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Abstract

Identifying influencers in a given social network has become
an important research problem for various applications, in-
cluding accelerating the spread of information in viral mar-
keting and preventing the spread of fake news and rumors.
The literature contains a rich body of studies on identifying
influential source spreaders who can spread their own mes-
sages to many other nodes. In contrast, the identification of
influential brokers who can spread other nodes’ messages to
many nodes has not been fully explored. Theoretical and em-
pirical studies suggest that involvement of both influential
source spreaders and brokers is a key to facilitating large-
scale information diffusion cascades. Therefore, this paper
explores ways to identify influential brokers from a given
social network. By using three social media datasets, we in-
vestigate the characteristics of influential brokers by compar-
ing them with influential source spreaders and central nodes
obtained from centrality measures. Our results show that (i)
most of the influential source spreaders are not influential
brokers (and vice versa) and (ii) the overlap between central
nodes and influential brokers is small (less than 15%) in Twit-
ter datasets. We also tackle the problem of identifying influen-
tial brokers from centrality measures and node embeddings,
and we examine the effectiveness of social network features
in the broker identification task. Our results show that (iii) al-
though a single centrality measure cannot characterize influ-
ential brokers well, prediction models using node embedding
features achieve F scores of 0.35-0.68, suggesting the effec-
tiveness of social network features for identifying influential
brokers.

Introduction

Identifying influencers from a social network has been a fun-
damental research task in the web and network science re-
search communities (Lii et al. 2016; Li et al. 2018; Morone
and Makse 2015; Al-Garadi et al. 2018; Banerjee, Jenamani,
and Pratihar 2020). It has been shown that a few individu-
als called influencers play an important role in triggering a
large-scale cascade of information diffusion (Pei et al. 2014;
Katz and Lazarsfeld 1955). Thus, identifying influencers is
considered to be crucial for conducting effective viral mar-
keting campaigns (Richardson and Domingos 2002; Domin-
gos and Richardson 2001; Kempe, Kleinberg, and Tardos
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2003) and preventing the spread of unwanted information
(e.g., fake news and rumors) (Budak, Agrawal, and El Ab-
badi 2011).

Several algorithms for identifying influencers have been
proposed (Lii et al. 2016; Li et al. 2018; Al-Garadi et al.
2018; Banerjee, Jenamani, and Pratihar 2020). A common
approach is to calculate centrality measures of nodes in a
social network and extract the nodes with high centrality as
influencers (Chen et al. 2012; Lii et al. 2016; Morone and
Makse 2015). Traditional centrality measures include de-
gree (Freeman 1979), closeness (Freeman 1979), between-
ness (Freeman 1979), PageRank (Brin and Page 1998), and
k-core index (Seidman 1983; Dorogovtsev, Goltsev, and
Mendes 2006). New measures have been also used for iden-
tifying influencers, including VoteRank (Zhang et al. 2016)
and Collective Influence (CI) (Morone and Makse 2015).
More recently, combining multiple centrality measures in a
machine-learning framework has been proposed for identi-
fying influencers (Bucur 2020; Zhao et al. 2020).

While most previous studies assumed either explicitly or
implicitly that influencers are nodes who can spread their
own messages to many other nodes (Kempe, Kleinberg, and
Tardos 2003; Li et al. 2018; Zhang et al. 2016; Lii et al. 2016;
Chen et al. 2012; Banerjee, Jenamani, and Pratihar 2020),
another type of influencer on social media who can spread
other users’ messages to many users has also been shown
to play an important role in large-scale information diffu-
sion (Bakshy et al. 2012; Weng, Menczer, and Ahn 2013;
Liu-Thompkins and Rogerson 2012; Araujo, Neijens, and
Vliegenthart 2017; Meng et al. 2018; Tsugawa 2019). We
refer to the former as source spreaders and the latter as bro-
kers (Burt 2000; Araujo, Neijens, and Vliegenthart 2017,
Meng et al. 2018) (Fig. 1). Bakshy et al. (2012), and Weng et
al. (2013) showed that information diffusion by brokers who
bridge different communities affects the final sizes of infor-
mation diffusion cascades. Araujo et al. (2017) showed that
information brokers facilitate content diffusion for global
brands. Meng et al. (2018) showed that the diffusion size
of health-related information posted by the Centers for Dis-
ease Control and Prevention is significantly affected by bro-
ker involvement. The importance of brokers has also been
discussed in the context of social capital theory (Burt 2000).
Therefore, identifying influential brokers, as well as source
spreaders, is important for successful information dissem-
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Figure 1: Source spreaders and brokers. Influential source
spreaders are users who can spread their own messages to
many other users, and influential brokers are users who can
spread other users’ messages to many users.

ination. For example, if a company wishes to disseminate
the tweets of its official account, then influential brokers are
helpful for doing so widely. In another scenario, influential
brokers may unintentionally disseminate unwanted informa-
tion such as fake news posted by troll accounts. In that case,
it would be effective to identify those influential brokers in
order to limit the spread of unwanted information.

In this paper, we aim to understand the characteristics of
influential brokers and identify them from a given social net-
work among social media users. In particular, we address the
following research questions.

¢ (RQ1) How different are influential source spreaders and
influential brokers?

e (RQ2) Are influential brokers located at central positions
in a social network?

¢ (RQ3) How accurately can we predict the influential bro-
kers from a social network by using node embeddings,
which incorporate complex structural information about
the social network?

Because the characteristics of influential brokers have been
unclear to date, we begin by examining their characteris-
tics by comparison with influential source spreaders (RQ1)
and central nodes obtained from centrality measures (RQ2).
We then conduct experiments to identify influential brokers.
We focus on node embeddings (Rossi, Zhou, and Ahmed
2018a,b; Goyal and Ferrara 2018; Grover and Leskovec
2016; Cui et al. 2018; Qiu et al. 2018, 2019), which are low-
dimensional vector representations of nodes, and traditional
centrality measures (Freeman 1979; Brin and Page 1998;
Seidman 1983; Dorogovtsev, Goltsev, and Mendes 2006) as
features for identifying influencers, and we examine their ef-
fectiveness (RQ3).
Our main contributions are summarized as follows.

e We tackle the problem of identifying influential bro-
kers from a social network. Although previous empiri-
cal results (Bakshy et al. 2012; Weng, Menczer, and Ahn
2013; Liu-Thompkins and Rogerson 2012; Araujo, Nei-
jens, and Vliegenthart 2017; Meng et al. 2018; Tsugawa
2019) suggested the importance of brokers for triggering
a large-scale cascade, the problem of identifying influen-
tial brokers has rarely been explored.

e We empirically show the effectiveness of node embed-
dings as well as the limitations of using a single tradi-
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tional centrality measure for identifying influential bro-
kers. Node embeddings have been shown to be effec-
tive for several tasks including link prediction (Grover
and Leskovec 2016; Rossi, Zhou, and Ahmed 2018a) and
node label classification (Grover and Leskovec 2016; Qiu
et al. 2018, 2019), and we show their effectiveness in in-
fluencer identification tasks.

e We examine the characteristics of influential source
spreaders and brokers in different domains. We use three
different types of datasets that come from different do-
mains with different languages, and we aim to understand
whether there are universal characteristics of influencers
among different domains.

Related Work

The literature contains multiple definitions of influential
or important social media users (Riquelme and Gonzélez-
Cantergiani 2016). For instance, Cha et al. (2010) examined
the influence of Twitter users using their numbers of fol-
lowers, retweets, and mentions, and Bakshy et al. (2011)
considered users who initiate large-scale retweet cascades
as being influencers. Influencers are often referred to by
other terms such as opinion leaders (Hu et al. 2012) and
authorities (Bouguessa and Romdhane 2015). These stud-
ies regard influencers as users who can spread their own
information or posts to many other users, and we refer to
this type of influencer as an influential source spreader. An-
other line of research (Araujo, Neijens, and Vliegenthart
2017; Liu-Thompkins and Rogerson 2012; Li et al. 2014a;
Burt 2000) is focused on influential brokers who can spread
other users’ information or posts to many users. Informa-
tion disseminated by influential brokers who bridge different
communities is suggested to spread widely in several do-
mains such as YouTube videos (Liu-Thompkins and Roger-
son 2012), brand content (Araujo, Neijens, and Vliegenthart
2017), and health-related information (Meng et al. 2018).
Araujo et al. (2017) and Li et al. (2014a) showed that both
influential source spreaders and brokers play important roles
in facilitating large-scale information diffusion cascades.
Although there are multiple definitions of influencers,
most algorithms for identifying influencers aim either ex-
plicitly or implicitly to identify influential source spread-
ers (Kempe, Kleinberg, and Tardos 2003; Li et al. 2018;
Banerjee, Jenamani, and Pratihar 2020; Zhang et al. 2016;
Pei et al. 2014; Chen et al. 2012). A common way to evalu-
ate the effectiveness of influencer identification algorithms
is to use synthetic information diffusion models such as
the susceptible—infected-removed (SIR) model (Zhang et al.
2016; Li et al. 2014b; Chen et al. 2012), the independent
cascade model (Kempe, Kleinberg, and Tardos 2003), and
the linear threshold model (Kempe, Kleinberg, and Tardos
2003). As a metric for evaluating the effectiveness of the
algorithms, the number of users who receive information
when the identified influencers are selected as seed nodes in
the information diffusion models is used (Kempe, Kleinberg,
and Tardos 2003; Zhang et al. 2016; Li et al. 2014b). In other
words, many existing algorithms are shown to be effective
for identifying users who can spread information to many



other users under synthetic information diffusion models.
Some studies (Pei et al. 2014; Panagopoulos, Malliaros, and
Vazirgianis 2020; Tsugawa and Kimura 2018) used real in-
formation diffusion trace data rather than synthetic models,
but those studies also evaluated the users’ power as influen-
tial source spreaders.

Algorithms for identifying influential source spreaders
fall roughly into three categories: (i) algorithms based on
network topology (Morone and Makse 2015; Zhang et al.
2016; Lii et al. 2011; Li et al. 2014b; Chen et al. 2012), (ii)
algorithms based on information diffusion models (Kempe,
Kleinberg, and Tardos 2003; Li et al. 2018; Banerjee, Jena-
mani, and Pratihar 2020; Tang, Shi, and Xiao 2015; Tang,
Xiao, and Shi 2014), and (iii) algorithms based on the
records of users’ activities (Weng et al. 2010; Yamaguchi
et al. 2010; Panagopoulos, Malliaros, and Vazirgianis 2020).
Algorithms based on network topology estimate the influ-
ence of each user from the topological structure of a so-
cial network using network metrics of nodes. The met-
rics include traditional centrality measures (Freeman 1979;
Brin and Page 1998), LeaderRank (Lii et al. 2011), VoteR-
ank (Zhang et al. 2016), and CI (Morone and Makse 2015).
The second category of algorithms, namely, those that use
information diffusion models, are referred to as influence
maximization algorithms (Kempe, Kleinberg, and Tardos
2003; Li et al. 2018; Banerjee, Jenamani, and Pratihar 2020);
these identify a set of influential seed nodes that can spread
information to many nodes under the given information cas-
cade model (Kempe, Kleinberg, and Tardos 2003; Li et al.
2018; Banerjee, Jenamani, and Pratihar 2020). In the sem-
inal work by Kempe et al. (2003), the influence maximiza-
tion problem was formulated as a combinatorial optimiza-
tion problem, and greedy algorithms were proposed. Since
then, several efficient influence maximization algorithms
have been proposed, including TIM (Tang, Xiao, and Shi
2014) and IMM (Tang, Shi, and Xiao 2015) that can find in-
fluencers in huge networks based on influence cascade mod-
els. While the first two categories of algorithms use only so-
cial network structure and synthetic diffusion models, the
third category of algorithms uses the records of users’ ac-
tivities such as tweets and retweets in addition to the net-
work structure. Such algorithms that are widely used include
TwitterRank (Weng et al. 2010), TURank (Yamaguchi et al.
2010), and CELFIE (Panagopoulos, Malliaros, and Vazirgia-
nis 2020). These algorithms have been shown to be effective
for identifying influential source spreaders, but their effec-
tiveness for identifying influential brokers remains unclear.
As explained above, many algorithms for identifying influ-
ential source spreaders use network topology, and so we ex-
pect the latter also to be a promising source for identifying
influential brokers.

Several algorithms for identifying structural hole span-
ners (Lou and Tang 2013; Lin et al. 2021; Xu et al. 2017)
that bridge different communities have also been proposed.
Structural hole spanners are defined as nodes whose re-
moval from a network causes communities to become dis-
connected (Xu et al. 2017; Lou and Tang 2013). Empiri-
cal studies of tweet diffusion on social media have shown
that inter-community diffusion of a tweet increases its fi-
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nal cascade size (Bakshy et al. 2012; Weng, Menczer, and
Ahn 2013; Tsugawa 2019), which suggests that structural
hole spanners may be related to influential brokers. How-
ever, the relationship between structural hole spanners and
influential brokers has not been investigated. A simple way
to find structural hole spanners is to extract nodes with high
betweenness as used in (Goyal and Vega-Redondo 2007).
We compare influential brokers and central nodes based on
betweenness, which are expected to be structural hole span-
ners, and we examine the relationship between the concepts
of structural hole spanners and brokers.

Few studies have quantified a user’s influence as a broker,
but a notable exception is that by Bhowmick et al. (2019),
who proposed an algorithm called SmartInf for identifying
influencers from past retweet cascades and evaluated the
identified influencers’ power as brokers; that study suggests
that past retweet cascades are useful for identifying influen-
tial brokers. In contrast, the effectiveness of network topol-
ogy for identifying brokers has not been explored. We fol-
low Bhowmick et al. (2019) and examine the usefulness of
network embeddings and traditional centrality measures ob-
tained from network topology for identifying brokers.

Preliminaries
Notation

A social network is represented as a directed graph G =
(V, E), where V is a set of nodes representing social media
users and F is a set of links representing the relationships
among those users. Link (u,v) € E represents the fact that
user u follows user v.

A sequence of retweets (reposts) and the original tweet
(post) is referred to as an information diffusion cascade.
Furthermore, U, = {u§,u§,...,ul.} is the set of users
who retweet the original tweet of cascade ¢, and T, =
{t s tays -5t .} is the set of timestamps of the retweets
in cascade c. Here, uf is the user who posts the i-th retweet
in cascade c, iy, is the timestamp of the retweet posted by
user u; in cascade ¢, and n¢ is the cascade size of c. The
user who post the original tweet of c is denoted as ug, and
the timestamp of the original tweet of c is denoted as ¢§. A
set of diffusion cascades among the social media users V' is
denoted as D = {c}, and a set of cascades initiated by node
v is denoted as C,, = {c | ¢ € D, u§ = v}. The set of users
who retweet in cascade c after user v retweets in cascade ¢
is denoted as Ry = {uf | t5,, > t7}.

Definitions of Influence

We define influencer scores of each user as both a source
spreader and a broker.

Source spreader score: An influential source spreader is
a user who can spread their own tweets to many other users.
Thus, the source spreader score of user u is defined as the
number of users who retweet user u’s tweets and is given by

U

ceCly,

Sy = . (1)




This metric measures the popularity of user u’s tweets and
was used in previous studies to evaluate the influence of
nodes in social networks (Pei et al. 2014; Zhang et al. 2016)
and for influence maximization problems (Panagopoulos,
Malliaros, and Vazirgianis 2020; Kempe, Kleinberg, and
Tardos 2003).

Broker score: An influential broker is a user who can
spread other users’ tweets to many other users. Thus, follow-
ing (Bhowmick et al. 2019) and analogously to the source
spreader score, the broker score of user w is defined as the
number of users who post retweets after user u’s retweets
and is given by

By, = . 2)

U

ceD

This metric is intended to measure the impact of
user u’s retweets on the popularity of the retweeted
tweets (Bhowmick et al. 2019). Since it is difficult to directly
measure the impact of each retweet on the future popularity
of the retweeted tweet, we assume that the users who partic-
ipate in many large-scale cascades at their early stages are
influential brokers.

Methodology
Datasets

We use three social media datasets that we refer to as the
Twitter Japan, Twitter Nepal (Bhowmick et al. 2019), and
Digg (Hogg and Lerman 2012) datasets, which contain both
a social network of social media users and information dif-
fusion cascades among them. The basic statistics of these
datasets are given in Table 1.

o Twitter Japan: The Twitter Japan dataset contains a
who-follows-whom network of Japanese Twitter users
and their tweets and retweets posted during Jan-
vary 2014. This dataset was collected in our previous
study (Tsugawa 2019; Tsugawa and Kimura 2018; Tsug-
awa and Kito 2017).

e Twitter Nepal: The Twitter Nepal dataset (Bhowmick
et al. 2019) contains tweets and retweets about the 2015
Nepal earthquake, as well as a who-follows-whom net-
work among the users involved in those tweets and
retweets.

e Digg: The Digg dataset (Hogg and Lerman 2012) con-
tains posts, their votes, and a who-follows-whom net-
work among the users. In the Digg social media, users
can make posts (called stories in Digg) and also vote on
other users’ posts. A voted post is shown in the timelines
of followers of the voted user. Thus, the sequence of a
story and votes to it is regarded as a cascade (Lerman
and Ghosh 2010). As given in Table 1, only 0.15% of
users made any posts, with most users only voting, and
so source spreader scores can be calculated for only a few
users. Therefore, we used the Digg dataset not for identi-
fying influential source spreaders but only for identifying
influential brokers.
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Datasets | Twitter Japan | Twitter Nepal | Digg
Num. users 351,759 273,222 279,631
Num. cascades 8,419,432 26,424 3,553
Num. retweets 29,587,972 521,938 | 3,018,197
Num. source users 256,549 18,983 431

Table 1: Basic statistics of the datasets.

Our three datasets come from different domains, which
is expected to be useful for examining how the characteris-
tics of influencers differ across social media services, lan-
guages, and topics. Our datasets cover two social media ser-
vices (i.e., Twitter and Digg) and three different languages
(i.e., English, Nepali, and Japanese). Moreover, the Twitter
Nepal dataset contains topic-specific cascades, whereas the
Digg and Twitter Japan datasets contain non-topic-specific
cascades. By using these three different types of datasets,
we examine the characteristics of influencers in different do-
mains.

Centrality

We extract influential brokers as well as influential source
spreaders from the three datasets, and we examine the char-
acteristics of the brokers and source spreaders using cen-
trality measures. We use traditional popular centrality mea-
sures including degree centrality (Freeman 1979), closeness
centrality (Freeman 1979), betweenness centrality (Freeman
1979), k-core index (Seidman 1983; Dorogovtsev, Goltsev,
and Mendes 2006), and PageRank (Brin and Page 1998).

From social network G representing who-follows-whom
relationships among social media users, we extract the top
p% of central nodes based on the centrality measures. We
also extract the top p% of users based on the source spreader
and broker scores as influential source spreaders and bro-
kers, respectively. We then examine the overlap among the
extracted influencers (i.e., source spreaders and brokers) and
central nodes. More specifically, we calculate p% overlap
scores (Pei et al. 2014; Tsugawa and Kimura 2018; Borgatti,
Carley, and Krackhardt 2006) between influencers and cen-
tral nodes as

‘Tzi)nf N Tzc]:cnt|
Overlap, = W, 3)

P

where Tzi,“f and Tz‘jem are the sets of top-p% influencers
and central nodes, respectively. Previous studies (Chen et al.
2012; Li et al. 2016) have shown that influential source
spreaders tend to have high centrality; thus, overlap between
influential source spreaders and central nodes is expected to
be high. In contrast, whether influential brokers have high
centrality is not yet clear.

Node Embedding

We also examine how influential brokers can be charac-
terized by node embeddings (Rossi, Zhou, and Ahmed
2018b,a; Goyal and Ferrara 2018; Cui et al. 2018). A node
embedding is a latent low-dimensional vector representation
of a node in a network, and a node embedding technique



learns such vector representations of nodes from only the
topological structure of a given network (Goyal and Ferrara
2018; Cui et al. 2018). While traditional centrality measures
are human-crafted features that are defined explicitly using
human knowledge about central nodes, node embeddings are
features learned from the network data alone without explic-
itly using human knowledge about the node characteristics.
Node embeddings have been shown to be effective for sev-
eral tasks (Goyal and Ferrara 2018; Cui et al. 2018), which
motivates us to examine the effectiveness of learned embed-
dings of nodes for characterizing influencers.

Among several options for node embedding tech-
niques (Goyal and Ferrara 2018; Cui et al. 2018), we use
DeepGL (Rossi, Zhou, and Ahmed 2018b,a). While with
most node embeddings it is difficult to interpret the mean-
ing of each dimension of the obtained vectors, DeepGL pro-
duces interpretable vector representations of nodes (Rossi,
Zhou, and Ahmed 2018b,a; Fujiwara et al. 2020). Using
interpretable embeddings, we try to understand the influ-
encers’ characteristics that are not captured by traditional
centrality measures.

In what follows, we briefly introduce DeepGL; see (Rossi,
Zhou, and Ahmed 2018a) for the details. DeepGL uses the
base features x of each node. The base features of a node
are represented as a vector, and each dimension can be any
feature, such as a traditional centrality measure of the node
or a node attribute. DeepGL learns the vector representation
of each node from its base features x and those of its neigh-
bors by using a relational function f. A relation function
is a combination of relational feature operators that can be
applied to a base feature. A relational feature operator ob-
tains a value from base feature values of one-hop neighbors
of a target node. Examples of the relational feature opera-
tor include mean, sum, and max. In a directed network, in-
neighbor, out-neighbor, and total-neighbor can be defined,
and the operators for in, out, and total neighbors are denoted
as &g, <I>JS’, and ®g, respectively. S is a summary function
that returns a single value from multiple values, such as sum,
mean, and max. For instance, @, ... () is a relational op-
erator that calculates the mean x of the in-neighbors of a
node. In DeepGL, each dimension of the obtained represen-
tation vector of a node is defined as the combination of base
features x and relational operators. For instance, each di-
mension could be ®p,can (degree), which is the mean of the
degree of neighboring nodes. More-complex features can be
obtained, such as ®ean © Prax(degree), which for node v
is calculated as follows. First, for each neighbor u of node
v, the maximum degree among u’s neighbors is obtained.
Then, the mean of the maximum values for node v’s neigh-
bors is obtained. DeepGL can learn such complex features of
nodes from a network in an unsupervised way by combining
base features and relational functions.

Predicting Influencers

We examine the effectiveness of the node embeddings ob-
tained with DeepGL for identifying influential brokers. We
conducted experiments on identifying influential brokers
from the node embeddings using a supervised machine-
learning framework. For comparison purposes, we also con-
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Base features degree, betweenness, closeness
PageRank, k-core

Relational functions sum, max, mean

A 0.9

Ego network distance | 5

Transform method log binning

Table 2: Parameter configurations for DeepGL.

ducted experiments on identifying influential source spread-
ers. The task here is to identify the top-p% influential bro-
kers (or source spreaders) from the DeepGL embeddings.
We obtained the DeepGL embeddings from each social net-
work G. We also obtained broker scores (or source spreader
scores) for all nodes. Then, we annotated nodes with top-
p% scores as influencers, and others as non-influencers. A
fraction ¢ of nodes in each network G are used as training
data, and the others are used as test data. For the training
data, class labels (i.e., influencers or non-influencers) are
available for model training. We used LightGBM (Ke et al.
2017) as a classifier, and for each network we trained mod-
els of identifying influential brokers. LightGBM was cho-
sen because it can produce feature importance of the ob-
tained model and is known to be effective for machine learn-
ing tasks using tabular data (Ke et al. 2017). To cope with
highly imbalanced class labels (i.e., there are far more non-
influencers than influencers), we subjected the training data
to downsampling and obtained balanced training data, where
the numbers of non-influencers and influencers are the same.
Moreover, 80% of the downsampled training data were used
for model training, and 20% of the training data were used
for hyperparameter tuning using Optuna (Akiba et al. 2019).
The loss function was binary logarithmic loss. Note that
the test data were still imbalanced. The parameter config-
urations for DeepGL are summarized in Table 2. We used
the DeepGL implementation in (Fujiwara et al. 2020).' By
applying DeepGL to each social network, we obtained em-
bedding vectors of nodes in an unsupervised way. For each
setting, we performed 10 experiments and obtained average
scores for classification accuracy.

Results

Overlap Among Influential Brokers, Source
Spreaders, and Central Nodes

We first examine the characteristics of influential brokers by
comparing them with influential source spreaders and cen-
tral nodes (RQ1 and RQ2). Figure 2 shows confusion matri-
ces of 10% overlap scores among influential brokers, source
spreaders, and central nodes. Note that influential source
spreaders were not extracted from the Digg data because the
number of source users was too small (see Table 1).

Figure 2 shows that overlaps between source spreaders
and brokers are low. For the Twitter Japan dataset, the over-
lap score is 0.18, and for the Twitter Nepal dataset the score
is less than 0.01. These results indicate that influential source

"https://github.com/takanori-fujiwara/cnrl
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Figure 2: Confusion matrices for influencers and central
nodes. Overlap scores between source spreaders and brokers
are low. The overlaps between central nodes and brokers are
low for all datasets, but the overlaps with source spreaders
are relatively high.
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spreaders who can widely disseminate their own messages
and brokers who can widely disseminate other users’ mes-
sages are different. Namely, it is suggested that influential
brokers who catch the trending topics early do not have high
influence to spread their own messages.

Looking at the overlaps between brokers and central
nodes, we find that the overlap scores are generally low for
all datasets. The Digg dataset has the highest overlap among
the datasets, but the overlap scores are only about 0.2. For
the Twitter Japan and Twitter Nepal datasets, the overlap
scores are 0.1-0.15 and less than 0.1, respectively. This indi-
cates that influential brokers cannot be characterized well by
traditional centrality measures, and a simple heuristic that
extracts nodes with high centrality measures (Chen et al.
2012; Lii et al. 2016) is not a good means of finding influ-
ential brokers. In contrast, overlaps between source spread-
ers and central nodes are relatively high for both the Twit-
ter Japan and Twitter Nepal datasets. This is consistent with
previous studies (Chen et al. 2012; Lii et al. 2016).

Summary of answers to RQ1 and RQ2: The overlap be-
tween brokers and source spreaders is generally small (0.18
for the Twitter Japan dataset and less than 0.01 for the Twit-
ter Nepal dataset), which suggests that brokers have different
characteristics from source spreaders. The overlaps between
central nodes and brokers are also small, whereas overlaps
with source spreaders are relatively large, which suggests
that using a single centrality measure is effective for identi-
fying source spreaders but not brokers.

Difference between Influential Brokers and Source
Spreaders

Furthermore, we investigate the difference between influen-
tial brokers and influential source spreaders. To character-
ize a social media user, we investigate the impact of their
retweet on the subsequent retweets of other users. To quan-
tify the impact of a retweet posted by user u on the sub-
sequent retweets, we define the average broker score per
retweet of user u as B, /r,, where r, is the number of
retweets posted by user u. Note that B,, is the broker score
of user u defined as Eq. (2). We compare the average bro-
ker score per retweet among influential brokers, influential
source spreaders, and all users. We also compare the average
number of retweets posted by influential brokers, influential
source spreaders, and all users. Figure 3 shows the results.
These results clearly show the difference between influen-
tial brokers and influential source spreaders. Figure 3 shows
that the average broker score per retweet of influential bro-
kers is considerably higher than that of influential source
spreaders. These results show that a tweet retweeted by an
influential broker tends to spread more widely than does a
tweet retweeted by an influential source spreader. Figure 3
also shows that the numbers of retweets posted by influen-
tial source spreaders tend to be either more than or compa-
rable to the numbers of retweets posted by ordinary users in
the Twitter datasets. In contrast, the average broker score
per retweet of influential source spreaders is lower than
that of ordinary users. This confirms that although influen-
tial source spreaders’ original tweets tend to spread widely,
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Figure 3: Comparison of average broker score per retweet
and the number of retweets posted by users among influ-
ential source spreaders, influential brokers, and all users. A
tweet retweeted by an influential broker tends to spread more
widely than does a tweet retweeted by an influential source
spreader.

tweets retweeted by them do not. Note that the causal re-
lationship between user’s involvement in a retweet cascade
and its future cascade size is still unclear from the data.
Namely, it is unclear whether (i) retweets posted by influ-
ential brokers actually influence other users’ retweets or (ii)
influential brokers just participate in the early stages of dif-
fusion of viral tweets. However, even though the causality is
unclear, it is true that influential brokers have unique char-
acteristics that differ from those of other users.

Predicting Brokers and Source Spreaders

Next, we examine the accuracy of predicting influential bro-
kers from the DeepGL embedding features and centrality
features (RQ3). Table 3 gives the precision, recall, and F;
scores of identifying the top-10% and top-5% influential
brokers. The training data were 20% of the nodes, and the
other 80% were used as test data. The results for the model
using only traditional centrality measures as features and the
model using the DeepGL embedding features are given.
These results show that the prediction models using the
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DeepGL embedding features achieve higher accuracy than
the models using only centrality features. Particularly for the
Twitter Japan and Twitter Nepal datasets, the F; scores of
the embedding model are respectively 0.11 and 0.17 higher
than those of the centrality model for the task of predict-
ing the top-5% brokers, which indicates the effectiveness of
the DeepGL embeddings for identifying influential brokers.
For the Digg dataset, the embedding features are less effec-
tive than for the Twitter datasets, but the embedding model
achieves higher accuracy than the centrality model.

For comparison, next we examine the effectiveness of
the DeepGL embeddings for identifying influential source
spreaders (Table 4). The training data were 20% of the
nodes, and the other 80% were used as test data. In con-
trast to the previous results, these results show that using the
DeepGL embeddings has little effect on identifying influ-
ential source spreaders. There is little difference in the pre-
diction accuracy of the models using only traditional cen-
trality measures and the models using the DeepGL embed-
dings. This indicates that the complex features obtained with
DeepGL are not effective for identifying source spreaders.
Moreover, combining Tables 3 and 4, we find that the accu-
racy of predicting influential brokers is comparable or even
higher than that of predicting influential source spreaders.

Note that the obtained accuracy scores are not sufficiently
high for practical use and should be improved in future re-
search. For instance, a recent study (Ye, Liu, and Pan 2021)
identified influential users in Sina Weibo with an F; score
of approximately 0.8 using state-of-the-art machine learn-
ing techniques such as node embeddings and graph neural
networks. Although our definition of influential users differs
from that used by Ye, Liu, and Pan (2021), their approaches
can still be applied to the task of broker identification. Our
results are useful as the first step toward identifying influen-
tial brokers, but it will be necessary to construct prediction
models with better accuracy and practicality.

Summary of answer to RQ3: The accuracy of predicting
the top-10% influential brokers using the DeepGL embed-
ding features is 0.35-0.68, which is comparable with the ac-
curacy of predicting influential source spreaders. Using node
embeddings as features is suggested to be a more effective
approach than using traditional centrality measures.

Feature Importance

Next, we investigate the important features that contribute to
the influencer prediction in the embedding models, and we
examine the characteristics of brokers and source spread-
ers. We obtained feature importance scores [known as the
Gini importance (Louppe et al. 2013)] from the constructed
models. Tables 5 and 6 give the top-five important features
based on the importance score in the embedding models for
the tasks of predicting the top-10% influential brokers and
source spreaders, respectively. Here, we show the impor-
tance of a model selected randomly from the 10 constructed
ones, but we confirmed that the important features were con-
sistent across the 10 models.

Table 5 shows that for the Twitter datasets, traditional cen-
trality measures are not included in the top-five features.



Predicting top-10% brokers

Twitter Japan Twitter Nepal Digg
model | precision recall F1 || precision recall F1 || precision recall F1
centrality 020 0.72 031 033 0.89 048 020 075 0.32
embedding 026 0.80 0.40 0.53 096 0.68 022 081 035

Predicting top-5% brokers

Twitter Japan Twitter Nepal Digg
model | precision recall F1 || precision recall F1 || precision recall F1
centrality 0.08 0.69 0.14 0.15 0.85 0.25 0.11  0.72 0.19
embedding 0.15 0.81 0.25 026 097 042 013 0.80 0.23

Table 3: Prediction accuracy for influential brokers. Models using DeepGL features achieve considerably higher accuracy than
do models using only centrality measures.

Predicting top-10% source spreaders

Twitter Japan Twitter Nepal
model | precision recall F1 || precision recall F1
centrality 028 0.80 042 0.1T  0.60 0.19
embedding 030 082 0.44 012  0.69 0.21

Predicting top-5% source spreaders

Twitter Japan Twitter Nepal
model | precision recall F1 || precision recall F1
centrality 0.17 0.80 0.28 0.09 059 0.15
embedding 019 0.83 0.31 009 071 0.16

Table 4: Prediction accuracy for influential source spread-
ers. The models using DeepGL features and those using only

centrality measures have similar accuracy levels.

Twitter Japan

relational function base feature importance
D oan © Prcan © Prcan © Prcan  Detweenness 2430.3
D can © Prican © Prnean k-core 1306.3

mean o mean o q)l_nax © él’:lax k-core 10617

mean © Pmean © Pmean © (I)I_nax k-core 960.5
(I)I_nean ° q>;ean © q>r_nean © (I)I_neau PageRank 8959

Twitter Nepal
D ean © Prcan © Prax PageRank 5469.8
D 0P ©Pocan © Prnax PageRank 4609.1
Do © Prican © Prax PageRank 4199.7
(I)mcan o ¢I:18,X © (bmcan © (Pr:lcan PageRank 3883'1
(I)mcan o q>mcan o QD’ICOH ° QIT]HX PageRank 2842'5
Digg

Dok ©Prcan © Prican betweenness 2813.2
- betweenness 1621.3
- PageRank 1029.7
Dk © Prican © Prncan betweenness 1025.7

;ax © (Pmeau © max degree 905'0

Table 5: Top-five importance scores of features in the em-
bedding models for broker prediction. Complex features us-
ing multiple relational feature operators have higher impor-
tance. As base features, betweenness, k-core, and PageRank

are used in the important features.

Twitter Japan

relational function base feature importance
- PageRank 12260.7
- degree 2213.9
D ean © Pocan © Prncan betweenness 1381.8

max © Pmean © <I):nax o <I):nea11 k-core 1058.5

um © Prcan © Prican closeness 853.1

Twitter Nepal

cbr_nca.n © ¢$6X © Qmoan © cbmca.n PageRank 268’5
q)mean © él_llax © q)mean © q)mean betweenness 220'7
- betweenness 213.2
él;lax © émcan © ém()élﬂ © QI;AEIX degree 202'1
- k-core 174.6

Table 6: Top-five importance scores of features in the em-
bedding models for source spreader prediction. In contrast
to the broker prediction models, centrality measures have
high importance in the source spreader prediction models.

Complex embedding features that use three or four feature
operators are shown to be effective features for identifying
influential brokers. Features obtained from [-feature opera-
tors incorporate features of nodes in [-hop neighbors. Thus,
features with a large number of feature operators incorporate
complex higher-order structural features of nodes. These re-
sults suggest that such complex features are useful for iden-
tifying influential brokers in Twitter networks. For the Digg
dataset, although the DeepGL embeddings are included in
the top-five features, traditional centrality measures are also
included. Moreover, the numbers of feature operators used
in the DeepGL features are smaller than those for the Twit-
ter datasets. For the Digg dataset, compared with the Twitter
datasets, the effectiveness of the DeepGL features is sug-
gested to be limited, which is consistent with the results of
the prediction experiments (Table 3).

In contrast to the broker prediction, Table 6 shows that tra-
ditional centrality measures are included as top-five impor-
tant features for the source spreader prediction tasks. Par-
ticularly for the Twitter Japan dataset, PageRank has the
highest importance score. The DeepGL embedding features
are also included in the top-five important features, but the
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importance scores are comparable or lower than traditional
centrality measures. These results confirm that for the source
spreader prediction tasks, the DeepGL embeddings are not
so effective, and traditional centrality measures are suffi-
cient.

These results also show that many features based on be-
tweenness centrality, PageRank, and k-core are included in
the top-ranked lists. However, effective features are differ-
ent for the tasks and datasets. From these results, we can-
not find universal characteristics of influential brokers and
source spreaders across different topics and user sets.

Transferability

The results in the previous subsection raise a new question
about the transferability of the constructed models. We ob-
tained quite different results for each different dataset, which
suggests that a prediction model learned from one dataset
may not be effective on other datasets. Therefore, we eval-
uate the prediction accuracy of a constructed model on one
dataset when applying it to other datasets. We train a model
using a source-domain dataset, then we evaluate its accu-
racy on a target-domain dataset; the training procedure is the
same as that in the previous subsection. Since each dimen-
sion of the feature vector must be consistent between the
training (i.e., source-domain) data and the test (i.e., target-
domain) data, we transfer the DeepGL node embeddings
from the source domain to the target domain when using the
DeepGL embedding model. DeepGL can produce consistent
node embedding vectors across different networks by using
its inductive learning framework (Rossi, Zhou, and Ahmed
2018b,a).

Table 7 compares the F; scores of the task of identify-
ing the top-10% influential brokers for different combina-
tions of source- and target-domain datasets, and Table 8 does
the same for the task of identifying the top-10% influential
source spreaders. These results show that when the source
and target domains are different, the F; scores are consid-
erably lower than when the source and target domains are
the same, suggesting that transferring a trained influencer
identification model to different domains is difficult. Our re-
sults also suggest that it is more difficult to transfer a broker
identification model than a source-spreader one. The mod-
els trained on different domains achieve only poor accuracy,
particularly in the broker identification task. As suggested
by the results in the previous subsection, traditional central-
ity measures are more useful for influential source-spreader
identification than for influential broker identification, which
might be the cause of the difference in transferability. Over-
all, the results suggest that models for identifying influencers
should be trained for each domain to achieve high prediction
accuracy.

Effects of Amount of Training Data

Finally, we investigate how the amount of training data af-
fects the prediction accuracy of the constructed models. Fig-
ure 4 shows F; scores of the embedding models for each
dataset while changing the fraction of training data. The task
here was predicting the top-10% influencers, and the source
and target domains were the same. Figure 4 shows that for
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Figure 4: Effects of amount of training data when predict-
ing top-10% influencers. Using 5% training data achieves
F1 scores that are similar to those with 50% training data.

all the datasets, the F; scores with 5% training data are al-
most the same as those with 50% training data. This suggests
that 5% training data are enough to learn the model of iden-
tifying influencers. The results suggest that a small amount
of training data is enough for obtaining influencer prediction
models. While results in the previous subsection suggest that
influencer identification models should be trained for each
domain, the results in this subsection suggest that the train-
ing cost for each dataset is not large, which is preferable in
practice.

Discussion
Implications

Our results show that the characteristics of influential bro-
kers are different from those of influential source spread-
ers, which suggests that algorithms for identifying source
spreaders cannot be used directly to identify brokers. Al-
though designing centrality measures has been effective for
identifying influential source spreaders (Lii et al. 2016; Li
et al. 2014b; Zhang et al. 2016), our results suggest that such
an approach is not effective for identifying brokers.

Our results show that the unique characteristics of influ-
ential brokers differ from those of influential source spread-
ers. Tweets retweeted by influential brokers tend to spread to
many users, whereas tweets retweeted by influential source
spreaders do not. Note that the causal relationship between
a broker’s involvement in a retweet cascade and its fu-
ture cascade size is unclear. One possible explanation is
that a retweet posted by an influential broker facilitates
other users’ retweets, which affects the future popularity of
the tweet. The other explanation is that influential brokers
retweet tweets that will be popular in the future in their
early stages of retweet diffusion. In both cases, we reason
that identifying influential brokers is useful. In the former
case, influential brokers would be useful in viral marketing:
a company could ask influential brokers to spread the tweets
posted by its accounts so that those tweets spread widely. In
the latter case, influential brokers would be useful for know-
ing which content will be popular in the future; also, iden-
tifying such users could help limit the spread of unwanted
information by asking them not to do so.

Our results also show that while a single centrality mea-
sure has poor predictive power in identifying influential bro-



Target Twitter Japan Twitter Nepal Digg
Source | Japan Nepal Digg H Japan Nepal Digg H Japan Nepal Digg
centrality | 0.31 0.03  0.18 0.06 048 0.18 0.10  0.02 0.32
embedding ‘ 040  0.05 0.17 H 0.11 0.68 0.14 H 0.17 0.05 035

Table 7: Comparison of F; scores of the models among different combinations of source and target domain datasets when

predicting top-10% brokers.

Target | Twitter Japan Twitter Nepal
Source ‘ Japan Nepal ‘ Japan Nepal
centrality | 0.42 0.22 0.18 0.19
embedding ‘ 044 031 H 0.19 021

Table 8: Comparison of F; scores of the models among dif-
ferent combinations of source and target domain datasets
when predicting top-10% source spreaders.

kers, considerable accuracy is achieved by combining mul-
tiple centrality measures and using node embeddings. This
indicates that human-crafted centrality features fail to cap-
ture the characteristics of influential brokers, but social net-
work structure contains important information for finding
influential brokers. We therefore expect that to further im-
prove the accuracy of predicting influential brokers, node
representation learning as used in this paper will be promis-
ing. Although we used DeepGL embeddings to obtain an
interpretable representation, as used in (Ye, Liu, and Pan
2021), other representation learning techniques including
graph neural networks (Kipf and Welling 2017; Wu et al.
2020) could be used to improve the prediction accuracy.

Limitations

This study has some limitations, which we discuss below
along with future research directions. First, the effective-
ness of other social network features for identifying bro-
kers should be investigated. There are many options for node
embedding techniques (Goyal and Ferrara 2018; Cui et al.
2018), and ones that are suitable for identifying brokers
should be explored in future research. While using between-
ness centrality alone is shown to be ineffective, we are inter-
ested in investigating the effectiveness of other techniques
for identifying structural hole spanners (Lou and Tang 2013;
Lin et al. 2021; Xu et al. 2017) for identifying influential
brokers.

Second, the prediction accuracy should be improved for
practical use. Although finding top influencers is a diffi-
cult task, we expect that there is room for improvement
in the prediction accuracy of the models. As suggested
in (Bhowmick et al. 2019), past log data of diffusion cas-
cades are expected to be a useful source. Therefore, a model
that incorporates both topological structure and diffusion
cascades is expected to achieve higher accuracy. Moreover,
using features of tweet contents such as linguistic features
obtained from language models and like counts is also ex-
pected to be useful, and analyzing specific cases in which
influential brokers play an important role (e.g., information
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diffusion regarding state-sponsored troll accounts (Zannet-
tou et al. 2019)) may also provide useful insights.

Third, the applicability of the trained model to other users
should be further investigated. Our results show that the
trained models in this paper cannot be applied to different
domains; this is not surprising because the three datasets dif-
fer considerably in terms of languages, cultures, topics, and
social media platforms, but we should investigate further the
transferability of our approach. For instance, a model trained
on the Twitter Japan dataset might be applicable to differ-
ent Japanese user sets. Also, we are interested in methods
for transferring a pre-trained model to other domains (Qiu
et al. 2020) for influencer identification, and clarifying a
method for constructing a transferable influencer identifica-
tion model is important future work.

Fourth, as discussed already, whether retweets posted by
influential brokers do actually influence the retweeting be-
haviors of other users remains unclear. Clarifying a causal
relation between one user’s retweet and other users’ retweets
is challenging but important future work, and a possible way
to tackle this problem would be to conduct a field experiment
to ask social media users to retweet some specific tweets,
and then compare their future diffusion patterns.

Conclusion

In this paper, we tackled the problem of identifying influen-
tial brokers who can spread other users’ messages to many
users on social media. Using three social media datasets,
we investigated the characteristics of influential brokers by
comparing them with influential source spreaders and cen-
tral nodes. Our results showed that most of the influen-
tial source spreaders are not influential brokers (and vice
versa). We also showed that overlap between central nodes
and influential brokers was less than 15% on the two Twit-
ter datasets, which suggests that a heuristic that extracts
highly central nodes as brokers is not a good approach.
We conducted experiments of identifying influential brokers
by using node embedding features obtained with DeepGL.
Our results showed that models using DeepGL embeddings
achieved F; scores of 0.35-0.68, which is a similar level
of accuracy to that of identifying influential source spread-
ers. Moreover, models using DeepGL embeddings achieved
higher accuracy than did those using only centrality mea-
sures, which indicates the effectiveness of DeepGL embed-
dings for identifying brokers. Our results showed the effec-
tiveness of using network topology for identifying influen-
tial brokers, as well as the limitations of using traditional
centrality measures.
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