timations (Naldi and D’Acquisto 2015). Voting mecha-
nisms (Kohli and Laskowski 2018) gain popularity as they
enable users to express their privacy budget; however, some
studies find none to minimal links between privacy concerns
reported by users and recorded behavior in a system with pri-
vacy warnings (Zimmerman et al. 2019). Some works argue
for setting ε based on inferred user traits instead (Vu et al.
2017). In practice, values in the literature vary from as little
as 0.01 to as much as 7, often with little to no justification.
Recently, researchers examined DP settings of commercial
companies (Tang et al. 2017), criticizing their generous ε
choice. However, to date there is no clear consensus in the
community on what strong or acceptable privacy budget val-
ues are. Generally, values under 1 can be considered strongly
private, as a well-known DP method called Randomized re-
sponse (ε = ln(3)) has been used for decades for highly
sensitive questionnaires in social sciences (Warner 1965).

DP versus data minimization. Our motivation for con-
trasting the theoretical privacy preservation (as formalized
by DP) with the data minimization approach originates
from examining how the goal of personal data protection
of the users is anchored in consumer data laws. For exam-
ple the European Union’s General Data Protection Regula-
tion (GDPR) requires limiting user data to what is neces-
sary concerning the purposes for which they are processed,
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encouraging data minimization rather than privacy protec-
tion by design. The operationalization of these laws in ma-
chine learning applications, including NLP, has been con-
troversial (Tene and Polonetsky 2012; Biega et al. 2020),
with practical implications of various design choices often
remaining rather opaque to the engineers and policy mak-
ers alike. Several data minimization studies have been con-
ducted in the domain of large recommender systems, noting
that the overall performance often does not drop after re-
moving random data points (Chow et al. 2013) or drastically
reducing user history length (Wen et al. 2018). However, the
incurred changes disparately impacted result quality for spe-
cific users or user groups (Biega et al. 2020). In this work,
we conduct experiments to empirically examine such effects
in the area of sensitive NLP tasks.

Methodology
We explore to which extent varying amounts of users’ histor-
ical data in combination with varying privacy budget impact
performance of sensitive user-centric social NLP tasks, that
is the suicide ideation and risk detection tasks.

Let Si be the i-th training sample associated with user uj

from the set of M users. Each sample consists of a sequence
of historical posts authored by the particular user uj which
we denote as Hj

i = [hi
1, h

i
2, · · · , hi

L] which occur strictly
before the time step where the prediction is made. The task
is a classification problem, namely to predict label yi.

We study two kinds of user-centric classification tasks.
First, for post-level tasks, the suicidality label is associated
with the most recent post to be assessed pi. Here the user’s
historical posts provide an additional context. The training
sample Si is hence the tuple (pi, yi, H

j
i ). Second, for user-

level tasks, the suicidality label is associated with the user
uj , with the sample Si representing the tuple (yi, H

j
i ).

Tasks and Data Studied
We identify suicide ideation and risk detection on social me-
dia as prediction tasks which benefit from additional contex-
tual data (Zirikly et al. 2019; Sawhney et al. 2021), with the
need to protect private and sensitive data (Huckvale, Torous,
and Larsen 2019; Rubanovich, Zisook, and Bloss 2022).

Suicide Ideation (SI) A post-level binary classification
task, for which we use an existing Twitter dataset (Mishra
et al. 2019) comprising Twitter timelines of 32,558 unique
users, spanning over ten years of historical tweets from
2009 to 2019, summing up to 2.3M unlabeled tweets.
These tweets were identified using a lexicon of 143 suici-
dal phrases. Out of these, 34,306 latest tweets were labeled
as yi ∈ {Suicidal Intent Absent, Suicidal Intent Present}.
The dataset contains 3,984 suicidal tweets, indicating a high
class imbalance of 9:11.

Suicide Risk – Reddit (SR) A user-level multi-class clas-
sification task, for which we use an existing dataset released
by Gaur et al. (2019). The dataset consists of 9,127 Red-
dit posts by 500 users. Each user is associated with a suicide

1The imbalance is much greater in the real world

risk severity label yi ∈ {Indication, Ideation, Behaviour, At-
tempt} in increasing order of suicide risk. The average num-
ber of posts made by a user is 18.25 ± 27.45. 2.

User-Contextual NLP Modeling
We describe our base user-contextual model HistLSTM,
which sequentially models user’s historical posts. For post-
level tasks, features obtained by HistLSTM are combined
with the post to be assessed before the classification step.

Encoding Posts We use the 768-dimensional representa-
tion of the [CLS] token obtained from BERT which tend to
yield holistic representations of text, including posts on so-
cial media. We encode P′

i ∈ R768 for a post to be assessed
pi as P′

i = BERT(pi). Similarly, we encode each historical
post hi

k to yield the representation Ei
k ∈ R768 = BERT(hi

k).

Historical Context The sequential nature of historical
posts makes LSTMs a natural method for contextual mod-
eling. Each historical post embedding Ei

k ∈ Ei is fed
sequentially to the LSTM to obtain the final hidden state
H̃i

L ∈ Rd = LSTM(Ei). For post-level tasks, HistLSTM
jointly learns from the language of the post to be assessed
along with the sequentially modeled representation of the
user’s timeline. For such tasks we apply the concatenation
operation ⊕ to P′

i and H̃i
L before feeding it to a dense layer

with ReLU activation, followed by softmax.

ŷi = softmax(ReLU(Wy(P
′
i ⊕ H̃i

L) + by))

For user-level tasks, H̃i
L is directly fed to dense layer:

ŷi = softmax(ReLU(Wy(H̃
i
L) + by))

where ŷi is the class probabilities vector and {Wy, by} are
trainable network parameters.

Differentially Private Optimization
Differential privacy has been adopted as a standard frame-
work for privacy-preserving analysis. DP protects privacy
of each single individual in the dataset by introducing ran-
dom noise into a mechanism that queries the dataset. When a
trained model is differentially private, the ε parameter limits
the probability of an adversary to attack the model and reveal
sensitive information from its training dataset. Formally, a
mechanism M with domain D and range R represented by
M : D → R satisfies (ε, δ)-differential privacy if for two
adjacent datasets d, d′ ∈ D that differ in one example and
for any subset of outputs S ⊆ R it holds that:

Pr[M(d) ∈ S] ≤ exp(ε) · Pr[M(d′) ∈ S] + δ (1)

Lower ε implies better privacy. The term δ, which is typi-
cally ‘cryptographicaly small,’ is a relaxation of the ‘pure’
(ε, 0)-DP. It enables much better composition of several pri-
vate algorithms in exchange for a small probability of pri-
vacy ‘failure’ (Abadi et al. 2016). In deep learning, the
mechanism M : D → R can be considered as a training

2We provide further insights on the individual class distribu-
tions in the appendix.
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Figure 2: An overview of HistLSTM: We first encode all user posts. The historical post representations are sequentially modeled
via an LSTM to obtain user historical context. For post-level tasks, it is concatenated with the post to be assessed and is used
for classification. The model is optimized using a differentially private optimizer.

procedure M on a dataset D that returns a model in the
space R (Bagdasaryan, Poursaeed, and Shmatikov 2019).

Intuitively, Differential Privacy requires that the probabil-
ity of learning any particular set of model parameters stays
roughly the same if we change a single training example in
the training set Figure 1. We implement differential privacy
based on the widely adopted (Ha et al. 2019) DP-SGD algo-
rithm introduced by Abadi et al. (2016).

The key aspects of differentially private SGD are (1) clip-
ping the per-batch gradient where its norm exceeds the clip-
ping bound C and (2) adding zero-centered Gaussian noise
N parametrized by σ to the aggregated per-sample gradi-
ents. Since the gradient computation is a function applied to
the dataset and its output is privatized with DP, the resulting
trained model will also be differentially-private. Intuitively,
this means that by limiting the norm of the gradients and
adding additional noise, we prevent the model from learn-
ing more than ε amount of information from every particu-
lar training sample, regardless of how distinct it is from the
others. However, for DP-SGD, an important issue is quanti-
fying the maximum privacy loss of each training sample i.e
computing the value of the privacy budget (ε).

We track the privacy budget (ε) using Rényi differential
privacy (Mironov 2017), a relaxation of (ε, δ)-DP, which
makes tracking the privacy budget easier. The moments ac-
countant in Abadi et al. (2016) can be considered as a spe-
cial case of Rényi differential privacy. For a given clipping
bound C and Gaussian noise N , the moments accountant
“tracks” the privacy cost at each access to the training data,
and accumulates this cost as the training progresses, eventu-
ally giving us the a final estimate of the privacy budget when
training is stopped. We do not delve into those details here,
but we point the reader to the appendix, and Abadi et al.

(2016) for extensive mathematical derivations of DP-SGD
and the moments accountant.

Network Optimization and Classification
Often, in user-centric social NLP tasks, the posts of interest
form only a small percentage of the data, leading to class
imbalance. Thus, we apply Class-Balanced loss (Cui et al.
2019) to train HistLSTM, which introduces a weighting fac-
tor that is inversely proportional to the number of samples
per class, yielding the loss L as:

L(ŷi, yi) = CBfocal(ŷi, yi;β, γ) (2)

where CBfocal is class-balanced focal loss, yi is the true la-
bel, and β and γ are hyperparameters.

We use a differentially private Adam optimizer, a variant
of DP-SGD. This optimization procedure leverages gradient
clipping and noise addition to calculate the model parameter
update ∆w in the loss landscape. The moments accountant
simultaneously computes the privacy budget ε at the end of
each epoch.

Evaluation Metrics
We choose the evaluation metrics following existing work
on suicide ideation detection (Gaur et al. 2019). For the Sui-
cide Ideation dataset, we use Recall on the minority class
(Suicidal Intent Present) as it is important to not misclassify
posts with suicidal intent. We also report Macro F1 score for
overall performance. For the Suicide Risk dataset, we use
Graded Recall, Graded Precision and FScore, which are cal-
culated using altered definitions of Recall and Precision to
account for ordinal nature of risk labels (Gaur et al. 2019).
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Suicide Ideation Suicide Risk

Model Architecture and Settings M-F1 Rs Ps F1 Gr. R Gr. P

CurrentPostRF
(Sawhney et al. 2018)

Language features: LIWC, POS tags,
n-grams fed to a Random Forest classifier.
Only uses most recent post.

0.54 0.51 0.47 0.47 0.49 0.45

CurrentPostLSTM
(Coppersmith et al. 2018)

Single-post model which utilizes GloVe
embeddings of the post fed to an LSTM.
Only uses most recent post.

0.58 0.59 0.52 0.51 0.51 0.53

HistCNN
(Gaur et al. 2019)

Concatenated post embeddings of all posts
fed to a CNN 0.71* 0.59* 0.72† 0.55* 0.51 0.69†

HistDecay
(Mathur et al. 2020)

Ensemble of BiLSTM+Attention with
exponentially weighted embeddings
of historical posts

0.73* 0.76* 0.58* 0.56* 0.60* 0.57*

HistLSTM (Ours) Our base model with no DP optimization 0.75† 0.71* 0.65† 0.59† 0.61† 0.62†

HistLSTM + DP (Ours) HistLSTM optimized with a strict privacy
budget (ε = 0.74) 0.68 0.61* 0.53* 0.56† 0.58* 0.57*

Table 1: Mean of results obtained over 15 independent runs. * and † indicate that the result is significantly (p < 0.005) better
than CurrentPostLSTM (Non-contextual model), and HistDecay (SOTA) under Wilcoxon’s Signed Rank test respectively. Bold
and italics indicates best and second best performance respectively.
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Figure 3: Confidence intervals for recall for the positive class
over 10 independent runs for both tasks. (p) indicates the p-
value under Wilcoxon’s Signed Rank test.

Experimental Setup
We split the twitter data using a temporal 70:10:20
(train:val:test) split, and the suicide risk dataset using a strat-
ified 70:10:20 split. We use Macro F1/FScore on the vali-
dation set to select hyperparameters. Using grid search we
explore: Hidden dimension Hd, Dropout d, β and γ, learn-
ing rate η, batch size N . We set δ as a value smaller than
the inverse of the size of the dataset (Abadi et al. 2016). We
manually set noise scale σ and clipping bound C. It is im-
portant to note that DP-SGD is not parameterized by the de-
sired privacy budget ε, but rather by the noise scale σ and the
clipping bound C, from which the final consumed privacy
budget is computed. The general rule is that higher noise
and lower clipping bounds yield tighter privacy budgets i.e
lower values of ε.

Results

What Is the Impact of User History Length?

In line with previous work (Khattri et al. 2015),we observe
that adding historical context of a user timeline leads to sig-
nificant (p < 0.005) improvement in performance for both
tasks, as illustrated in Figure 3. With longer history, there is
consistent increase in performance, as shown in Figure 4.

We additionaly compare our model (HistLSTM) with
other works that use single post only (CurrentPost), and
those utilizing historical user context (Hist), in Table 1.
As expected, user-contextual models provide significant im-
provements compared to single-post models (Dadvar et al.
2013). Among models with user history, temporally sequen-
tial models (HistDecay, HistLSTM) outperform bag-of-
posts (HistCNN), likely due to their ability to capture the
timeline build-up (Brådvik et al. 2008).

What Is the Impact of Privacy Budget Choice?

Incorporating differential privacy leads to performance
drops, as shown in Figure 3. With less privacy (higher ε),
the performance increases for a fixed window of historical
volume (Figure 4). However, stricter private models (ε <1)
with historical user context (HistLSTM + Strict DP)
outperform non-private single-post methods, as shown in
Table 1. For the SR dataset, strictly private models are on
par with contextual models like HistCNN. Interestingly,
models with a relaxed privacy budget perform on par with
SOTA user-contextual methods, showing although there is a
performance-privacy trade-off, there exist optimal balances
where both aspects can be equitable.
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Figure 4: Performance (Recall) variations with increasing
historical volume (number of historical tweets) and privacy
budgets (ε) over 10 independent runs.

How Vulnerable to Privacy Attacks Are the
Models?
To aid interpretability of the privacy budget and trade-
offs involved, we present empirical results from conducting
black-box membership inference attacks (Shokri et al. 2017)
for various values of the privacy budget as shown in Table 2.
We evaluate adversarial robustness using the privacy leak-
age metric (Jayaraman and Evans 2019), which is defined
the difference between the true positive (TP) and false posi-
tive (FP) rate of the adversary. The key takeaways from our
experiments are that data minimization alone is not suffi-
cient to preserve privacy, reinforced by the observation that
the non-private single-post model (CurrentPost) shows
significant privacy leakage. The non-private HistLSTM per-
forms best, at the cost of the highest privacy leakage. The
incorporation of DP drastically reduces the adversarial effi-
cacy with decreasing privacy budgets (ε), however at the cost
of high performance degradation of the single-post model.
Contrastingly, the addition of historical context to differen-
tially private models increases performance while maintain-
ing adversarial robustness. Specifically, even for strict pri-
vacy budgets (ε = 0.6), HistLSTM shows significant util-
ity, maintaining similar adversarial robustness as single-post
models.

Can We Compensate Stricter Privacy Budget by
Richer User History?
We observe adding historical context to the DP model leads
to significant performance improvements (p < 0.005) with
moderate DP budgets (ε ≈2.6, ε ≈1.8) (Figure 3). We note
that DP models accounting for historical context outperform
the non-contextual, non-private models in both tasks. Such
models with user context and relaxed privacy budgets are
able to match models with historical context (HistDecay),
while models with strict privacy budgets (ε < 1) outperform
single-post methods (Current), as shown in Table 1.

We now contrast how performance varies over different
user contexts (amount of historical volume) and privacy bud-
gets in Figure 4. Specifically, we focus on Recall for the
minority class (Suicidal Intent Present), and Graded Recall
(SR dataset) as the metrics of interest (Figure 4). Also, for

Model No DP ε ≈2.6 ε ≈0.6
PL ↓ M. F1 ↑ PL ↓ M. F1 ↑ PL ↓ M. F1 ↑

CurrentPost 0.19 0.54 0.03 0.45 0.01 0.43
HistLSTM 0.38 0.75 0.05 0.69 0.02 0.62

Table 2: Model performance on the SI dataset with corre-
sponding privacy leakage (PL) on conducting membership
inference attacks for various values of privacy budget (ε).
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Figure 5: Changes in performance metrics with increasing
class imbalance over 10 different runs (SI).

DP models, the performance for both tasks consistently in-
creases with increasing historical volume. For more relaxed
privacy budgets (ε > 2), performance with full post history
(over 50 tweets) is comparable to the non-private models.
For lower privacy budgets the performance suffers signifi-
cantly, yet surpassing non-private, single-post (Current)
models (Table 1). The tradeoff between privacy and utility
coupled with the historical data volume, is somewhat task-
dependent. For the suicide ideation task, a more distant his-
tory (50 tweets) contributes to notable utility compensation
(outperforming non-private counterparts with no historical
context), even with strict privacy budgets, while the suicide
risk model saturates earlier.

Probing the Impact of Class Imbalance
To study the effect of class imbalance on model performance
and privacy, we train the model with varying class balances
in Figure 5. For these experiments, we randomly sub-sample
the full dataset before performing the split. We perform the
random sub-sampling for each run of the experiments to
minimize any sampling biases. We observe that for a given
privacy budget (ε), the Macro F1 gradually decreases with
increasing class imbalance. The recall of DP models drops
much faster for the minority class when higher privacy guar-
antees are required, with drastic drops for the strict budgets
(ε < 2.6). Our observations align with existing work which
suggest that privacy and fairness are fundamentally at odds
under empirical risk minimization (Chang and Shokri 2021;
Agarwal 2021; Tran, Dinh, and Fioretto 2021). Note that the
performance degradation is disparate, with the underrepre-
sented user groups (those at high suicide risk) suffering more
utility loss. Interestingly, at the most extreme imbalance set-
tings, we note slight performance improvements. Possibly
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Suicidal Intent Absent
User D

Historical Tweets
16 July 2016: I really had to deal
with the worst year of my life. Had
to stress my brain to work again
for school after taking a year of
due to a breakup, miscarriage.
Lost my uncle Barry because of a
cartel and had near attempts to
kill myself.
31 Dec 2015:Living in an abusive
family drives you over the edge. I
keep questioning my existence
and why i am even here anymore

CurrentTweet HistLSTM HistLSTM+DP

Suicidal Intent Present
User B

Historical Tweets
1 Dec 2018: My mental health is very important i
have been in and out of hospitals. Got hospitalized
for trying to kill myself, i cry everdyay, have mental
breakdowns and have to take four pills everyday.  I
really cant 
bring myself to go back to seattle
19 Nov 2018:It’s januray 2019 and my boyfriend just
broke up with me. I have been crying since morning.
I want to drink chivita exotic then some chicken
sauce then some fried fish and then finally kill myself
but right now im still alive what do i do

CurrentTweet HistLSTM HistLSTM+DP

Suicidal Intent Present

User C

Historical Tweets
21 Nov 2017: Felt good
catching up with Simon, nice
lad.
21 Mar 2017: I never want to
leave Singapore, it is such a
nice place. 
17 Oct 2016: Why is it so
wrong that I do not want to be
here anymore?

CurrentTweet HistLSTM

HistLSTM+DP

Suicidal Intent Absent

User A

Historical Tweets
24 Nov 2016: Feeling like you’re
fifty when you’re just twenty-eight
probably shows i live a very
unhealthy life alone. Really
missing my wife.
15 May 2016: Going on a road
trip to Barton Park today,
hopefully it helps me take a well
earned break, after a hectic week
enough to kill me

CurrentTweet HistLSTM HistLSTM+DP

19 Dec 2018:   I  say   this   as   a   nineteen   year
old,   if   i’m   not   married   at   the   age   of 
twenty-six   and   if   dont   have   a   boyfriend   at  
the   age   of   twenty-two   someone   hit   me  
with   a   bus   and   kill   me   or   i’ll   find   a   way
to   do   it   myself.

4 Mar 2017:   Lol   idk   what   
decisions   in   my   life   have 
made   me   have   to   live   in
Portland   for    five    years,
it’s   such   a   gloomy,
depressing   place.

1 Sep 2018:   Haha   take  
this   as   my   final  
goodbye   to   this   world

16 Aug 2016:   Well   my  
night   consisted   of   sad  
movies   and   cry   how 
about   you

Figure 6: We study tweets of four users (SI dataset) and how a non-contextual model (CurrentPost) performs in comparison to
a contextual model (HistLSTM, complete user history) and HistLSTM with strict (ε = 2.6) privacy budget. We also visualize
token self-attention of HistLSTM for descriptiveness (more intense means higher attention weight).

the tighter privacy guarantees degrade the utility on minority
class so much that the model becomes more random, some-
times leading to an improvement (Farrand et al. 2020).

Qualitative Analysis

To add further insight beyond the challenging mathemati-
cal formulations of interpreting DP, we present a qualitative
insight in Figure 6. Generally, we observe that augmenting
models with DP leads to a failure in capturing relationships
between the class labels and specific personal data related
to named entities and numbers, which is sometimes desir-
able. For example, we see that tweets of User A and User
B contain personal details such as locations and age. The
non-private models likely leverage and memorize such de-
tails (Carlini et al. 2019), whereas the DP-based model mis-
classifies the tweet. For user C, models are thrown off by the
positive words. Due to most of the historical tweets contain-
ing personal data, the tweet from 2016 may seem of higher
importance to the DP variant, which correctly predicts the
tweet to be suicidal.

Choice of Privacy Budget

In our experiments, we observe moderate privacy budgets
(0.5 < ε < 4.5) to notably decrease the sensitivity to
names and digits (based on our subjective error analysis)
while yielding acceptable performance when combined with
full user timelines. Models with more benevolent (higher) ε
choices tend to perform similarly to non-private settings.

Discussion
Trade-Offs: Privacy, Performance, Data Volume
Overall, settings where performance loss caused by high pri-
vacy guarantees is compensated by high data volumes, ap-
pear appealing and socially desirable. However, there might
be cases in practice, where this choice is suboptimal, e.g.
when highly imbalanced classes can result to socially and
economically problematic disparate impact (Bagdasaryan,
Poursaeed, and Shmatikov 2019). Furthermore, experiments
of Shokri et al. (2017) also indicate disparate privacy vul-
nerability - smaller groups are more vulnerable to privacy
disclosure under DP, which is in case of suicidal behavior
a considerable design issue. Overall, an intervention in the
form of stricter privacy budget (lower ε) can increase the risk
of high outcome bias (error disparity), while a stricter data
minimization may increase the risk of high input bias (selec-
tion bias or over-amplification) (Khani and Liang 2020).

Data minimization can be also consciously applied for
purposes beyond privacy preservation, e.g. Vincent, Hecht,
and Sen (2019) explore the “data strike” as a form of collec-
tive action of users against technology platforms, starving
business-critical models of training data. The authors find
the impact of data strikes rather limited. Moreover, the re-
sulting data voids can be exploited by malicious users to
bias the system (Golebiewski and Boyd 2018). Sometimes
overall data minimization can be a prevalent goal for en-
vironmental reasons, as large models leave a major carbon
footprint (Strubell, Ganesh, and McCallum 2019).

Conclusions
In this paper we have shown that leveraging more user-
centric data enables competitive utility in prediction tasks
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and, at the same time, protects individual’s privacy, pro-
vided the training procedure uses differential privacy with a
strict privacy budget. This setup increases the benefit for all
parties involved, especially in sensitive tasks such as men-
tal health assessment, where a strong privacy protection,
hand in hand with low error rate, has been the most relevant
factor for the patients themselves (Aledavood et al. 2017;
Hsin, Torous, and Roberts 2016; Torous and Baker 2016).
Strong privacy guarantees also enable sharing the research
outcomes, such as deploying the trained models, in this sen-
sitive domain (Lehman et al. 2021).

We present the first analysis juxtaposing user history
length and differential privacy budgets. We demonstrate on
two publicly available (Twitter and Reddit) datasets for sui-
cide risk assessment how increasing the historical context
used for each user helps compensate for the performance
loss of DP models even with strict privacy budgets (ε ≈ 0.6),
i.e., preserving high formal privacy guarantees.

We qualitatively inspect data points where enforcing dif-
ferential privacy leads to performance drops and surprising
performance improvements. We observe decreased impor-
tance of named entities and numerals in the model, such as
the author’s age and location, potentially leading to prefer-
able, robust representations.

We show that increasing the imbalance of the predicted
classes impacts the utility of DP models, given the disparate
degradation in performance for minority classes, i.e., tweets
with suicide intent. We also observe that a stricter choice of
privacy budget results in more pronounced disparate degra-
dation, i.e. steeper drop in recall for the minority class.

While we generally endorse applying private and data-
minimizing model designs on user-centric NLP tasks, we
point out that the disparate impact of such choice shall be
reflected in design decisions.

Broader Impact & Ethical Considerations
Emphasizing the sensitive nature of this work, we acknowl-
edge the trade-off between privacy and effectiveness. To
avoid coercion and intrusive treatment, we work within the
purview of acceptable privacy practices suggested by Chan-
cellor et al. (2019). We paraphrase all examples shown in
this work using the moderate disguise scheme (Bruckman
2002) to protect user privacy (Chancellor et al. 2019). We
utilize publicly available data in a purely observational (Nor-
val and Henderson 2017), and non-intrusive manner. For all
tasks, we specifically only use existing datasets, and all user
data is kept separately on protected servers linked to the raw
text and network data only through anonymous IDs.

We acknowledge that suicidality is subjective, the inter-
pretation of this analysis may vary across individuals on so-
cial media (Puschman 2017), and we do not know the true
intentions of the user behind the post. Care should be taken
so as to not to create stigma, and interventions must hence be
carefully planned by consulting relevant stakeholders, such
as clinicians, designers, and researchers (Chancellor et al.
2016). We acknowledge that suicide risk exists on a diverse
spectrum (Bryan and Rudd 2006), and a binary distinction is
a task simplification intended to alert the human in the loop
about exceeding a possible intervention threshold. We note

that the studied data is limited to English-speaking Twitter,
and also recognize that the data may be susceptible to other
demographic, annotator, and medium-specific biases (Hovy
and Spruit 2016). Although our work attempts to analyze
aspects of users’ nuanced and complex experiences, we ac-
knowledge the limitations and potential misrepresentations
that can occur when researchers analyze social media data,
particularly data from a group to which the researchers do
not explicitly belong.

We acknowledge that it is almost impossible to prevent
abuse of released technology even when developed with
good intentions (Hovy and Spruit 2016). Hence, we en-
sure that this analysis is shared only selectively and sub-
ject to IRB approval (Zimmer 2009) to avoid misuse such as
Samaritan’s Radar (Hsin, Torous, and Roberts 2016). More-
over, we aim to strive for an informed public, by address-
ing the dual-use threat with preemptive disclosure accom-
panying the code, in line with Solaiman et al. (2019). Our
work does not make any diagnostic claims related to suicide.
Our models and analysis should form part of a distributed
human-in-the-loop system for finer interpretation of risk.
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Brådvik, L.; Mattisson, C.; Bogren, M.; and Nettelbladt, P.
2008. Long-term suicide risk of depression in the Lundby
cohort 1947–1997–severity and gender. Acta Psychiatrica
Scandinavica, 117(3): 185–191.
Bruckman, A. 2002. Studying the amateur artist: A perspec-
tive on disguising data collected in human subjects research
on the Internet. Ethics and Information Technology, 4(3).
Bryan, C. J.; and Rudd, M. D. 2006. Advances in the assess-
ment of suicide risk. Journal of clinical psychology, 62(2).
Canfora, G.; Di Sorbo, A.; Emanuele, E.; Forootani, S.; and
Visaggio, C. A. 2018. A nlp-based solution to prevent from
privacy leaks in social network posts. In Proceedings of
the 13th International Conference on Availability, Reliabil-
ity and Security, 1–6.
Carlini, N.; Liu, C.; Erlingsson, Ú.; Kos, J.; and Song, D.
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Daumé III, H.; and Resnik, P. 2018. Expert, Crowdsourced,
and Machine Assessment of Suicide Risk via Online Post-
ings. In Proceedings of the Fifth Workshop on Computa-
tional Linguistics and Clinical Psychology: From Keyboard
to Clinic, 25–36. New Orleans, LA: Association for Compu-
tational Linguistics.
Shokri, R.; and Shmatikov, V. 2015. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security.

775



Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE.
Solaiman, I.; Brundage, M.; Clark, J.; Askell, A.; Herbert-
Voss, A.; Wu, J.; Radford, A.; Krueger, G.; Kim, J. W.;
Kreps, S.; et al. 2019. Release strategies and the social im-
pacts of language models. arXiv preprint arXiv:1908.09203.
Strubell, E.; Ganesh, A.; and McCallum, A. 2019. Energy
and Policy Considerations for Deep Learning in NLP. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 3645–3650. Florence, Italy:
Association for Computational Linguistics.
Sweeney, L. 1997. Weaving technology and policy together
to maintain confidentiality. The Journal of Law, Medicine &
Ethics, 25(2-3): 98–110.
Tang, J.; Korolova, A.; Bai, X.; Wang, X.; and Wang, X.
2017. Privacy loss in apple’s implementation of differential
privacy on macos 10.12. arXiv preprint arXiv:1709.02753.
Tene, O.; and Polonetsky, J. 2012. Big data for all: Privacy
and user control in the age of analytics. Nw. J. Tech. & Intell.
Prop., 11: xxvii.
Torous, J.; and Baker, J. T. 2016. Why psychiatry needs data
science and data science needs psychiatry: connecting with
technology. JAMA psychiatry, 73(1): 3–4.
Tran, C.; Dinh, M.; and Fioretto, F. 2021. Differentially Pri-
vate Empirical Risk Minimization under the Fairness Lens.
Advances in Neural Information Processing Systems, 34.
van der Veen, K. L.; Seggers, R.; Bloem, P.; and Patrini, G.
2018. Three tools for practical differential privacy. arXiv
preprint arXiv:1812.02890.
Vincent, N.; Hecht, B.; and Sen, S. 2019. Data Strikes’:
Evaluating the Effectiveness of New Forms of Collective
Action Against Technology Platforms. In Proceedings of
The Web Conference 2019.
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