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Abstract

Point-of-interest (POI) retrieval that searches for relevant des-
tination locations plays a significant role in on-demand ride-
hailing services. Existing solutions to POI retrieval mainly
retrieve and rank POIs based on their semantic similarity
scores. Although intuitive, quantifying the relevance of a
Query-POI pair by single-field semantic similarity is sub-
ject to inherent limitations. In this paper, we propose a novel
Query-POI relevance model for effective POI retrieval for on-
demand ride-hailing services. Different from existing rele-
vance models, we capture and represent multi-field and lo-
cal&global semantic features of a Query-POI pair to measure
the semantic similarity. Besides, we observe a hidden correla-
tion between origin-destination locations in ride-hailing sce-
narios, and propose two location embeddings to characterize
the specific correlation. By incorporating the geographic cor-
relation with the semantic similarity, our model achieves bet-
ter performance in POI ranking. Experimental results on two
real-world click-through datasets demonstrate the improve-
ments of our model over state-of-the-art methods.

1 Introduction

Point-of-interest (POI) retrieval arises with the popularity of
location based services, and has attracted considerable in-
terest from both academic and industrial fields. Generally
speaking, it searches a POI database to obtain a list of rel-
evant destination locations when a user inputs a query. For
online taxicab platforms like Didi, Lyft, and Uber, POI re-
trieval plays a significant role in providing on-demand ride-
hailing services, since the retrieval results directly impact
the success or failure of rides as well as long-term user ex-
perience. Besides, two particular conditions in ride-hailing
scenarios further set extremely high standards for the qual-
ity of retrieval: (1) due to the limited sizes of smartphone
screens, the mobile Apps can display only a few (e.g., < 10)
top ranked POls, and the users capture much less (e.g., < 3)
POIs at first glance; and (2) unlike searching for food or ho-
tels, ride-hailing users usually have definite destinations in
mind, and rarely click other candidate POIs. Quickly and
precisely retrieving the expected POI remains challenging.
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There has been a large amount of literature on information
retrieval, especially on Query-Document semantic match-
ing. Traditional approaches conduct matching in term level
(e.g., Okapi Best Matching (BM25) (Robertson et al. 1996))
or latent space (e.g., Partial Least Square (PLS) (Rosipal
and Kriamer 2006)). The latent model bridges the semantic
gap between words by reducing the matching dimensional-
ity and correlating semantically similar terms, and thus out-
performs the term level one. Along with the success of deep
learning in speech recognition, computer vision, and natu-
ral language processing, studies on deep semantic match-
ing models are also making great progress. For example,
the Deep Structured Semantic Model (DSSM) (Huang et al.
2013) takes in bag of letter-trigrams of a query and a doc-
ument, projects sentences to low-dimensional latent space,
and measures the relevance as cosine similarity of their se-
mantic vectors. Another example is the Convolutional Neu-
ral Network Architecture-I (ARC-I) (Hu et al. 2014), which
uses a convolutional-pooling structure to extract both lo-
cal word-level features and global sentence-level features
for matching. Compared to the traditional approaches, these
deep models are able to represent deep semantic structures
of the queries and the documents.

While current relevance models mainly judge documents
based on the semantic similarity scores, they are subject to
inherent limitations due to the simple representation of rele-
vance, and thus cannot handle the increasing complexity of
Query-POI matching puzzle in POI retrieval.

Specifically, with the global deployment of the ride-
hailing services, the POI retrieval solutions are facing more
and more complex queries. Here, the textual complexity
comes from: (1) incomplete queries and queries of variable
lengths; (2) mixed keyboard inputs (e.g., English+Spanish,
English+Chinese, Chinese Characters+Pinyin Alphabets);
and (3) various compositions and orders of the terms in the
query. A robust Query-POI relevance model has the ability
to manage these cases.

In this paper, we aim to design a robust Query-POI rele-
vance model for effective POI retrieval for on-demand ride-
hailing services. Different from the existing models that
quantify the relevance of a Query-POI pair by single-field
semantic similarity, we capture and represent multi-field and



local&global semantic features to measure the semantic sim-
ilarity. Besides, ride-hailing customers are highly sensitive
to the distances between origin-destination locations, espe-
cially when they search for chain stores like McDonald’s
and Starbucks. Through large-scale data analysis, we ob-
serve a hidden geographic correlation of the clicked Query-
POI pairs'. As Figure 1 shows, over 50% origin-destination
pairs are located within 4 km, which provides extra informa-
tion for Query-POI ranking. For a Query-POI pair, we learn
the geographic correlation, and integrate it with the semantic
similarity for relevance analysis. Enriched with comprehen-
sive information, our model is able to handle the increas-
ingly complex queries.

20

15+

101

Percentage of Distances (%)

0_
012345678 910111213141516+
Geo Distance (km)

Figure 1: Percentages of distances between origin-
destination pairs in a large-scale click-through dataset gen-
erated by ride-hailing services. Over 50% of the clicked
origin-destination pairs are located within 4 km, showing
potential for Query-POI geo-relevance learning.

Opverall, the main contributions of our work are:

e We propose a novel Query-POI relevance model for ef-
fective POI retrieval for on-demand ride-hailing services.

e We exploit self-attention to draw intra-dependency within
single-field texts, and adopt interactive attention to draw
inter-dependency between multi-field textual attributes of
POlIs, to highlight the keywords of queries and POIs prior
to semantic matching. The learned multi-field and lo-
cal&global semantic features help us to handle the in-
creasingly complex queries.

e We boost its overall performance by incorporating geo-
graphic correlation with semantic similarity in the rele-
vance model. We observe a specific hidden correlation
between origin-destination locations in ride-hailing sce-
narios, and propose two location embedding methods to
characterize the geo-correlation. Additionally, we visual-
ize the embeddings to give a better interpretation.

"For POI retrieval in location based services, a query generally
consists of a user’s explicit textual input and the user’s implicit ge-
ographic information (which is automatically extracted by the mo-
bile Apps to locate the user and provide corresponding services).
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e We conduct extensive experiments on two real-world
large-scale click-through datasets, and evaluate the func-
tionality of each main module step by step. Experimental
results show significant improvements in Query-POI rel-
evance over state-of-the-art models.

2 Related Work
2.1 Neural-network Based Semantic Models

Deep neural networks have shown the effectiveness in dis-
covering hierarchical features from raw training data for var-
ious tasks (Salakhutdinov and Hinton 2009; Collobert et
al. 2011; Hinton and Salakhutdinov 2011; Tur et al. 2012;
Socher et al. 2012; Huang et al. 2013; Shen et al. 2014;
Hu et al. 2014). Among them, the DSSM (Huang et al. 2013)
and the ARC-I (Hu et al. 2014) are the most related to our
work. The DSSM uses a deep neural network to map the raw
bag-of-words term vectors of search queries and Web doc-
uments into semantic vectors. The relevance score of a pair
of query and document is the cosine similarity of their cor-
responding semantic vectors. However, bag-of-words repre-
sentations cannot keep the contextual structure within the
query or documents. In contrast, the ARC-I captures both
word level and sentence level contextual structures. It uses
pre-trained word embeddings to present the sentences, and
then takes multiple convolutional and max-pooling layers to
capture the global features for matching. A multi-layer per-
ceptron is used to calculate the matching degree of the two
sentences. One drawback of these models is that they only
capture simple representations and structures of queries and
documents, and are at the risk of losing important informa-
tion for relevance analysis.

2.2 Attention Mechanisms

In recent years, attention mechanisms have been considered
for sequential tasks (Vaswani et al. 2017; Seo et al. 2016;
Yu et al. 2018). In the paper (Vaswani et al. 2017), the au-
thors proposed a transformer model, which is composed of
an encoder and a decoder. In each component, multi-head
attention is used to jointly attend to information from dif-
ferent representation subspaces at different positions. Seo
et al. (Seo et al. 2016) proposed a bi-directional attention
flow (BIDAF) network for machine comprehension. In this
network, attention is used in two directions: from context to
query and from query to context. The bi-directional attention
flow mechanism acquires a query-aware context representa-
tion which can reduce errors caused by early summarization.

2.3 Spatial Representation

Spatial information is any information related to a specific
location. Zhang et al. (Zhang et al. 2018) proposed a deep
learning based model, named ST-ResNet, which can predict
citywide crowd flows. In ST-ResNet, the crowd flow and the
distance of nearby region are used to model spatial depen-
dency. And in (Song, Kanasugi, and Shibasaki 2016), spa-
tial information is reflected in people’s GPS trajectories. A
RNN is used to deal with these historical GPS trajectories.
The proposed model DeepTransport can simulate and pre-
dict human mobility and transportation mode. Li et al. (Li
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Figure 2: Illustration of the Query-POI relevance model. It has six layers. For a Query-POI pair, the model first splits their
texts and locations into multiple attributes. After embeddings of letter&word and latitude&longitude, it captures the seman-
tic similarity and geographic correlation by convolutional neural networks with attention mechanisms. Then, it learns their
comprehensive feature vectors, and finally outputs their relevance as cosine similarity score.

et al. 2018) used a road network to estimate travel time. Be-
sides, DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) and
Line (Tang et al. 2015) study how to embed large informa-
tion networks into low-dimensional vector spaces.

3 The Query-POI Relevance Model
3.1 Model Overview

As Figure 2 shows, our Query-POI relevance model is hier-
archical and consists of six layers:

e Input Splitting Layer splits the texts into words and let-
ters, and divides the geographic coordinates into latitudes
and longitudes. The textual attributes of POI include POI

Address and POI Name.

Embedding Layer embeds each word, letter, and coor-
dinate to a low-dimensional dense vector. Embeddings
are randomly initiated and then trained with convolutional
neural networks (CNNs).

Local Feature Extraction Layer uses CNNs to sepa-

rately capture the local semantic and the geographic fea-
tures of the input Query-POI pair.
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Global Feature Extraction Layer applies attention
mechanisms to the local features to enrich them with
global information, and uses max pooling to extract the
salient global features. Specifically, we learn the intra-
dependency within texts and locations by self-attention,
and the inter-dependency between multiple POI attributes
by interactive attention.

Feature Fusion Layer integrates the semantic and the ge-
ographic feature vectors to represent the comprehensive
features of Query and POI.

Output Layer calculates the cosine similarity score of
integrated semantic similarity and geographic correlation
for the Query-POl pair.

3.2 Semantic Representation

We use CNNs with attention mechanisms to learn the low-
dimensional dense embeddings of letters and words, as well
as the semantic feature vectors of queries and POIs.

Letter&Word Embeddings We first split the texts into
words and letters, and then use both letter embedding and



word embedding to reduce the dimensionality of the text
representations. Here, letter granularity representation keeps
the critical information of incomplete and/or mixed texts,
and word level representation captures more contextual in-
formation for sophisticated languages like Chinese.

While one-hot encoding is high-dimensional and can-
not capture the semantic meanings of words, the low-
dimensional word2vec embedding (Mikolov et al. 2013)
heavily depends on the text corpus and needs to be pre-
trained for semantic analysis. Different from these two ap-
proaches, our letter&word embedding vectors are initiated
with random real numbers, and trained along with the CNNs
under the guidance of the loss function. These directly
learned embedding vectors capture more information for
later semantic matching.

Both embedding vectors are d-dimensional and stored
in an embedding matrix. For a letter&word vocabulary of
size V, the embedding matrix is M € RV*? Let Q =
{QIa”'?qT}’ A= {alv'”:a‘l}’ and N = {nlu"'7nK}
be the split strings of Query, POI Address, and POI Name,
respectively. At the end of training, the embedding matrix
M will contain all of the embeddings for each word and let-
ter in the vocabulary. Embeddings for rare words and letters
are set by default. Three sub-matrices of sizes T' x d, J X d,
and K X d contain the embedding vectors of the input text
strings, respectively.

Convolutional Networks We feed the three parts of em-
bedding vectors to three 3-layer CNNs to independently ex-
tract their local semantic features. Each CNN has n kernels
of size 3 x d. After applying a zero padding to the fea-
ture matrices, convolving the kernels with the Query em-
bedding vectors, and concatenating the n feature vectors of
size T' x 1 by column, the CNN outputs the semantic fea-
ture matrix Q € R7*" of Query. Correspondingly, the other
two CNNs output the local semantic features of POI Address
A € R7*" and POI Name N € RE*™,

Self-Attention Attention mechanisms aim to distinguish
and catch the most important information from the whole.
Formally, given a Query and a set of Key-Value pairs, the At-
tention is the sum of values weighted by the similarity of the
query and corresponding keys. We apply the self-attention
mechanism (Vaswani et al. 2017) to the semantic feature ma-
trices to learn the intra-dependency within the texts, which
suggests more latent syntactic and semantic features.
In our model, the self-attention of Query is calculated as

-
QQ

Vn
Then the semantic matrix is fine-tuned by a position-wise

feed-forward network with two linear transformations and a
rectified linear unit (ReL.U), i.e.,

X, = sel f_attention(Q) = softmax( )Q.

6 = max(O,Xq X qu + Bql) X WqQ + qu.

Here, W;1,Ws2 € R™"™ are weight matrices, and
B,1,B,2 € RT*" are bias matrices. We also update the POI
semantic feature matrices as A € R7*"™ and N € RE*n,
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Interactive Attention While self-attention shows the abil-
ity to extract the key information from the texts, interac-
tive attention is able to link and fusion information from
different sources. We apply interactive attention to the
two semantic feature matrices of POI to learn the inter-
dependency between the two complementary attributes.
The inter-dependency highlights the mapping between POI
Name and POI Address, and can be regarded as a strong
support for multi-field searching and matching.

By tuning the feature vectors with inter-dependency, we

learn more sophisticated semantic features A2N € RE*7
and N2A € R7*™_ and concatenate the two matrices by row
to get the global semantic feature matrix P € R(/+K)xn.

~~T

~~T
~

— NA ~ — N
A2N = softmax(w)A, N2A = SOftm(ICC(W)N,

P = max(0, [A2N; N2A] x W,1 + B,1) x Wpy + B .
Here, W,1,Wp2 € R™" are weight matrices, and
B,1,B,s € RUHE)X" are bias matrices.

Semantic Feature Vectors The above matrices collect all
of the semantic feature vectors for each word and letter,
from which we take and concatenate the maximal value
of each column as feature representatives. Through a fully-
connected network, we finally get the semantic feature vec-

tors Q, P € RY*24 for further semantic analysis.

3.3 Geo-Correlation Extraction

Location Embeddings While the geographic correlation
between the origin-destination pairs in Figure 1 shows po-
tential for geo-relevance learning, it is hidden and cannot
be directly described by raw location information. Like let-
ter&word embeddings to texts, we embed location to get the
dense vector representations for feature extraction.

Before that, the digital map that covers all the POIs is di-
vided into Ly¢ X Ly, 4 grids of size 100m x 100m. Each grid,
indexed by {(4, )¢ € [0,Lar—1],5 € [0, Lpg— 1]}, con-
tains a number of POIs. To reduce the size of embedding
matrix, all of the POISs in a grid share the geographic coordi-
nate (i.e., latitude-longitude pair) of the point at the top-left
corner of the gird. The area of a grid is empirically set as
100mx100m to get discretized intervals with little informa-
tion loss. Overall, there are L, X L4 coordinates. We split
the coordinates into latitudes and longitudes and separately
embed them to further reduce the size of the embedding ma-
trix (i.e., from (LgiXLyg)Xd to (Lgi+Lpg)xd). Besides, this
split also shows advantages of training when the locations in
each grid are sparse. Let G = {laty, Ing1, lats, Ings } be the
raw split coordinates of Query and POI, and & € REL«t*d
and ¥ € REns*4 be the embedding matrices.

Embeddings tested in our model include:

(1) One-hot Vectors: Each latitude interval and longi-
tude interval is encoded with an one-hot vector. These high-
dimensional, sparse vectors failed to capture the geographic
correlation in our experiments.

(2) Coordinate Embeddings: These embedding vectors
are low-dimensional and dense. For each origin-destination



pair, their 4 d-dimensional latitude and longitude vectors are
randomly initiated and trained through a 3-layer CNN. The
embeddings after training would preserve the geographic
correlation, since the CNN directly takes in the Query-POI
pairs and targets the goal of matching.

(3) Kernel Embeddings: The faithfulness of the above em-
beddings may be degraded due to the Boundary Effect. For
a POI located in the boundary of a grid, its nearest neighbor
is probably from a neighboring grid, rather than in its grid.
To mitigate the effect, we fine-tune the coordinate embed-
dings to be the sum of weighted embeddings of itself and its
neighboring embeddings. For a POl in grid g;; with latitude
vector ®; and longitude vector ¥, its latitude embedding is
tuned to be the sum of the 3 closest embeddings:

By = w1 Pi_1 + w;P; + wiy1Pisq.
It is the same for longitude embedding. Here, ®;_; and ¢,
are neighboring latitude embeddings, and the weights are

calculated through RBF kernel tuning over the distances be-
tween the POI and the centers of the grids.

Geographic Feature Vector Similar to the process of se-
mantic feature extraction, we feed the 4 (or 12 with Kernel
Embeddings) separate embedding vectors of the Query-POI
pair to the 3-layer CNN to get the geographic feature matrix
G € R**™, After that, we learn the geographic feature vec-
tor G € RY*27 for further relevance measure. For each pair
of Query-POlI, there is only one geographic feature vector
which has absorbed the geographic correlation.

Sem&Geo Vectors We concatenate the semantic and the
geographic feature vectors of Query and POI by column, and
feed them into a fully connected layer to get the comprehen-

sive feature vectors @, P € R1*?4 je.,

P =[P,G] x W, + B,,

Q=1Q,G] x W, + B,.
Here, W,,, W, € R??*4 are weight matrices, and By, B, €
R1*4 are bias vectors.

Relevance Score and Loss Function We follow the rel-
evance function and the loss function of DSSM. The rele-
vance is calculated as cosine similarity of the feature vec-
tors. What makes our model different is that it considers not
only the semantic similarity but also the geographic correla-
tion of the Query-POI pair, and it has enriched the semantic
features with intra-dependency and inter-dependency before
matching. The relevance score is:

~ PQT
RP,Q = COS P,Q = —==.
Q) Q) 1Pl < QI

During training, for each Query @, the positive (most rel-
evant) POI P is determined by real-world click-through
data, while the 4 negative POIs { ;" } are randomly selected
from unclicked POIs. Given a Query, the probability of a
POI to be clicked is calculated by a softmax function of its

relevance score with a smoothing factor v, i.e.,

exp(YR(P, Q))

PriPIQ) = ZP'E{PJQP[} exp(YR(P',Q))’
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‘We set the loss function as

L(A) =—1log [] Pr(PT|Q).

QP+

The model parameters A are trained to minimize the loss, or
equivalently, to maximize the likelihood of the clicked pairs,
using AdaGrad optimizer.

4 Experiments
4.1 Experimental Setup

Datasets We process two large-scale datasets of real-
world ride-hailing orders. The data are collected by Didi
Chuxing, and have been desensitized due to privacy issues.
The basic statistics of the datasets are shown in Table 1.

(1) Dataset A: This dataset collects the ride-hailing orders
in Chengdu, China. As part of the GAIA Initiative?, it is pub-
licly available to the academic community®. We randomly
select 115724 and 15261 queries out of one month records
as training data and test data, respectively. For each query,
the App displays a list of possibly relevant POIs for users.
In statistics, there are 711824 POIs for training and 95369
for testing. The corresponding average numbers of recalls
are 6.15 and 6.24. On average, Query, POI Name, and POI
Address contain 4.6, 9.4, and 19 letters, respectively. No-
tably, letters in Chinese datasets include Chinese characters
and Pinyin letters, while words include Chinese phrases and
Pinyin phrase. The average physical distance of the clicked
Query-POlI pairs is about 4 km.

(2) Dataset B: Orders are generated nationwide and in a
much larger scale. There are 1589392 queries and 6854458
POIs in total. In this dataset, the input texts are more diverse
and more complex, and the driving distances are longer and
more difficult to predict. We evaluate our model on this
dataset to verify its generalization and robustness.

Table 1: The basic statistics of the datasets.

Dataset A (Chengdu) Dataset B (Nationwide)

Training Testing Training Testing

Total Num of Query 115,724 15,261 1,476,645 112,747

Total Num of POIs 711,824 95,369 12,654,847 947,878
Avg Num of Recalls 6.15 6.24 8.57 8.41
Avg Len of Query 4.61 4.65 3.21 3.24
Avg Len of POI Addr 19.04 19.05 18.93 18.89
Avg Len of POI Name 9.38 9.42 7.87 7.96
Avg Distance (km) 4.05 4.04 7.28 8.53

During training, positive samples are the clicked Query-
POI pairs, and negative samples are randomly generated ac-
cording to POIs’ proportions. In testing, for each query, the
model calculates the similarity score of each POI in the re-
called list. The clicked one is marked as positive, while all
the others are negative.

“https://gaia.didichuxing.com
*https://outreach.didichuxing.com/appEn-vue/POI%id=11
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Figure 3: Two-dimensional t-SNE projection of the d-dimensional geographic vectors of POIs. The randomly selected POIs
around the central POI are within different physical distances, thus are classified with different colors. The location embed-
dings generated by PALM (a)-(b) preserve the physical distances in the embedding space. For the same POIs, the embeddings
generated by DeepWalk (c)-(d) preserve the physical relation to some extent, but also show large chaos in the embeddings.

Evaluation Metrics Given a Query, the retrieval system
recalls a list of POIs and runs the relevance model to rank
the POIs according to their similarity scores. We evaluate
the performance of all the relevance models by averaged
Normalized Discounted Cumulative Gain (NDCG) (Jarvelin
and Kekildinen 2000) of the displayed POI list at truncation
levels 3 and 10. As we have mentioned before, display po-
sitions have more significant impact on user satisfaction in
mobile applications than that of the traditional retrieval sys-
tems. Considering both relevance and position of each POI
in the result list, the NDCG score is a widely used offline
measure of ranking quality. POI lists with higher NDCG
scores are more likely to meet the users’ need.

Compared Models We compare the proposed relevance
model with two state-of-the-art models to show the effec-
tiveness of our model. To evaluate the functionalities of the
main modules, we compare the basic model with additional
modules step by step. Models evaluated include:

(1) DSSM: This model uses a 3-layer deep neural network
to learn the semantic structures in queries and POIs. The first
hidden layer takes in bag-of-words term vectors and hashes
the words into letter n-gram vectors for semantic feature
learning. After multi-layer projection, the network outputs
the corresponding semantic vectors and then calculates their
cosine similarity. It considers only basic semantic similarity.

(2) ARC-I: This model uses word embedding pre-trained
with word2vec to represent the texts, and then uses a convo-
lutional neural network to learn the semantic features, and
finally compares the feature vectors with a multi-layer per-
ceptron. Same as DSSM, ARC-I measures relevance by sim-
ple semantic similarity.

(3) DPAM: This is our basic Deep Attention Model. It
first splits the texts into words and letters to cover more di-
verse and more complex queries. Both word&letter embed-
dings are trained through CNNss directly targeting the goal of
matching. After getting the semantic features as what ARC-I
does, DPAM applies self-attention and interactive attention
mechanisms to highlight keywords and dependencies of the
texts, and to enrich the feature vectors with more sophisti-
cated semantic information. Finally, it calculates the cosine
similarity of the upgraded multi-field semantic vectors.

(4) PALM: Besides DPAM, this model extracts and in-

corporates the geographic correlation based on Coordinate
Embeddings. The location embeddings as well as the geo-
graphic features are learned through a 3-layer CNN. Then, a
fully-connected layer will integrate the geographic features
and the semantic features, and the output layer will calculate
the cosine similarity of the integrated feature vectors.

(5) PALM+: This model keeps the same structure as
PALM, but uses Kernel Embeddings to capture the influence
of neighboring grids on geographic correlation.

We implement the models with Google’s TensorFlow. The
environment is CPU: 2xE5-2630v4, Memory: 256G, and
GPU: Tesla P40. The embedding dimensionality is d = 64,
the CNN kernel number is n = 64, the batch size is 128,
the learning rate is 0.001, and the cosine smoothing factor is
v = 25. Other parameters are learned during training.

4.2 Experimental Results

Visualization of Location Embedding A faithful loca-
tion embedding should capture the intrinsic relation of the
locations, so as to properly map them to the latent space for
feature extraction. To analyze the faithfulness of our location
embeddings, we visualize the embeddings of a central POI
and another 100 randomly selected POIs. We project their
d-dimensional embeddings to 2 dimensions by t-SNE (Van
Der Maaten and Hinton 2008).

As Figure 3 shows, the central POI is surrounded by POIs
with different distances in the embedding space. The col-
ors differentiate the POIs with different physical distance in-
tervals from each group. For example, orange means that a
POI is within 1km to the central POI in the physical space,
while cyan-blue means that the physical distance between a
POI and the central POI is far more than 6km. The embed-
dings generated by PALM preserve the latitude&longitude
distances of the physical space.

We also visualize the embeddings generated by Deep-
Walk (Perozzi, Al-Rfou, and Skiena 2014). DeepWalk uses
truncated POI sequences obtained from random walks,
rather than the origin-destination pairs, to learn the la-
tent representations of locations. This would generate false
clicked origin-destination pairs for the training. For the same
central POI and the same neighboring POlIs, the embeddings
generated by DeepWalk preserve the physical relation to
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some extent. However, there is also large chaos in the em-
beddings. This comparison demonstrates the faithfulness of
our location embeddings.

Case Study on Attention Attention mechanisms in our
model highlight the keywords of texts as well as the map-
ping between POI Name and POI Address. The following is
an example of Query-POI matching with attention.

Query: “joy city”

POI; Name: “Chengdu Joy City”

POI; Addr: “Intersection of Dayue Rd and Taipingyuan
Middle 3rd Rd, Wuhou District”

POI; Name: “Hutaoli Music Restaurant & Bar (in Joy City)”

POI; Addr: “1F-J01 Joy City, No. 518 Dayue Rd”

The query from Dataset A is “joy city”, a shopping mall
in Chengdu, China. The retrieval system returns two POls,
which match the query well. However, with attention mecha-
nisms, the first POI (which is exactly the shopping mall) rec-
ognizes its keywords and mapping dependencies, i.e., “Joy
City”, “Dayue Rd” and “Taipingyuan”, while the second
POI (which is a restaurant named Hutaoli in the shopping
mall) gives more attention to keywords ‘“Hutaoli”, “JO1”,
and “Dayue Rd”.

In Figure 4, the first matrix shows the normalized atten-
tion weights of name words to each address word, and the
second signifies which address words are the most relevant
to each name word. For N2A, the name word ‘“Hutaoli” (in
deep orange) is strongly related to each address word; and
for A2N, “Dayue Rd” and “JO1” (in deep blue) are tightly
bound to each name word. In our model, their relevance
scores are 0.87 and 0.79, respectively. Therefore, POI 1 is
marked as being more relevant to the query, which is consis-
tent with the real-world click statistics.

Hutaoli ~ Music Restaurant  Bar Joy City
DayueRd = 0.35 0.42 0.07 0.03 0.10
No. 518 | 0.66 0.06 0.01 0.00 0.25
Joy City = 0.56 0.12 0.03 0.00 0.26
r [J0BY 000 000 000 025
Jo1l | 0.65 0.09 0.04 0.01 0.18

(a) Interactive attention: N2A.

Dayue Rd No. 518 Joy City 1F Jo1
Hutaoli =~ (.28 0.02 0.11 0.03 0.55
music [NOWON]| 000 005 000 017
Restaurant = 0.57 0.00 0.07 0.00 0.34
Bar | 0.61 0.00 0.03 0.00 0.34
Joy City ~ 0.27 0.02 0.16 0.03 0.49

(b) Interactive attention: A2N.

Figure 4: Attention matrices of N2A and A2N. The attention
weights differentiate the strong inter-dependencies between
POI Name and POI Address from the weak ones.
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Table 2: Comparison results in NDCG.

Dataset A (Chengdu) Dataset B (Nationwide)

NDCG@3 NDCG@10 NDCG@3  NDCG@10
DSSM 0.8246 0.8989 0.7617 0.8810
ARC-I 0.8298 0.9024 0.7558 0.8788
DPAM 0.8383 0.9058 0.7822 0.8907
PALM 0.8407 0.9050 0.8116 0.9022
PALM+ 0.8465 0.9110 0.8124 0.9027

Quantitative Analysis of NDCG Table 2 summarizes the
comparative results in terms of NDCG@3 and NDCG@10
on the two click-through datasets. On both datasets, our
model beats DSSM and ARC-1.

Specifically, with multi-level text embedding and multi-
field attention mechanisms, DPAM captures more sophis-
ticated semantic features. Therefore, compared to DSSM
and ARC-I, DPAM ranks the POIs with more accurate rele-
vance scores. On the other hand, PALM outperforms DPAM,
due to the integration of geographic features. The improve-
ment is more distinct on Dataset B, where the input texts
are more diverse and the driving distances are doubled the
length in Dataset A. In PALM, geographic correlation sig-
nificantly complements semantic similarity to model the rel-
evance of Query-POI pairs. Finally, PALM+ which uses Ker-
nel Embeddings to mitigate the problem of boundary effect
achieves the best performance.

Figure 5 depicts the training loss of the five models on
Dataset A. The validation loss shows a similar trend. Both
models converge with the increase of epochs. Compared
to our models, DSSM and ARC-I converge faster but to
higher loss values (about 0.75). The loss values of PALM
and PALM+ decrease more consistently than that of DPAM,
and close to 0.70, indicating the functionality of the geo-
graphic module.

Overall, the results demonstrates the empirical effective-
ness of integrating semantic similarity and geographic cor-
relation for relevance modeling.

1.3

1.2 1

—
—

Mean Loss Value
-
<>
!

100 120 140 160 180 200
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60 80

Figure 5: Training loss on Dataset A.



5 Conclusion and Discussion

In this paper, we propose a novel Query-POI relevance
model for POI retrieval. The main contributions lie in
three aspects. First, we exploit multi-level text embeddings
and multi-field attention mechanisms to improve semantic
matching for complex queries. Then, we propose two faith-
ful location embeddings to learn the specific geographic cor-
relation in ride-hailing scenarios, and incorporate the geo-
graphic correlation with the semantic similarity to capture
more comprehensive features for Query-POI relevance anal-
ysis. Third, we conduct extensive experiments on two real-
world click-through datasets to evaluate the model, and the
experimental results show significant improvements in terms
of NDCG over state-of-the-art models.

Notably, the model is effective for POI retrieval in various
location based services, including but not limited to ride-
hailing (e.g., Didi, Lyft, and Uber), local business search
(e.g., Yelp), and on-demand food delivery (e.g. Uber Eats
and Meituan-Dianping). Since ride-hailing users are highly
sensitive to the retrieval result, their searching actions poten-
tially set high standards for the relevance model. Hence, we
take the ride-hailing services as the example in our paper.
Although it is possible to get a unified view of matching in
POI retrieval and POI recommendation, at present we have
not compared our model (which focuses on the Query-POI
relevance) with any POI recommendation models (which
mainly solve the User-POI semantic gap), since they are
based on different rationales, techniques, and datasets.
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