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Abstract

Multiagent coordination in cooperative multiagent systems
(MASs) has been widely studied in both fixed-agent repeated
interaction setting and static social learning framework. How-
ever, two aspects of dynamics in real-world MASs are cur-
rently missing. First, the network topologies can dynamically
change during the course of interaction. Second, the interac-
tion utilities between each pair of agents may not be identical
and not known as a prior. Both issues mentioned above in-
crease the difficulty of coordination. In this paper, we con-
sider the multiagent social learning in a dynamic environ-
ment in which agents can alter their connections and interact
with randomly chosen neighbors with unknown utilities be-
forehand. We propose an optimal rewiring strategy to select
most beneficial peers to maximize the accumulated payoffs in
long-run interactions. We empirically demonstrate the effects
of our approach in large-scale MASs.

Introduction

Multiagent coordination in cooperative multiagent systems
(MASSs) is a significant and widely studied problem. It re-
quires agents to have the capability of coordinating with oth-
ers effectively towards desirable outcomes. Until now, a lot
of works have studied the multiagent coordination problems
in cooperative MASs (Claus and Boutilier 1998). One class
of research is multiagent social learning (Sen and Airiau
2007), which study the multiagent coordination problem
among a population of cooperative agents with sparse and
local interactions (Hao and Leung 2013).

Most existing works under the social learning framework
assume that agents are located in a static network. How-
ever, two important aspects of dynamics in real-world MASs
are currently missing. First, the cooperative games for agent
pairs might be different due to the difference of agents’
preferences and the contexts they are situated in. Second,
the network topologies can be dynamic, i.e. agent’s inter-
acting partners are not fixed and may change frequently.
Therefore, in this paper, we study the multiagent coordina-
tion problem in cooperative MASs with taking above two
aspects into consideration. We consider a dynamic envi-
ronment where agents can alter their connections through
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rewiring autonomously, and propose an optimal rewiring ap-
proach for agents to select most beneficial peers among all
reachable peers to maximize the accumulative payoff during
the long-run interactions.

Problem Description

We consider a population of agents IV, in which each agent ¢
can only play with its reachable peers, defined as {O; UO; }.
Agent ¢ can only interact with its neighborhood O; through
the connections, and also has a probability ¢ to be able to
establish a new connection to a potential agent j € O; with
cost c; through rewiring. For each rewiring, an old con-
nection should be broken before establishing a new one to
model agents’ limited communication ability in practice.

We model the strategic interaction among each pair of
agents as cooperative games. A general form of two-action
cooperative games between agent ¢ and j is denoted as
G} [ta, v, v, up), where u, (or up) is the payoff when
agent 7 and j both choose action a (or b) and o (< ug(uyp))
is the payoff for mis-coordination. To model the uncertainty
and diversity of agents’ utility functions, the coordination
payoff wu, (or up) is sampled from a stochastic variable x,
(or x) following cumulative probability distribution F,(z)
(or Fy(z)). In addition, Fy,(x) (or Fp(x)) is unique for each
game. The value of u, (or up) is unknown before interaction
and is revealed when the corresponding outcome is reached
once. Each agent can observe the actions of its interaction
neighbor at the end of each interaction.

Social Learning Framework
The overall social learning framework is shown in Algo-
rithm 1. During each round, agent ¢ € N goes through the
rewiring phase first and then the interaction phase.

Estimation of Expected Interaction Payoff The ex-
pected payoffs of agent i interacting with j according to an

known or unknown payoff matrix Gf ,l.e., Ug or xz , are eval-
uated respectively as follows:
vf = max pz(m)um + (1 - pi(m)) Q, (D
meA;
x} = max pl(m)x, + (1 - p{(m)) a. (2)
meA;

Agent j’s policy pg can be estimated from historical actions.



Algorithm 1 Overall interaction protocol for agent 7z € V.

: for a number of interaction rounds do
if random variable p < ¢ then

Perform rewiring action (including NOOP).
end if _
Play game G with randomly chosen player j € O;.
Obtain payoff and update its policy.
Update neighbor j’s action model.

1
2
3
4:
5:
6.
7.
8: end for

Algorithm 2 K-Sight rewiring strategy for agent ¢ with sight
K in each rewiring phase.

1: for each j € O; do

2: Compute expected payoff v} (Eq.1).

3: end for

4: Obtain the interaction baseline y; = min;co, v;
5: for each w € O, do

6: Compute benefit index A}” for agent w (Eq.3).
7: end for

8: Choose agent t = arg max,,c5, (KA}’ —cf’).

9: if KAY — ¢’ > 0 then
10: Rewire agent ¢ and break the worst connection.
11: end if

An Optimal Rewiring Strategy Each agent’s situated en-
vironments are continuously changing due to rewiring and
thus we model it as an Markov Decision Process. We pro-
pose K-sight Rewiring Strategy (Algorithm 2). This is in-
spired from Pandora’s Rule (Weitzman 1979) and Negotia-
tion Problem (Baarslag and Gerding 2015), and the optimal-
ity can be similarly proved as did in above mentioned works.
Anindex A is calculated to captures the benefits of rewiring
unknown peers j:

o

AJ:/

where y; and y;/ are the minimum of {v; } geo before and
after rewiring. F; 7 () is the distribution of z] (Eq.2).

yi - dF} (x)

oo

Interaction Strategies We consider three strategies in
interaction phase, i.e., Fictitious play (FP), Joint-Action
Learner (JAL) and Joint-Action WoLF-PHC (JA-WoLF).

Experimental Evaluations

We compare our approach (Optimal) with two benchmark
strategies, i.e., Random (Ran) and K-sight Highest Expect
(K-HE) that rewires the agent with the highest positive value
of K-round expected payoff minus the cost.

First, we evaluate the performance of each rewiring strat-
egy in environments of different scales. The average accu-
mulated payoff over 1000 rounds of each agent are shown
in Table 1. We can observe that our optimal rewiring strat-
egy outperforms benchmark strategies in terms of average,
best and worst cases across all settings. Second, in Figure
1(a) we evaluate our approach under the settings with the
rewiring cost ¢ varying in the range of [0.0,200.0] and the
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Table 1: The performance of rewiring strategies in different
topologies with ¢ = 20.0, ¢ = 0.01. z, y, z denote the initial
size of agents, neighborhood and reachable peers.

No. x,y,z) Rew Stg Avg. Max. Min.
1 (100,4,12) Random 763 1383 283
2 (100,4,12) K-HE 1003 1979 306
3 (100,4,12) Optimal 1372 2437 665
4 (500,4,16) Random 694 1434 169
5 (500,4, 16) K-HE 993 2173 211
6 (500,4,16) Optimal 1373 2735 484
7 (1000, 8 16) Random 740 1375 217
8 (1000, 8,16) K-HE 1018 1801 314
9 (1000,8,16) Optimal 1170 1810 567
7 PR

(@) (b)

Figure 1: Performance comparison for (a) different rewiring
strategies and (b) different interaction strategies.

fixed K = 200. The results show that our approach signifi-
cantly outperforms others across almost all ¢/ K settings. We
use FP as interaction strategy for Table 1 and Figure 1(a).

Moreover, we analyze the performance of three inter-
action strategies, i.e., FP, JAL, JA-WoLF. The results are
shown in Figure 1(b) with regard to the average single-round
interaction payoff of each agent. We can observe that FP
strategy can fast reach a good payoff level while JAL and
JA-WoLF outperform FP in the long term due to their better
convergence on optimal Nash equilibrium.
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