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Abstract

Name-based gender classification has enabled hundreds of
otherwise infeasible scientific studies of gender. Yet, the lack
of standardization, reliance on paid services, understudied
limitations, and conceptual debates cast a shadow over many
applications. To address these problems we develop and eval-
uate an ensemble-based open-source method built on pub-
licly available data of empirical name-gender associations.
Our method integrates 36 distinct sources—spanning over
150 countries and more than a century—via a meta-learning
algorithm inspired by Cultural Consensus Theory (CCT). We
also construct a taxonomy with which names themselves can
be classified. We find that our method’s performance is com-
petitive with paid services and that our method, and oth-
ers, approach the upper limits of performance; we show that
conditioning estimates on additional metadata (e.g. cultural
context), further combining methods, or collecting additional
name-gender association data is unlikely to meaningfully im-
prove performance. This work definitively shows that name-
based gender classification can be a reliable part of scientific
research and provides a pair of tools, a classification method
and a taxonomy of names, that realize this potential.

Introduction
Name-based gender classification, the process of assign-
ing individuals gendered labels based on their names alone,
has been used in a diverse range of scientific studies, in-
cluding investigations of gender’s role in the bias of ju-
ries (Flanagan 2018), disparities in homeownership (Shiffer-
Sebba and Behrman 2020), the careers of US ambas-
sadors (Arias and Smith 2018), participation in Alaskan fish-
eries (Szymkowiak 2020), behavior on social media (Smith
and Graham 2019; Jain and Jain 2017), representation in en-
cyclopedias (Reagle and Rhue 2011), and how the COVID-
19 pandemic has disproportionately impacted women sci-
entists (Vincent-Lamarre, Sugimoto, and Larivière 2020;
Wehner, Li, and Nead 2020; Squazzoni et al. 2020). In
studies of gender and academia, past work using name-
based gender classification has investigated differing pub-
lication rates (Fox, Ritchey, and Paine 2018; Thomas et al.
2019), patterns of collaboration (Ouyang, Harrington, and
Rodriguez 2019; Bravo-Hermsdorff et al. 2019), peer re-
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view (Squazzoni et al. 2021; Williams II et al. 2018), cita-
tion practices (Mohammad 2020; Dworkin et al. 2020), and
broader issues of representation (James, Chisnall, and Plank
2019; Stathoulopoulos and Mateos-Garcia 2019), with sam-
ple sizes ranging from only a few thousand (Nittrouer et al.
2018; Chari and Goldsmith-Pinkham 2017; Vallence, Hin-
der, and Fujiyama 2019) to millions (West et al. 2013; Lar-
ivière et al. 2013; Sugimoto et al. 2019; Huang et al. 2020).

Among past studies using name-based gender classifica-
tion tools, the majority have relied upon paid services, which
often provide an API that takes as input a name and returns
either a gender-binary label or a label along with an uncer-
tainty estimate. The use of such paid services is problematic
in three distinct ways. First, paid services lack transparency
about their methods, data, and assumptions. As such, it is
difficult to interpret their classifications and scalar confi-
dence scores, or audit and extend these services. Second,
paid services are oriented towards applications in industry,
not towards academic research, resulting in an implicit con-
flict from studying topics like representation and bias with
tools designed for targeted advertising that tends to exploit
or reaffirm those biases. Third, research using paid services
would incur unnecessary costs, were free alternatives avail-
able.

It follows that there is a critical need for open-source,
open-data and freely available methods which give re-
searchers a greater degree of control over and understanding
of their work. To meet this need, one frequently attempted
solution is to use publicly available datasets of names and
gender or sex associations, such as the U.S. Social Security
Administration database (Dworkin et al. 2020; West et al.
2013; Szymkowiak 2020), to establish empirical associa-
tions that enable name-based gender classification. Unfor-
tunately, the literature provides no standardized account of
how to best make use of such data resulting in ad hoc crite-
ria with respect to the inclusion or exclusion of both names
and countries. Further, although a number of publicly avail-
able datasets exist and have been used in isolation, there
is currently no open-source method whose performance—
measured by the fraction of individuals whose name-based
gender classifications match given labels collected via man-
ual annotations or other means—is competitive with paid
services (Santamarı́a and Mihaljević 2018; Bérubé et al.
2020). Past attempts to use publicly available data, although
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creative, have made use of at most a few datasets and as a re-
sult could cause unforeseen issues for analyses (e.g. publicly
available data from the United States could suggest a name
is gendered female when in a global context the name is gen-
dered male, as in the case of Jan) (Cheong, Leins, and Cogh-
lan 2021). This risk has stimulated work that seeks to iden-
tify names that may pose challenges to classifiers (Blevins
and Mullen 2015; Smith, Singh, and Torvik 2013; Torvik
and Agarwal 2016). However, lacking a rich enough set of
public data, our general understanding of name-gender as-
sociations remains underdeveloped, and much confusion re-
mains around the severity of problems that are thought to
arise when such associations are used to classify individu-
als.

To address these issues, we present a collection of pub-
licly available name-gender association data in a standard-
ized format, and use it to develop an open-source and open-
data method for classification that is comparable in perfor-
mance to paid services. We then use the same data to audit
the performance of our own and others’ methods, shedding
light on when classifiers fail, why they fail, and what, if any-
thing, can be done in these instances to further improve per-
formance. Finally, we interrogate broader issues intrinsic to
name-based gender classification, including how classifica-
tion errors are unevenly distributed across groups.

Ethics
It is important to acknowledge that name-based gender clas-
sification is intrinsically fraught. Broadly, there exists a ten-
sion between the potential to identify important inequalities
by associating names and genders at a population scale (e.g.
identifying trends in the underrepresentation of women in
academic hiring (Wapman et al. 2022)) and the potential to
misgender people at an individual scale (Lockhart 2022),
either by classifying a man as a woman (or vice versa) or
by classifying a person as a man or woman when neither is
appropriate. Such misgendering may have material impacts,
e.g., if a company changes the way it interacts with someone
on the basis of the classification of that person’s name. As a
consequence, the literature has engaged with the question of
whether researchers ought to use name-based gender classi-
fication at all, with no clear consensus but compelling argu-
ments supporting both conclusions (Mullen 2021; Cheong,
Leins, and Coghlan 2021).

Our position is that, if one does intend to use a name-
based gender classification method, then that method should
be open source, open data, not-for-profit, principled, and
transparent. It should further have a clearly articulated con-
nection between methodology and principles. And, it should
be amenable to extension to incorporate new data sources or
specialization to particular cultures. Most importantly, the
approach introduced in the following section acknowledges
that the association between a name and a gender is the
product of a cultural consensus—a consensus which may
be stronger or weaker, may vary between cultures, which
may evolve over time, and which we may rigorously esti-
mate from empirical data.

To ensure our language here reflects this intent, we have
taken care to root our computational work in a solid soci-

ological view, which is, in briefest form: names reify fic-
tions about how one’s social position is derivative of real
(or perceived) sex-related characteristics (Haslanger 2000).
That is, names are a way of gendering, of projecting so-
cial life onto something thought to be more natural and thus
definitive (Scott 1986; Anderson 1995). To capture the in-
coherence of the supposed “sex/gender” dichotomy (Dem-
broff 2018) and to convey that naming or classifying is al-
ways an active process (D’ignazio and Klein 2020), we use
the somewhat strange locution that an individual or a name
is “gendered female” or “gendered male” (Hu and Kohler-
Hausmann 2020).

Methods
A Cultural Consensus Model of Name-Gender
Associations
The approach to name-based gender classification intro-
duced in this section is motivated by three observations.
First, potential inaccuracies in source data could bias con-
sensus estimates of how names are gendered. Therefore, the
model we use to combine source data and estimate a con-
sensus should discover which sources are reliable and allow
more reliable sources to more heavily influence the consen-
sus. Second, differences between data sources may not only
be due to varying degrees of accuracy, but are potentially at-
tributable to how a name’s gendered association varies over
time or between countries. A model of how names are gen-
dered should be consistent with this possibility and allow
for some means of specifying context to form more nuanced
estimates. Finally, how a name is gendered, even consider-
ing a single time and place, is a culturally constructed belief
that emerges from individual views and actions, not a fixed
feature of the natural world. This fact introduces a strong
conceptual and practical constraint: our model must func-
tion in the absence of the kind of ground truth data used
to train supervised meta-learning algorithms, such as stack-
ing (Wolpert 1992).

To develop a name-based gender classification scheme
consistent with the above observations, we leverage Cultural
Consensus Theory (CCT), a method with origins in anthro-
pology (Romney, Weller, and Batchelder 1986). CCT was
first used to estimate a culture’s consensus beliefs on a set of
binary questions from individual sources’ responses. Rather
than merely averaging sources’ responses, CCT uses a con-
textual estimate of each source’s “competence” to weight
responses and better estimate the consensus. And, CCT uses
each source’s aggregate agreement with the current con-
sensus to estimate that source’s competence. Thus, CCT
jointly infers both a culturally constructed consensus and
each source’s agreement with that consensus (i.e. their com-
petence).

Here we adapt CCT to estimate how and how strongly
each name is gendered, based on the cultural associations
reflected in a corpus of reference data. Our twin goals are to
(i) form a consensus estimate ym of how each name, indexed
by m, is gendered, while also (ii) estimating the competence
cn of each source, indexed by n. To do so, we directly in-
corporate the report xn,m of how a name m is gendered by
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source n. Without loss of generality, we let xn,m take on a
value of 1 when source n reports name m as gendered fe-
male and 0 when gendered male. CCT makes the mathemat-
ical assumption that a single cultural consensus exists, i.e.
that ym is either 0 or 1, and infers a related quantity zm, the
probability that ym = 1, given the data and each source’s
competence. In this way, zm provides a probabilistic mea-
sure of the strength of each name-gender cultural associa-
tion, based on the available data; when names do not have
a strongly gendered cultural consensus, zm will be closer to
0.5.

The mathematical derivation of CCT, originally intro-
duced in (Romney, Weller, and Batchelder 1986), begins by
using Bayes’ theorem with an uninformative prior to write
down the probability that name m is gendered female, given
the data sources and their competences,

P (ym = 1 | x, c) ∝
N∏

n=1

P (xn,m | ym = 1, cn) . (1)

Note that, were the data sources (x) or the competences
of those sources (c) to change, then the estimated consen-
sus would also change. The next step in the derivation is
to observe that P (xn,m | ym = 1, cn) is the likelihood
of observing data xn,m, given a consensus ym = 1 and
a competence cn. By explicitly defining competence cn to
be the probability that source n correctly reports the con-
sensus, independent of the name, we can write P (xn,m |
ym = 1, cn) = xn,mcn + (1 − xn,m)(1 − cn). In other
words, if the consensus is ym = 1, the likelihood that a data
source reports 1 is cn and the likelihood it reports 0 is 1−cn.
Plugging this likelihood into Eq. (1), and using the notation
zm ≡ P (ym = 1 | x, c), we get

zm =

N∏
n=1

[xn,mcn + (1− xn,m)(1− cn)]

/
( N∏

n=1

[xn,mcn + (1− xn,m)(1− cn)] +

N∏
n=1

[xn,m(1− cn) + (1− xn,m)cn]

)
.

(2)

While Eq. (2) relates our name-gender estimate zm to the
data, it also depends explicitly on knowing the competences
c. In turn, the competence of each source depends on its
responses x and the probability that the consensus is either 1
(zm) or 0 (1− zm) across all the queried names. This allows
us to write the competence cn of source n as that source’s
average agreement with the consensus zm,

cn =
1

M

M∑
m=1

xn,mzm + (1− xn,m)(1− zm) . (3)

Taken together, Eqs. (2) and (3) recursively relate both
the consensus and the competencies to each other, through
the data. To fit this model to data (and thus estimate how
each name is gendered), we use an Expectation Maximiza-
tion (EM) algorithm: during the “expectation” step, name-

gender associations z are updated using the current esti-
mates of each source’s competence c (Eq. (2)). Then, dur-
ing the “maximization” step, source competences c are up-
dated using the current estimates of how names are gen-
dered z (Eq. (3)). These two steps are repeated until con-
vergence, when neither z nor c changes, and the algorithm
exits. Initially, all competences are assumed to be 0.9, but al-
gorithm outputs do not depend on a particular choice of this
value, provided that it is greater than 0.5. In this fashion our
CCT approach provides reliable estimates of both consensus
name-gender associations and source quality, without refer-
ence to any “ground truth” data. An implementation of this
CCT model and EM algorithm can be found with the code
accompanying this paper (Van Buskirk 2022b).

Gendered Name Data
The CCT model for cultural name-based gender classifica-
tion estimates its consensus directly from data. As a conse-
quence, the broader the data on which it relies, the broader
the consensus it estimates, and the larger the set of names for
which it can compute a consensus at all. To support these
needs, we collected and organized data spanning over 150
countries and more than a century from 36 publicly available
sources with the goal of assembling a broad and globally
representative dataset of names and their gendered associa-
tions. Sources include the U.S. Social Security Administra-
tion’s record of baby names, a database of Olympic athletes,
and WikiData, among others. In total our compiled refer-
ence dataset captures gendered associations as well as global
and temporal changes in naming practices for over 500,000
unique names in a variety of languages and writing systems.

Cleaned, curated versions of each source’s data are avail-
able alongside source data in its raw form, documentation
on data processing, as well as a summary table of all source
names and URLs (Van Buskirk 2022a). Source datasets vary
by provenance (e.g. government website, academic publica-
tions) and how data were originally formatted (e.g. counts of
individuals distributed across numerous spreadsheets, a dic-
tionary with a single entry per name). To provide a clear and
unified representation across datasets, we customized a set
of functions and scripts for each source which, (i) extracted
the proper portion of each name, (ii) standardized the pre-
sentation of names, countries, and gender associations, and
(iii) aggregated data across time, countries, and sources in
multiple ways. Making data open source in these ways not
only provides researchers essential contextual information
but, importantly, because our CCT classifier infers a con-
sensus over the sources provided, researchers may broaden
or refine the consensus by further expanding or restricting
the data used. In contrast to paid services, our organization
and methodology encourages, rather than hinders, this kind
of adjustment and extension via the incorporation of newly
found sources or updating of an existing source.

In addition to the above we provide an open source Python
package for researchers to conduct name-based gender clas-
sification in scientific contexts, requiring only the gendered
portion of a full name as input (i.e. the first, middle, or last
name depending on the culture) (Van Buskirk 2022c). We
make two important kinds of adjustments to source data in
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building this tool. First, we drop diacritics, clip multipart
names, and romanize where relevant. We do the same pro-
cessing for names in the sample study to enable smooth and
consistent matching between query and reference data. Sec-
ond, we attempt to account for the oversampling of either
males or females that we see in some sources (e.g. Wiki-
data and the database of Olympic athletes). By upweighting
the underrepresented group (a kind of post-stratification) we
ensure our classifications do not perpetuate a known bias
present in the empirical data. Together, the resources we pro-
vide allow researchers to deeply engage with name-gender
association data or quickly make classifications depending
on the needs of their specific research project.

Validation Data
We evaluate our CCT classifier using three validation
datasets. The first is a dataset of 5,778 academic authors
compiled by Santamarı́a and Mihaljevı́c circa 2018 (Santa-
marı́a and Mihaljević 2018), curated from various bibliomet-
ric studies as a means by which to evaluate “name-to-gender
inference” services. The majority of this dataset’s “human-
annotated author-gender data” came from inspecting online
personal information or photographs associated with each
author. The second is a dataset compiled circa 2012 from the
study of 10,464 researchers in the field of Natural Language
Processing (Vogel and Jurafsky 2012). The authors of this
study “labeled the gender of authors. . . mostly manually” via
the use of personal cognizance, photos, and name lists. The
third is a dataset comprising 7,188 U.S. academics whose
responses to the question “What is your gender?” were col-
lected as part of a survey of academic faculty (Morgan et al.
2022). The vast majority of respondents identified as either
“Female” or “Male”, while those who selected “Other iden-
tity” or “Prefer not to say” made up less than 1% of respon-
dents and are not included in this validation dataset. The
Santamarı́a and Vogel datasets are included among the 36
public sources; the survey data collected by Morgan et al. is
not publicly available due to IRB agreements. To avoid vali-
dating our algorithm on data used in training, we employ the
standard practice of splitting our data into disjoint sets for
training and subsequent validation.

A Taxonomy of Names
To complement the algorithm and data of this study, we also
introduce a taxonomy of names, designed with name-based
gender classification in mind (Fig. 1). This taxonomy divides
the names themselves into categories, based on empirically
measurable properties including how common the name is,
how strongly it is gendered, and whether or not these prop-
erties vary with temporal or cultural context. This taxonomy
therefore has dual goals, enabling (i) an understanding of
the idiosyncratic makeup and challenges of particular names
(and therefore sets of names), and (ii) an ability to diagnose
the quality of name-based gender classification algorithms
by evaluating their performance across each leaf of the tax-
onomy.

To categorize a name, our proposed taxonomy draws on
the 36 datasets described above, or any extension or refine-
ment thereof, which we hereafter refer to simply as reference

robin
alexis

andrea

akira
joan

venkatesa

peter

jean

xiaodan
toru

lin-shan

kim
leslie motoyoshi

mary
david

rieks

ielka

No Data

Informative 
Names

Gendered  
high coverage

Gendered  
low coverage

Uninformative

Names

Weakly 
Gendered

Gendered 
Given Country

Names

Conditionally 
Gendered

Gendered 
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Figure 1: A taxonomy constructed to hierarchically clas-
sify each name in a sample based on how much data we
have on the name (e.g. no data, low coverage), how strongly
the name is gendered (e.g. uninformative, informative), and
whether or not the properties of the name change over
time or across countries (e.g. weakly gendered, condition-
ally gendered).

data. First, if a name is not observed in the reference data,
we set it aside. Otherwise, we evaluate whether a name is
informative according to the reference data: a name is infor-
mative if we have low uncertainty about the gendered group
to which we ought to assign individuals with that name. We
formalize informativeness and uncertainty by computing the
entropy of the empirical distribution over gendered groups
for each name in the reference data. We define an informa-
tive name as having an entropy of at most 0.47 bits, equiv-
alent to requiring that our reference data suggests there is a
probability greater than or equal to 0.9 that someone with
the name ought to be classified as either gendered male or
gendered female.

Informative names are further divided into those with low
and high coverage. Here, high coverage names are those ob-
served in our reference data at least m times, with m = 10.
In our reference data, for instance, Alexander is observed
∼ 106 times, Madelyn ∼ 105, Abdellah ∼ 104, Garreth
∼ 103 and Finneus ∼ 102. Uninformative names are di-
vided into two categories, motivated by the observation that
a name may be uninformative because the consensus name-
gender association is either (i) weak in general, or (ii) strong,
but varying over time (Blevins and Mullen 2015; Smith,
Singh, and Torvik 2013) or across countries (Vogel and
Jurafsky 2012; Torvik and Agarwal 2016). We formalize
this difference by computing the conditional entropy of the
name, conditioned on country or decade of origin. If both
the country-conditional entropy and the decade-conditional
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entropy remain above 0.47 bits, the name is classified as
weakly gendered. However, if either of the conditional en-
tropies is below 0.47 bits, the name is classified as condi-
tionally gendered–either gendered given decade or gendered
given country. Names falling into both categories of con-
ditionally gendered names are classified as gendered given
country. Names that would be conditionally gendered given
both country and decade, but not given country alone or
given decade alone, are categorized as weakly gendered.

As a technical note, the computation of a conditional en-
tropy takes the form of a weighted average, in which the
weights require the incorporation of the probability of ob-
serving each piece of conditional data. Here, such calcula-
tions must incorporate the probability of a particular coun-
try or decade, given a name: P (c | name). To calculate
this probability, we employ Bayes’ rule, P (c | name) ∝
P (name | c) P (c). While P (name | c) can be computed
directly from source data, P (c) represents a prior distribu-
tion over the origins of names more broadly, requiring one
to make a choice between an uninformative prior, P (c) =
const, which aims to represent no a priori belief about coun-
try of origin, and an informative prior, P (c), which seeks
to reflect the relative representation of countries in a sam-
ple. To construct an informative prior, one could potentially
use global data about population sizes over geographies and
history, or one could alternatively incorporate beliefs about
the origins of the study population at hand. The results that
follow remain agnostic, however, and all taxonomic catego-
rizations use an uninformative prior.

Comparisons to Paid Services

To further contextualize our method’s performance, we com-
pare the classifications our method makes for the individuals
in the Santamarı́a 2018 dataset with those of four paid ser-
vices: NamSor, Gender API, Onograph, and genderize.io.
NamSor, Gender API, and genderize.io were previously
evaluated on this dataset and we make use of the classifica-
tions cached from that analysis (Santamarı́a and Mihaljević
2018). In addition, we queried these three services in Febru-
ary, 2021, for those individuals which were not classified
when queried in 2018. This resulted in further classifications
for 1,016 instances of a total of 1,252 previously unclassified
individuals. We are unaware of any published evaluation of
the service Onograph and queried it for all individuals in the
Santamarı́a 2018 dataset.

The purpose of these comparisons is not to assert the dom-
inance of a single method, reveal the fine margins that dis-
tinguish one service from another or introduce a new state-
of-the-art (SOTA), but rather to show how close an open-
source method built on publicly available data can get to
SOTA performance. We selected these paid services as our
comparison set because they represent the SOTA. Although
some have previously been evaluated, our reevaluation re-
flects changes in these services over time. Other previously
evaluated services are based on static public datasets, mak-
ing them invariant over time, or lag behind SOTA methods,
such as gender-guesser (Santamarı́a and Mihaljević 2018).

Results

The analyses that follow utilize our proposed taxonomy of
names to demonstrate three key findings. We first show
that the vast majority of names in our validation datasets
are common and strongly gendered, and that the taxonomic
composition of datasets varies only somewhat. We then
show that variation in classifier performance is largely ex-
plained by the composition of the dataset in question—in
particular its proportions of uninformative and unclassified
names. In this context, we show finally that more nuanced
treatment of those most challenging names provides only
marginal improvement, due to existing methods being al-
ready well calibrated to empirical data.

A Taxonomy-informed Assessment of Datasets

Common patterns emerge when different datasets are sorted
into the leaves of our taxonomy (Fig. 1). First, the vast ma-
jority of individuals’ names are gendered with high cover-
age. These individuals, with names such as Anita, Jose, and
Fatima, make up 76.2%, 83.2%, and 88.0% of the Santa-
marı́a, Vogel, and Morgan validation datasets, respectively
(Fig. 2A). As a consequence, most methods for name-based
gender classification will perform well for most people, be-
cause most people have names with strong name-gender cul-
tural associations.

The second largest group across all datasets is made of
those individuals with conditionally gendered names, such
as Andrea, Toru, and Alexis. Making up 9.1%, 6.0%, and
5.2% of the samples, if additional data, such as year of birth
or country of origin, were available one could potentially im-
prove performance on these names by a meaningful margin,
and by extension improve overall performance. We explore
this possibility later.

Those with weakly gendered names, such as Akira,
Leslie, and Kim, constitute 8.0%, 4.8%, and 4.0% of in-
dividuals of the Santamarı́a, Vogel, and Morgan validation
datasets, respectively (Fig. 2A). This means that regardless
of methodology there will remain a nontrivial portion of in-
dividuals with names that resist efforts to construct gendered
groups. In other words, all methods must confront the fact
that some names are simply not strongly gendered, and indi-
viduals with these names will therefore be classified incor-
rectly at the Bayes error rate—a predicted 33% of the time
for Akiras and Kims, 42% of the time for Leslies.

While we have emphasized similarities in the taxonomic
composition of these datasets, it is also true that there are
twice as many individuals with weakly gendered names in
the Santamarı́a dataset than in the Morgan dataset (8.0% vs
4.0%), and almost 4% more individuals with conditionally
gendered names (9.1% vs 5.2%). As a result, in the absence
of additional information on which to condition classifica-
tions, the Santamarı́a dataset presents all potential name-
based gender classification methods with a larger set of indi-
viduals for whom the error rate is expected to be substantial.
Indeed, this expectation is borne out unambiguously in our
subsequent analyses.
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Figure 2: Understanding sample composition and classifier
performance through the lens of a taxonomy of names. (A)
Percentage of individuals in each of the three datasets used
for validation that have names in each of five exclusive and
comprehensive leaves of the taxonomy. (B) Percentage of
individuals classified by our CCT Classifier assigned a class
that matches given labels, broken out by taxonomic leaf.

A Taxonomy-informed Assessment of Classifiers
Through the lens of our taxonomy, the performance of any
method will depend on two factors: the relative proportions
of those categories in the data under investigation—explored
in the previous section—and the method’s performance in
each of those categories. In other words, overall perfor-
mance can be decomposed into a weighted average of per-
formances across taxonomic categories. Here, we confirm
that the performance of our CCT classifier is greatly deter-
mined by the taxonomic categories of the names classified.
Thus, while our method’s classifications match given labels
around 96% of the time, we next show that this good over-
all performance, and variation therein, is driven by the com-
bined consequences of dataset composition and per-category
performance.

First, across the three validation datasets, CCT’s corre-
spondence (the fraction of classifications made that match
target labels) is consistently highest for names gendered
with high coverage (∼99%), moderate for names gendered
with low coverage (∼93%), and poor for weakly gendered
names (∼70%) (Fig. 2B). In contrast, correspondence var-
ied for conditionally gendered names, ranging from 85%
on the Santamarı́a dataset to 78% on the Morgan dataset—
a 7 percentage point difference. While names in this cat-
egory are gendered when estimates are conditioned on a
particular decade and/or country, here our CCT classifier

provides unconditioned classifications. As a consequence,
our classifier (and, by extension, any unconditioned clas-
sifier) will perform well for such names when a particular
dataset aligns well with the global consensus (e.g., Santa-
marı́a), and poorly when it does not (e.g., Morgan). To il-
lustrate this point, we note that the common conditionally
gendered names Jean and Robin are gendered male in the
global consensus, CCT classifications, and in the Santamarı́a
dataset, but not in the Morgan dataset. If these two names
are removed from consideration, the difference in CCT’s
correspondence on conditionally gendered names between
the Santamarı́a and Morgan datasets drops from 7 percent-
age points to just 3. In short, correspondence was consistent
across datasets for three taxonomic categories, and inconsis-
tent for the fourth category which was context dependent by
design.

Second, the coverage of our method—the proportion of
names for which any classification is made at all—also af-
fects overall performance. Our CCT classifier does not clas-
sify 3.0%, 3.0%, and 1.1% of the three datasets respec-
tively, almost always because the names in question are ab-
sent from the reference data (No Data; Fig. 1), and in rare
instances because CCT’s estimates were not numerically
different from 0.5. In fact, variation in the proportions of
weakly gendered and no-data names explains 80% of varia-
tion in overall performance.

Taxonomic categories also explain the performance of
other classifiers beyond our own. To demonstrate this, we
evaluated four paid services (see Methods) on the Santa-
marı́a validation dataset and found that all services perform
similarly with overall correspondence ranging from 95.4%
to 93.8% (Fig. 3B). As with our CCT classifier, the degree of
correspondence with validation labels remained well char-
acterized by taxonomic category, with all five methods pro-
ducing non-overlapping taxonomic bands of performance
(Fig. 3A). This broad consistency across methods suggests
that the reliability of classifications may be predicted in ad-
vance, based solely on how a target dataset is distributed
across the leaves of our taxonomy.

Across methods, we observed two clear inverse corre-
lations that help explain variation in performance. First,
methods attempting more classifications decreased in over-
all correspondence, ranging from CCT classifying only
97.0% of names and achieving 95.4% correspondence, to
Namsor classifying 100% of names and achieving only
93.8% correspondence (Fig. 3B). Second, methods attempt-
ing more classifications of names falling into the no-data cat-
egory decreased in correspondence for those names, rang-
ing from genderize.io classifying only 52.1% of names and
achievieng 87.1% correspondence to Namsor classifying
100% of names and achieving 71.8% correspondence. By
definition, these names are rare, occurring zero times in the
large corpus we assembled. Thus, marginal improvements in
coverage—the set of names for which a method will return
any classification whatsoever—come at the cost of lower
correspondence with validation labels.
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Figure 3: Evaluating performance of our CCT classifier and four paid services on the Santamarı́a 2018 validation dataset. (A)
Percentage of classifications made by each classifier which match given labels, broken out by taxonomic leaf. (B, C) How
performance correlates with the percentage of individuals a classifier classifies, the variation of which is greatly shaped by the
number of individuals with names for which a classifier does not have data. (D) Performance of each classifier on subsets of
individuals grouped based on how strongly their names are gendered. Those with the name Jean are held out of the subset to
which they would be assigned.

Model Calibration and Limits to Classification

Our findings so far suggest that methods may be generally
well calibrated, performing near the Bayes error rate for
most names. To more directly show the calibration of the
methods examined, we stratified classifier correspondence
on the Santamarı́a data into five bands by the degree to which
names are gendered. In the absence of ground truth, these
degrees were measured by our reference data. No method
does substantially better or worse than the reference data
suggest is possible (Fig. 3D).

Apparent deviations from calibration reflect the idiosyn-
cratic composition of the validation data. For example, our
method, and all others, provide classifications for individu-
als named Jean matching approximately 90% of validation
labels, a percentage suggesting that Jean might be a moder-
ately to strongly gendered name. However, our global cor-
pus places Jean amongst the most weakly gendered names
(Fig. 3D). This discrepancy from calibration is explained
by recognizing that Jean is a conditionally gendered name,

exhibiting variation in usage across countries. Figure 3D is
therefore presented with Jean separated out of the least gen-
dered band, illustrating the risks of validation on small, id-
iosyncratic samples and reinforcing the broader trend of cal-
ibration.

Conditioning Estimates on Country or Decade
Data

Names like Jean, and the idiosyncrasies of the Santamarı́a
dataset, suggest an appealing path to improved performance
by using additional information to correctly classify names
in the conditionally gendered taxonomic category. For in-
stance, could performance be improved simply by knowing
that most Jeans in the Santamarı́a dataset are French (and
thus, more likely gendered male) rather than American (and
thus, more likely gendered female)? Torvik et al. explored
such an idea with a paired gender and ethnicity classifica-
tion method, “Genni + Ethnea”, which makes use of first
and last names to condition gender classifications on eth-
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Figure 4: Comparison of our (unconditioned) CCT classifier
and classifiers that use ethnicity data to localize classifica-
tions on the subset of names our taxonomy suggests are gen-
dered given country. The change in the number of classifi-
cations that match given labels when conditioned classifica-
tions are used in place of CCT shows that conditioning does
not meaningfully improve performance. The observed dif-
ferences in the change in matching classifications is shown
along with 95% bootstrapped confidence intervals.

nicity (Torvik and Agarwal 2016). However, the extent to
which this sophistication matters in practice has remained
understudied.

To directly explore the value of conditioning our CCT
method’s classifications, we reprocessed names that are con-
ditionally gendered given country data, which make up al-
most all of the conditionally gendered names in our three
validation datasets (98%, 97%, 97%). We first collected
a predicted ethnicity from Ethnea for each first-last name
pair (Torvik and Agarwal 2016), and then converted each
ethnicity to a country or set of countries. Finally, we recom-
puted classifications for those names using only the country-
specific reference data for each name, which we compared
to the classifications made by the global consensus. Ethnea
also returns a “gender prediction” in some cases (via Genni),
which we retained for additional comparison.

Perhaps surprisingly, conditioning on country data did not
consistently improve performance on the names in the tax-
onomic category of conditionally gendered given country.
Instead, bootstrapped confidence intervals of net change in
performance show that there was no significant difference
between the unconditioned CCT and country-conditioned
CCT methods for the Santamarı́a and Morgan datasets, and
significant decrease in performance for the Vogel dataset
(Fig. 4). We observed similarly mixed results when compar-
ing to Ethnea-Genni directly, with no significant change in
performance for the Santamarı́a dataset, significantly worse
performance for the Vogel dataset, and significantly bet-
ter performance for the Morgan dataset (Fig. 4). These re-
sults may be driven by the fact that conditioning on the
Ethnea-inferred country rarely leads to a different classi-
fication from that made by our CCT classifier: taking all
three validation sets into consideration, Ethnea’s inferences
led to changes in classification in only 12% of cases when
country-conditioned CCT estimates were used, and in only
8% of cases when using Ethnea-Genni directly. These low

Figure 5: Comparison of Namsor with a simple “Guess
Male” heuristic on the subset of names for which we have no
data. The change in the number of classifications that match
given labels when Namsor is used in place of guessing male
shows that Namsor does not meaningfully improve perfor-
mance. The observed differences in the change in matching
classifications is shown along with 95% bootstrapped confi-
dence intervals.

percentages place an upper bound on the potential impact—
positive or negative—of attempts to improve name-based
gender classification via conditioning on country.

Attempting to Classify “No Data” Names
Our observations so far suggest that the classifications made
by our method and others are unlikely to be improved sub-
stantially by further calibration (Fig. 3D) or by conditioning
estimates (Fig. 4), leaving open only one further potential
area of improvement: accurate classification in cases where
no classifications are currently made. For our method, this
would mean classifying individuals with names for which
we have no data, i.e., names falling into the No Data tax-
onomic category. While collecting empirical data on these
names is the obvious approach to enabling such classifica-
tions, we know of no additional, distinct, diverse, publicly
available datasets not already included in our corpus. As an
alternative, we therefore investigated the value of submitting
all no-data names to Namsor, the paid service that returns
classifications for more no-data names in the Santamarı́a val-
idation dataset than any other paid service.

Among the no-data names of the Santamarı́a, Vogel,
and Morgan validation datasets, Namsor’s classifications
matched validation labels 71.8%, 76.8%, and 76.1% of
the time. Namsor’s average confidence measure for no-data
names was only 0.36, compared to 0.9 for all other names.
Together, these indicate that rare names are, indeed, more
difficult to classify correctly. Nevertheless, the percentages
of correspondence with validation labels above suggest that,
perhaps, sending no-data names to Namsor would be a net
improvement for overall accuracy. After all, one might ar-
gue that providing some classification is superior to provid-
ing none, as long as that classification is superior to simply
guessing.

We now throw cold water on this line of thinking by show-
ing through experiment that, unfortunately, using Namsor to
classify no-data names is comparable to simply guessing.
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Figure 6: Comparison of performance of our CCT classi-
fier and a simple averaging across sources. The change in
the number of classifications that match given labels when
averaging is used in place of CCT shows that CCT does
not meaningfully improve performance. The observed dif-
ferences in the change in matching classifications is shown
along with 95% bootstrapped confidence intervals.

For the same 163, 293, and 71 no-data names in the San-
tamarı́a, Vogel, and Morgan datasets, respectively, we com-
pared Namsor’s performance in label correspondence to a
guess-majority-class heuristic; for these three datasets, the
majority class was gendered male. Namsor’s performance
was worse than simply guessing male for the Santamarı́a and
Vogel datasets, and better for the Morgan dataset, with boot-
strapped 95% confidence intervals finding the former two
differences not significant and the latter marginally signifi-
cant (Fig. 5). In short, because Namsor performs similarly
to guessing the majority class and other paid services clas-
sify fewer no-data names than Namsor while still failing to
achieve reasonable levels of performance (Fig. 3C), we hes-
itate to recommend the use of a paid service to process the
no-data taxonomic category.

Averaging and Cultural Consensus Theory
The results above suggest that all four paid services and our
CCT classifier are well calibrated, and that additional im-
provements for conditionally gendered and no-data names
will be difficult without additional data beyond first and last
names alone. Indeed, the empirical data we have collected
already enable one to approach the upper limit of perfor-
mance. This observation led us to ask whether a simpler
method that makes even more direct use of the empirical
data could offer similar performance to that provided by our
computationally sophisticated CCT classifier.

To explore this possibility, we compared the performance
of CCT, a sophisticated model of consensus and source com-
petence, to a simple average consensus, a basic model that
presumes equal competence across all 36 reference sources.
Again using bootstrapped 95% confidence intervals to esti-
mate uncertainty, we found that the performance of the sim-
ple average was indistinguishable from CCT for the Santa-
marı́a and Morgan datasets, and 0.2% worse for the Vogel
dataset, equivalent to matching the validation labels for 20
fewer individuals (Fig. 6).

Nevertheless, the simple average consensus remained su-

perior to simply using the classifications of a single data
source. For example, if one were to exclusively use data
from the Social Security Administration’s record of pop-
ular baby names to classify individuals in the Santamarı́a
validation dataset, only 82.1% of individuals receive clas-
sifications, of which 93.1% match given labels. In contrast,
the simple average consensus classified 96.8% of individ-
uals with 95.5% correspondence. From the perspective of
our taxonomy, the simple average consensus achieved a cor-
respondence of 99.3% on those 80.0% of individuals with
names that are either gendered with high or low coverage.

These observations recontextualize the importance of
Cultural Consensus Theory in this work. Rather than serve
as a means by which to construct a binary classifier, CCT
primarily provides a way to ensure that each data source
is reliable (i.e., high competence), and that there is a ro-
bust consensus across sources. It was only after evaluat-
ing sources with CCT that we could confidently experiment
with other methods of classification, such as averaging. Im-
portantly, CCT allows for evaluation directly against name-
gender association data on thousands of names, sidestep-
ping the idiosyncrasies of small samples. Going forward,
CCT can provide a compelling alternative to more tradi-
tional means of assessing a source’s general quality. This
functionality will be critical as new sources are added to
our reference set: researchers will be able to estimate source
quality independent of any specific sample and then make an
informed choice to include that source in the average, make
use of it in limited capacity, or forgo it altogether.

Discussion
Here, we considered the general problem of characterizing
the utility and performance of name-based gender classifi-
cation methods. We surveyed existing methods and evalu-
ated the practical and theoretical implications of the sources
and consequences of performance variability. We then pro-
vided an open-source and transparent approach to name-
based gender classification, with performance comparable or
superior to existing state-of-the-art paid services. In tandem,
this work also introduces a data-driven taxonomy of names
which sheds light on the strength and stability of name-
gender cultural associations across their potentially chang-
ing contexts. Underlying both of these contributions is a cu-
rated dataset combining 36 publicly available resources. The
classifier, taxonomy, and curated data are freely available to
support research that may rely on name-based gender clas-
sification (Van Buskirk 2022b).

Our taxonomy-informed evaluation of methods revealed
that the empirical properties of names in a dataset deter-
mine methods’ performance. In practice, the vast majority of
names researchers are likely to encounter are strongly gen-
dered names for which we have sufficient reference data.
Our classifier achieves around 99% correspondence with
validation labels on these strongly gendered names, with all
four paid services exhibiting similar performance.

For other categories of names—be they taxonomic cate-
gories or simply groups of names that are similarly strongly
gendered—all methods perform similarly on names of the
same category. As a result, differences between methods in

874



overall performance are driven less by how methods differ
when they do make classifications and more by how many
classifications they are able to make; when a method fails to
provide any classification at all, it cannot correspond to any
validation label, by definition. Nevertheless, we found that
our method is not meaningfully improved by using a paid
service to classify those names for which our method lacks
data. And, in spite of the appeal of combining first and last
names to infer nationality and thus provide conditional clas-
sifications, we found that empirically there was no consistent
improvement in overall performance.

In short, we find that future advances in name-based gen-
der classification are fundamentally limited by the Bayes er-
ror rate, and thus any meaningful advances are more likely
to come from the incorporation of additional data to im-
prove coverage, and from the open-sourcing of methods and
datasets whenever possible to improve transparency.

Our observations that most names are strongly gendered
and that methods are well calibrated led us to critically ex-
amine the value of our Cultural Consensus Theory (CCT)
approach. Indeed, across the three validation datasets used
in this study, CCT agreed with a simple average consensus
of the 36 source datasets for over 99% of individuals, and
we observed no significant changes in performance when the
methods did disagree. In turn, this means that the simple av-
erage consensus of public data is comparable in performance
to paid services. Further, the numeric name-gender estimate
that comes from averaging across sources is of great use in
post-processing classifications and assessing classifier confi-
dence. For these reasons, the Python package accompanying
this paper provides users with both the average consensus,
measures of uncertainty, and examples of how to use this in-
formation to get the most reliable classifications given their
particular dataset (Van Buskirk 2022c).

Nevertheless, CCT provides a valuable mathematical par-
allel to the social construction of gender. Rather than falling
into the category of supervised learning, in which presumed
ground-truth labels are used to train a classifier, CCT rec-
ognizes that name-gender associations are not a subject for
which a ground truth exists. Instead, names—particular se-
quences of characters and phonemes—have been culturally
gendered to greater or lesser degrees. Thus, the appropriate
mathematical approach is to measure the consensus, giving
higher weight to data sources that more reliably align with
that consensus. It follows that the classifications outputted
by such a method are nothing more than the consensus esti-
mates of how each name is gendered, as agreed upon by the
available reference data.

Name-based gender classification raises issues of fairness,
only one of which we directly address in this study. We
showed that, for those names that are absent from the ref-
erence data, referred to as no-data names, one can achieve
up to 77.5% correspondence to labels by simply guessing
male, the majority class. But this naive approach to improv-
ing performance leads to maximal imbalances in misclassifi-
cation rates by class (0% for those gendered male, 100% for
those gendered female). This result should serve as a cau-
tionary warning to methods lacking transparency that seek
to maximize overall “accuracy.” Doing so may improve top-

line performance to the detriment of fairness and systemic
bias.

These observations place name-based gender classifica-
tion in a familiar position with respect to the desiderata of
fairness. On the one hand, we might add a desideratum of
“fairness” at the level of gendered groups beyond our pri-
mary aim of meaningfully classifying a large portion of a
sample. One path toward this objective would seek equal
misclassification rates across groups, drawing on the idea of
sufficiency in the fair machine learning literature (Barocas,
Hardt, and Narayanan 2019). On the other hand, we might
consider the total number of individuals of each group mis-
classified, called (somewhat confusingly) the “Gender Bias
Error Rate” (Santamarı́a and Mihaljević 2018; Wais 2016).
These counts are important by virtue of their relation to
estimating the composition of a sample: composition esti-
mates will be unbiased only when there are equal numbers
of misclassifications across all groups. Unfortunately, these
two notions of fairness are in tension, and cannot in gen-
eral be achieved simultaneously unless either (i) the sizes of
the two groups are the same or (ii) no misclassifications are
made, criteria established in the fair machine learning litera-
ture (Chouldechova 2017) and paralleled by earlier work in
epidemiology (Diggle 2011).

To build a more fair classifier and better estimate a sam-
ple’s overall gender composition, one could try to select a
subset of names that are almost always classified correctly.
Our taxonomic category of gendered names with high cov-
erage provides one such subset, and more general thresh-
olding schemes could be used to construct others. Although
this approach may sidestep issues stemming from misclas-
sification, it introduces new issues related to nonclassifica-
tions. For example, in the Vogel validation dataset 85% of
those gendered male have names gendered with high cover-
age whereas only 78% of those gendered female do. Thus,
because a different percentage of individuals gendered male
and gendered female have names that meet the inclusion cri-
teria used, different percentages of each group will be re-
moved from analysis. Due to how factors like gender and na-
tionality interact with and determine features of names and
representations in samples, one is unlikely to find a subset of
names that is almost always classified correctly and consis-
tently splits those gendered female and those gendered male
into classified vs nonclassified subsets in equal proportions.
Fortunately, in practice it seems we can get relatively good
estimates of composition using all individuals classified: we
estimated 73.2% of individuals in the Vogel validation set
were gendered male with a target 72.7%. Here, if one uses
only names gendered with high coverage the estimate rises
to 74.5%.

One important limitation of our data and method, which
is shared by existing methods and has significantly im-
pacted some studies, is their poor performance on Roman-
ized (Pinyin) Chinese names (Santamarı́a and Mihaljević
2018; Huang et al. 2020). When analyzing the Santamarı́a
dataset, nearly half (47%) of individuals with a predicted
ethnicity of Chinese had names falling into the no-data or
weakly gendered taxonomic categories. Only 5% of individ-
uals with a predicted ethnicity of “English” had names in
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either of those categories. As a consequence, even as our
method’s misclassification rates on this validation set are
similar by gender (4.0% for those gendered male vs 5.2%
for those gendered female), they are markedly higher for Ro-
manized Chinese names. We are unaware of any method that
overcomes the broad loss of name-gender associations in the
Romanization process. This suggests that studies of globally
representative datasets are unlikely to achieve balanced gen-
der misclassification rates across nationalities if the names
in those datasets are fully Romanized.

We identify three areas of future work that may further
improve the scientific study of gender. First, growing the
open reference data on which name-based gender classifi-
cations are based will improve coverage while maintaining
transparency. This applies to both the addition of names not
yet in the reference data, as well as increasing the depth of
coverage of names already observed. Second, use of tools
like the taxonomy introduced here may allow researchers to
critically evaluate the potential uncertainty inherent in the
sets of names they wish to analyze. Knowing that a large
number of names fall within the weakly or conditionally
gendered categories, as in the Santamarı́a dataset, should
lead to increased caution. In addition, the reference data we
have collected can be used to extend this taxonomy, for ex-
ample cataloging which names are potentially sensitive to
Romanization and other kinds of processing. Finally, name-
based gender classification itself is inherently limited by
its reliance on names alone. Future work could both im-
prove performance and better reflect individuals’ identities
by shifting away from names alone and toward pronoun,
survey, or other self-identified information. This will require
that we continue to interrogate both the suitability of name-
based gender classification for specific applications as well
as how it fits into the broader ecosystem of methodologies
we have to understand and improve social systems.

Impact Statement
A crucial aim of our work is to make the application of
name-based gender classification in scientific research more
ethical and robust. We achieve this in four ways. We lever-
age a computational framework that acknowledges name-
gender associations as products of a fluid cultural consensus
rather than fixed features of individuals. We explicitly ex-
plore limitations and document when they may impact anal-
ysis. We scope our method to use in prosocial scientific re-
search which stands in direct contrast to existing methods
used in applications such as targeted advertising. Finally,
we provide a rigorous conceptual framework for reconcil-
ing name-based gender classification with more general con-
cerns and gender theory. The risk of misuse persists, but our
thorough analysis and careful documentation makes it clear
how and when this method is appropriate to use and what it
reflects about the individuals classified.

Since our name-based gender classification method is di-
rectly descendent of the name-gender association data we
collected, the same considerations apply to its release. In
fact, the open-source nature of our data and method ensure
that researchers can make even more informed decisions of
when it is appropriate to apply our method. Additionally, the

community can build on this data to make further improve-
ments to how classification is done in practice.

Finally, care was taken in collecting and releasing data
to protect the privacy of individuals and respect the sources
from which data was collected. Save for one, all data sources
used were already publicly available. We’ve held this IRB
protected data out of our release and created a synthetic ver-
sion that matches on aggregate features for use in replicating
results.
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