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Abstract

Subitizing, or the sense of small natural numbers, is an in-
nate cognitive function of humans and primates; it responds
to visual stimuli prior to the development of any symbolic
skills, language or arithmetic. Given successes of deep learn-
ing (DL) in tasks of visual intelligence and given the primitiv-
ity of number sense, a tantalizing question is whether DL can
comprehend numbers and perform subitizing. But somewhat
disappointingly, extensive experiments of the type of cognitive
psychology demonstrate that the examples-driven black box
DL cannot see through superficial variations in visual repre-
sentations and distill the abstract notion of natural number, a
task that children perform with high accuracy and confidence.
The failure is apparently due to the learning method not the
CNN computational machinery itself. A recurrent neural net-
work capable of subitizing does exist, which we construct
by encoding a mechanism of mathematical morphology into
the CNN convolutional kernels. Also, we investigate, using
subitizing as a test bed, the ways to aid the black box DL by
cognitive priors derived from human insight. Our findings are
mixed and interesting, pointing to both cognitive deficit of
pure DL, and some measured successes of boosting DL by
predetermined cognitive implements. This case study of DL
in cognitive computing is meaningful for visual numerosity
represents a minimum level of human intelligence.

1 Introduction
1.1 Background and meotivation

In the past decade deep neural networks have rapidly de-
veloped into a powerful problem-solving paradigm that has
found a wide gamut of applications, spanning almost all aca-
demic disciplines. In particular, deep convolutional neural
networks (DCNNs) are lauded for their apparent visual intel-
ligence, by which we refer to the successes enjoyed by DC-
NN in visual pattern analysis, recognition and classification
tasks (Krizhevsky, Sutskever, and Hinton 2012; Simonyan
and Zisserman 2014; Szegedy et al. 2015; He et al. 2016;
Sun et al. 2014; Schroff, Kalenichenko, and Philbin 2015;
Sun et al. 2015). Although convolutional neural networks
were originally inspired by the knowledge of animal cortex
(Hubel and Wiesel 1968), our understanding of the inner
working mechanism of DCNNSs is outstepped or arguably
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even shrouded by their functional prowess in many applica-
tions.

In this work we are intrigued by and try to understand
the uncomforting contrast between the abundance that DL
can accomplish in visual recognition tasks, some of which
are quite challenging even for humans (e.g., judging if two
face images are of the same person (Lu and Tang 2015)),
and how severely handicapped it becomes when tested on
cognitive tasks as simple and basic as learning the concept
of numbers. We conduct a family of cognitive experiments
to test if DL can, under various levels of supervision, learn
the simple concept of natural numbers by observing sample
images containing a varying number of objects in different
positions, orientations, sizes, shapes and colors.

The awareness of numbers, or numerosity perception is
a neurocognitive function possessed by human infants prior
to speech and any symbolic learning and even by animals
(Reas 2014; Harvey et al. 2013; Brannon and Terrace 1998;
Burr and Ross 2008; Dehaene 2011; Nieder and Miller 2003;
Xu 2003). Furthermore, numerosity perception is innate very
much like taste, sight, touch, smell and sound, although it
seems to be a higher order cognitive construct than the com-
mon five senses. Arguably, numerosity is the simplest task
of cognitive computing and thus it serves as an ideal Turing-
type test to challenge whether DL, or any Al machinery for
that matter, can match humans.

1.2 Related work

Stoianov and Zorzi proposed a forward neural network of
two hidden layers to learn numerosity estimation (Stoianov
and Zorzi 2012). The learnt neural network model was found
to exhibit a numerosity estimation behavior. However, the
authors did not push far enough when testing their neural
network for cognitive power in numerosity. The synthetic
objects of test images do not vary in shape, color, or orienta-
tion; the size variation of objects remain in the same range
of the training images. As such, the success of the neural
network in making statistical inference under the i.i.d. con-
dition is expected. In addition, the numerosity discussed in
(Stoianov and Zorzi 2012) did not include subitizing (the
precise judgement of small numbers) that is a key topic in
our study.

Very recently, Ritter et al. investigated the interpretability
problem in DCNNSs using the methods of cognitive psychol-



ogy (Ritter et al. 2017). They found that one shot learning
methods trained on ImageNet have a human-like bias when
associating a class of objects with a word or label. The au-
thors advocate to leverage tools of cognitive psychology to
better understand DCNNs. Many of our experiments to test
cognitive power of DL are also partly inspired by works of
cognitive psychology.

1.3 Paper outline and contributions

The main enquiry of this work is whether the black box DL
can reach the level of abstraction and reasoning of humans,
beyond i.i.d. statistical inference. After all, not all mental
processes fall into the realm of statistical inferences; human
brain is more than just a Bayesian machine. A key finding
of this paper is that the end-to-end black box DL fails the
numerosity tests, although the number sense represents a
minimum level of intelligence, far more primitive than nat-
ural language understanding. Hence, this study adds a fresh
anecdote to the widely held critiques on the deficit of DC-
NNs in cognitive computing. The failures of DCNNSs in our
cognitive experiments are analyzed. The analysis exposes the
overreliance of existing DL methods on sample statistics at
the expense of scene semantics. DL is easily confused by
immaterial variations of the same visual representation of
numbers, and fails to generalize in the size, shape and color
of objects.

In sharp contrast to the failures of the black box learning,
by incorporating a mechanism of mathematical morphology
into convolutional kernels, we are able to construct a recur-
rent convolutional neural network (RCNN) to subitize de-
terministically rather than statistically. The proposed RCNN
is neurocognitively motivated and has a simple and small
core of very few parameters. This compact model can ab-
stract the number concept from wide visual signal variations,
which the pure data-driven DL fails to accomplish. The only
caveat is that the proposed RCNN has the benefit of human-
knowledge.

Another contribution of this paper is to make deep learn-
ing break the i.i.d. limitation by head starting the black box
learner on cognitive primitives derived from human insight.
We dissect the proposed RCNN for subitizing into subnet-
works for morphological erosion, connected components and
counting. These subnetworks can be separately trained and
combined to learn the subitizing task with a generalization
ability beyond the i.i.d. limitation. If considering the above
task-specific subnetworks as preexisted (innate) cognitive im-
plements prior to machine learning, then the above outlined
enhanced learning approach parallels the learning model of
“nurturing the nature” in cognitive psychology.

The remainder of this paper is structured as follows. Sec-
tion 2 is a brief review of the existing knowledge on human
visual numerosity perception. Section 3 presents the designs,
results and discussions of our experiments on the capability
of DCNN s to learn subitizing. After exposing the difficulties
of DCNN:Ss in abstracting numbers from training images, we
introduce in Section 4 a boundary representation to improve
the abstraction power. In Section 5, we design and discuss the
deterministic RCNN that can perform subitizing even when
images fall outside the distribution of the training data, and
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this success is contrasted with the black box DL approach.
In Section 6, we investigate how to boost DL and improve
its generalization capability by using preexisted cognitive
implements. Discussion and conclusions are in Section 7.

2 Human Visual Numerosity

Neuroscientific evidence and data exist to suggest that chil-
dren are endowed with, prior to speech and symbolic learning,
the aptitude of number appreciation(Dehaene et al. 1999).
Neural circuits dedicated to numerical cognition are found
(Harvey et al. 2013). The evolutionary values of being keenly
aware of number are self-evident, including the advantages in
foraging (Krebs and Davies 1987), reproduction (Lyon 2003),
and social activities (McComb, Packer, and Pusey 1994;
Wilson, Britton, and Franks 2002).

Visual numerosity involves two neurocognitive processes:
subitizing and approximate numerosity. Subitizing refers to
the human ability, discovered by Kaufman (Kaufman et al.
1949), for rapid, accurate, and confident judgment of the num-
ber of items in a small set. Approximate numerosity refers
to the instinct of human and other species to spontaneously
estimate the number of items in an environment (Brannon
and Roitman 2003).

Opposite edges of an area in the right superior parietal
lobe are identified to maximally respond to small and large
quantities (Harvey et al. 2013). The estimation precision of
approximate numerosity mechanism obeys Weber’s law like
hearing, seeing, tasting and other basic sensory functions.
The populations of two sets of objects can be reliably ranked
only if the two numbers differ by a sufficiently large ratio
governed by Weber’s law (Fechner 2012).

Subitizing is another cognitive function; it infers the exact
number of objects by tracking individual objects in space and
time. The cognition relies on the spatio-temporal coherence:
parts of an object stay as a bounded whole in both space
and time, reminiscing on the notion of the connected com-
pound in mathematics and digital images. Studies show that
the togetherness of an object is how human infants perceive
object boundaries (Spelke and Kinzler 2007). However, the
reliability of subitizing is limited to small numbers. If the
number exceeds four, then the approximate numerosity mech-
anism takes over the task of numerical cognition (Nieder and
Miller 2004; Piazza et al. 2004; Tokita and Ishiguchi 2010;
Whalen, Gallistel, and Gelman 1999).

3 Visual Numerosity of Deep Convolutional
Neural Networks

DCNNS can be trained to count a specific type of objects in a
particular environment, such as the pedestrians on a street or
cells under a microscope (Zhang et al. 2015; Xie, Noble, and
Zisserman 2016). But these DL methods cannot generalize,
like humans, across different objects in different backgrounds.
Numerosity requires the abstraction of natural numbers that
are disassociated from, say, 2 faces or 3 cells. The ability,
or lack of it, of deep learning to understand numbers is a
probing case study to compare humans and Al machines in
cognitive power, as numerosity is arguably one of the most
basic forms of human intelligence.



Numerosity relies on the topological feature of connected
component, rather than geometrical features such as size,
shape, spatial arrangement of the objects, etc. It will be tan-
talizing to find out whether DCNNs can be taught to “see
through” superficial geometric variations and understand the
abstract notion of numerosity. In this research our goal is not
to solve practical counting problems, but rather examine the
cognitive potential of data-driven black box DCNNS.

In cognitive science numerosity is a raw perception rather
than resulting from arithmetic, accordingly we model it as a
classification system. In case of subitizing, the system reads
visual representations of small numbers and emits class la-
bels, each class for a different number. We train a DCNN
for subitizing by teaching it to perform the following 6-label
classification task. The 6 output labels correspond to natu-
ral numbers 1 through 6. The training images for class n
(n = 1,2,---,6) consist of n white solid circles in black
background (see Fig. 1). These circles are of random sizes,
and furthermore the number of circles in a training image is
statistically independent of the total area of these circles.

n=1 n=2 n=3

n=4 n=5 n=6
Figure 1: Sample training images for class n (1 < n < 6).

To focus on the cognitive aspect of our experiments, the
visual representations of numbers for training the DCNN
classifier are made as simple as possible: synthetic, noise-
free simple objects are randomly placed against a constant
featureless background. Striping from the training images
the intricacies of real-world application problems is to guide
the DCNN classifier towards the discovery of the invariant
of all sample images in each class, that is, the number of
connected components. Here the connected component can
be considered as the minimal and hence most robust feature
for the cognitive task of subitizing. Moreover, the connected
component has a biology basis for number sense because
it encodes the spatial togetherness of an object (Spelke and
Kinzler 2007). As DCNNs have a tendency to draw statis-
tical inferences, which is a detour to our cognitive task, we
make the number of circles in a training image statistically
independent of the total area of these circles.

The subitizing DCNN consists of five convolutional lay-
ers and two fully-connected layers. The detailed network
configuration is outlined in Table 1.

Given the past successes of DCNNs in solving visual clas-
sification problems, it is not surprising that the above DCNN
can perform subitizing almost perfectly on test images of
circles that are drawn from the same distribution of the train-
ing images. But the DL approach is incapable of a level of
abstraction that is trivial for children on the task of subitizing.
The experimental results in the following four experiments
show that the DCNN gets easily confused by superficial varia-
tions in visual number representations, such as changes in the
size, shape and color of the objects, and in region-boundary
duality. The accuracy of number judgement decreases greatly

1305

Table 1: The subitizing DCNN configuration. The convolu-
tional layer parameters are denoted as “Conv-(filter size)-
(number of filters)”.

Layers Maxpooling
Conv-7-32 Yes
Conv-5-32 Yes
Conv-3-64 No
Conv-3-64 No
Conv-3-128 Yes
FC-128 -

FC-6 -
Softmax -

Table 2: Performance of the subitizing DCNN on images of
circles of 50% greater size variation than the training set (the
probability of perceiving n as m).

m 1 2 3 4 5 6
n
1 1 0 0 0 0 0
2 10003 0997 0 0 0 0
3 0 0010 0995 0 0 0
4 0 0 0041 0959 0 0
5 0 0 0 0328 0672 0
6 0 0 0 0001 045 0.549

when the test images deviate from the training images only
in form not in essence. Again, this failure is expected be-
cause the consensus is that DL can only work under the i.i.d.
condition.

Experiment 1. Abstraction from object sizes

The test images are the same as the training images, only
the circles are of 50% greater variation in size than the circles
in the training image set.

Results: As shown in Table 2, a modestly increased vari-
ability in object size significantly decreases the classification
accuracy of the subitizing DCNN. Interestingly, very much
like subisizing by humans, the error of the trained subitizing
DCNN remains very small up to 4, then jumps for larger
numbers.

Experiment 2. Abstraction from object shapes

The subitizing DCNN is generalized to different shapes
by replacing white circles of the training images by white
equilateral triangles, squares and pentagons in test images.

Results: Tables 3 and 4 clearly reveal a lack of generality
of the trained subitizing DCNN to object shapes. In the case
of equilateral triangles, the trained subitizing DCNN cannot
even correctly judge very small quantities, 1 to 3, which are
well within the threshold of subitizing for humans; also, it
systematically overestimates, with a low overall accuracy
of 0.45. For the test images of squares, the accuracy of the
subitizing DCNN increases to 0.76 on average; it is above
0.8 only for numbers 1, 2 and 6, but quite low for 3, 4, and 5.



Table 3: Performance of the subitizing DCNN on images of
triangles (the probability of perceiving n as m).

m

1 2 3 4 5 6
n

1 0.327 0.673 0 0 0 0
2 0.031 0.441 0.528 0 0 0
3 0.001 0.027 0361 0.611 0 0
4 0 0.001 0.022 0.287 0.625 0.038
5 0 0 0 0.044 0364 0.592
6 0 0 0 0.003  0.067 0.930

Table 4: Performance of the subitizing DCNN on images of
squares (the probability of perceiving n as m).

m

1 2 3 4 5 6
n
1 0.876  0.124 0 0 0 0
2 0.019 0.811 0.170 0 0 0
3 0 0.009 0.641 0.350 0 0
4 0 0 0.005 0.686 0.309 0
5 0 0 0 0.020 0.549 0.431
6 0 0 0 0 0.022  0.978

Experiment 3. Abstraction from object colors

The objects in this test set are statistically identical to the
objects in the training set in terms of geometry, but their
foreground / background colors are swapped.

Results: As shown in Table 5, the trained subitizing DCNN
completely fails the subitizing test, although the test images
only undergo a superficial systematic change from the train-
ing images. The average accuracy is only 0.42.

Experiment 4. Abstraction from region-boundary du-
ality

In human vision, the region and boundary representations
of objects are patently dual of each other. In Marr’s theory
of computational vision (Marr 1982), the primal sketch of
objects is a vital to cognition. We test the trained subitizing
DCNN for subitizing with the boundary version of training
images, and examine how well it can generalize to the sim-
ple region-boundary duality. This test set consist of white
rings of random size, position and orientation under black
background. Clearly in this case, the test images, although
carrying the same meaning in the notion of numerosity, have
drastically different statistics from the training set. As the
trained subitizing DCNN tries to make a statistical inference,
it fails catastrophically on the cognitive task of subitizing
(see Table 6).

If the black-box DL approach is ever able to attain the level
of human intelligence, then it has to generalize or reason
beyond statistical inference under the i.i.d. condition. In this
context, we are interested in the possibility, or lack of it, to
augment DL in any ways so that it can eventually distill the
concept of natural numbers, a very basic cognitive construct
for humans and primates, from a non-exhaustive set of visual
examples. Our investigations and developments along the
above line of enquiry are presented in the following two
sections.
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Table 5: Performance of the subitizing DCNN on images of
swapped colors (the probability of perceiving n as m).

m

1 2 3 4 5 6
n

1 0.160 0.800 0.040 0 0 0
2 0.010 0.340 0.650 0 0 0
3 0 0.040 0.680 0.280 0 0
4 0 0.010 0.160 0.670  0.160 0
5 0 0 0.060 0.500 0.420 0.020
6 0 0 0 0.180 0.570 0.250

Table 6: Performance of the subitizing subitizing DCNN on
images of white rings (the probability of perceiving n as m).

m

1 2 3 4 5 6
n
1 ] 0.004 0647 0.349 0 0 0
2 0 0.002 0420 0.578 0 0
3 0 0 0.010 0.458 0.523 0.009
4 0 0 0 0.096 0.576 0.328
5 0 0 0 0.002 0.194 0.804
6 0 0 0 0 0.011 0.989
4 Generalization with Boundary

Representation

Experiments 1 through 4 expose the inability of the DCNN to
acquire the cognitive function of subitizing by generalizing to
superficial variations in the size, shape, color and the region-
boundary duality of the objects. One way to make the DCNN
generalize better is to enrich the training images and include
objects of varied shapes, sizes, colors, and in either region or
boundary representations, as shown in Fig. 2. The objects are
circles and simple n-gons, not necessarily convex, 1 < n < 6,
and in random configuration.

More importantly, we boost the abstraction capability of
the subitizing DCNN by allowing it to learn from the bound-
ary representation of objects instead from the set of pixels.
The boundary representation, as illustrated in Fig. 3, is given
to the DCNN as a preexisted primitive to associate numbers
with objects. Very much in analogy to the nature-nurture
characterization in cognitive psychology, the boundary rep-
resentation here is considered innate to the DCNN and it
does not need to be learnt from raw data. As illustrated by
comparing Fig. 2 and Fig. 3, the boundary primitive uni-
fies the presentations of varied example images, regardless
whether the original training image has white objects in black
background or reversed, or whether the objects are repre-
sented in solid color or boundary sketch. This relieves the
DCNN the burden of abstracting from different colors and
region-boundary duality.

Also, to prevent the DCNN from estimating the number
of objects n from the number of boundary pixels ¢ (the sum
of the perimeters of all objects) in Fig. 3, and force it to
discover via supervised learning the topological construct of
connected component, which is the most essential and robust
feature for numerosity, we normalize c by scaling the objects



L4 ' )
lﬂﬂ

Figure 2: The sample images that contain objects of varied
shapes, sizes, colors, and in either region or boundary repre-
sentations.

Figure 3: Unified boundary representations of the training
images in Fig. 2.

such that ¢ has very close distributions for different classes
(n), as shown in Fig. 4.

Next, we retrain the 6-label DCNN classifier using the
normalized boundary images, and examine if, after the ex-
tra helps are given towards generalization, the DCNN can
subitize on an arbitrary visual representation of small natu-
ral numbers. The experimental results of the human-guided
DCNN on test images are tabulated in Table 7. The table
shows very high classification rates of the newly trained
DCNN on the normalized boundary images. Indeed, if the
object boundaries are extracted and provided to the DCCN,
it appears to comprehend small natural numbers via an ab-
straction of different visual representations.

Population
N
o
o

2

100

Class

Figure 4: The histograms of the number of edge pixels ¢ for
different classes n.
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Table 7: Performance of the human-guided DCNN on edge
maps. (the probability of perceiving n as m).

m

1 2 3 4 5 6
n
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0.020 0970 0.010 0 0
4 0 0 0.020  0.930 0.050 0
5 0 0 0 0.040 0.790 0.170
6 0 0 0 0 0.080 0.920

Table 8: Performance of the subitizing DCNN on objects
scaled up 50%. (the probability of judging n as m).

m 1 2 3 4 5 6
n
1 10991 0009 0 0 0 0
2 | 0016 0984 0 0 0 0
3 0 0504 049 0 0 0
4 0 0 0793 0207 0 0
5 0 0 0002 0966 0032 0
6 0 0 0 0114 0860 0.026

Table 9: Performance of the subitizing DCNN on objects
scaled down 50% (the probability of judging n as m).

m 1 2 3 4 5 6
n
1 0687 0313 0 0 0 0
2 | 0026 039 058 0001 0 0
3 10002 0006 0021 089% 0075 0
4 0 0 0 0014 0492 0494
5 0 0 0 0001 0043 0.956
6 0 0 0 0 0012 0988

However, the improvement of generalization made by all
the efforts above still does not suffice to match the human
performance on subitizing. The accuracy of the newly trained
subitizing DCNN deteriorates significantly if we merely scale
the objects in test images. Tables 8 and 9 show what happens
if the objects in test images are scaled by 50% up or down,
respectively. The DCNN underestimates (overestimates) n
when objects in a test image are scaled up (down). This seems
quite counter-intuitive at first glance, but then the failure
to generalize in object size can be explained; the DCNN
apparently correlates the class label n to the likely number
of boundary pixels per object.

Recall that we have made the class label n statistically
independent of the total number of edge points c (see Fig. 4)
in the training images; otherwise, the DCNN will escape
to exploit the positive correlation between n and c, instead
of understanding the true topological nature of the problem.
Here we face a dilemma: normalizing c against n creates a
negative correlation between n and ¢, the average number
of edge points per object; normalizing ¢ against n creates a
positive correlation between n and c. Because it is impossible



to make both ¢ and ¢ independent of n, the inevitable conclu-
sion is that no preparation of the training data can prevent the
DCNN from making a statistical inference of n and force it
to discover the essence of connected components underlying
subitizing.

Other networks. We also try to improve the DCNN of Ta-
ble 1 by training networks with residual blocks for subitizing.
However, the residual DCNN cannot generalize any better
than the network of Table 1.

5 Deterministic General DCNN Solution

The previous section exposes the handicap of DL on subitiz-
ing, a rudimentary cognitive function for humans. But the
exposed deficit of the black box connectionist Al approach
on subitizing does not mean that DCNNs cannot do the job.
On the contrary, we can construct a deterministic DCNN
algorithm of subitizing that can abstract from any shape and
size of objects.

The proposed DCNN algorithm is one of mathematical
morphology. It first reduces (abstracts) objects of complex
shapes to single pixels by recursively removing boundary
pixels of the objects in parallel. Then the cognition of subitiz-
ing trivially follows. Here all objects are assumed to have no
holes in them.

0] -1 1 1 110 1 110
1 1 1 1 1 1 1 1 1
0]-1 1 0o|]-1]-1 1 1|0
o0|j]1]0 0]-1 1 0oj]0]0
11111 1 1 1 o|-1]0
1 1]-1 11110 0o|j0]0

Figure 5: Kernels of the proposed deterministic RCNN algo-
rithm, where 1, —1 and 0 match foreground, background and
arbitrary pixels, respectively

At the core of the artificial neural network is a small set of
3 x 3 convolutional kernels (templates), as listed in Fig. 5. If
a pixel and its neighbourhood match any of the convolutional
kernels, then it can be safely pruned along with all other
so matched pixels, without altering the connectivity of any
object in the image. By applying the set of kernels and their
180°-rotated versions alternately, the algorithm repeats the
pruning process till no further reduction is possible. This idea
can be compactly carried out by a recurrent convolutional
neural network (RCNN) with a single conv layer of 6 x 3 x
3 = 54 weights, as illustrated in Fig. 6. Note that in the
looping of RCNN, although the geometry of the image signal
keeps simplifying, the topology of the objects is preserved,
thus maintaining the object count an invariant. The above
connectivity-preserving reduction is the key to achieve the
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Input Output

6 convolutional
kernels (3 x 3)

e

ﬁ

Merge

Figure 6: The architecture of the proposed RCNN algorithm.

generalization of our solution in object size, which black box
DL cannot as reported in Tables 8 and 9.

What should be stressed is that the proposed RCNN draws
the abstraction from an image to object count in a way sim-
ilar to visual cortex (Hubel and Wiesel 1968), basing its
visual cognition on boundary coherence and spatial together-
ness (Spelke and Kinzler 2007). Moreover, the architecture
of our RCNN has a biological parallel. Indeed, it is well
known that the ventral visual pathway contains both feed-
forward and feedback connections (Felleman and Van 1991;
Sporns and Zwi 2004; Markov et al. 2014). Functionally
and anatomically feedback connections are vital to visual
cognition.

Algorithmically, the proposed RCNN has only 54 weights,
whereas other DCNNSs, such as the AlexNet and VGGNet,
have millions or more. As expected in the principle of Oc-
cam’s razor, our RCNN model can abstract from visual signal
variations far better than other DCNNSs, unfettered by the lim-
itation of i.i.d. statistical inference as in mainstream machine
learning. Still the proposed RCNN subitizing algorithm has
one limitation: it will not work if any object has hole(s) in it.

6 Learning with Preexisted Cognitive
Implements

In the study of human cognitive development, a prevailing
hypothesis is that learning or knowledge acquisition is an-
chored on a small set of core inborn knowledge systems
pertaining to domain-specific representational priors; they
direct and modulate the learning of novel representations
(Spelke and Kinzler 2007; Carey 2009). In this view cultural
learning is facilitated by a “cortical recycling” of a limited
number of cerebral circuits biologically evolved to function
in ways critical for the survival of our specie. Furthermore,
these elementary cerebral circuits enjoy a sufficient level of
plasticity so that their coding scheme can adapt for learning
new functions (Dehaene and Cohen 2007).

In a similar perspective of nurturing the nature, we can
facilitate DL by some preexisted cognitive implements (na-
ture), so it can acquire the capability of performing a specific
function, using pertaining training data (nurture). In our case
study of subitizing, we assume that the RCNN of Fig. 6 to-
gether with the accompanying 3 x 3 convolutional kernel
structure is pre-implemented neural circuitry suited for the
task. Within the given RCNN architecture, the objective of



DL reduces to determine the weights of the six convolutional
kernels using training images.

We carried out the training of the RCNN with different ran-
dom initializations of the weights and examine if the weights
of the six 3 x 3 convolutional kernels can be learnt by using
the gradient descent method. The experimental results turn
out to be disappointing; the training losses oscillate without
exhibiting a downward trend. To promote the convergence,
we strengthen the prior knowledge and initialize the subitiz-
ing RCNN not randomly but with the weights only slightly
deviated from those of the known solution in Fig. 5. Even so,
the training still fails to converge; in fact, through the itera-
tions the weights diverge from those of our designed kernels
that can solve the problem exactly. The reason for the fail-
ures is that the loss function, given the deterministic RCNN
architecture, is highly discontinuous near the solution point,
very much like in integer programming. Although the prede-
termined RCNN is a suitable connectionist machinery for the
cognitive task, its parameters cannot be correctly set by the
back propagation algorithm of DL. This exposes, in our view,
a serious handicap of DL due to its optimization methodol-
ogy of the variational calculus. Many cognitive problems are
singular right at the solution points as in the above example.

Next, we reduce the cognitive task from subitizing to iden-
tifying connected components; the latter is the essential fea-
ture of the former. If the DL approach can solve the problem
of connected components, then the resulting DCNN of con-
nected components can be concatenated to a fully connected
network to solve the problem of subitizing as shown in Fig. 7.

The computation of connected components is a recursive
invocation of the morphological atom operation of erosion, or
connectivity-preserving reduction. Recalling that the architec-
ture of RCNN has a biological parallel in the ventral visual
pathway (Felleman and Van 1991; Sporns and Zwi 2004;
Markov et al. 2014), we choose the RCNN as the connection-
ist model for connected components. In this RCNN the atom
operation is the erosion by removing one layer of boundary
pixels; this is performed by a fully convolutional neural net-
work as depicted in Fig. 7. In our design, the erosion atom
subnetwork contains 4 residual blocks. Each residual block
has two convolutional layers and one RELU activation layer.

By manually decomposing the cognitive function of
subitizing into three subfunctions, one layer erosion, con-
nected component, and counting, we are able to construct
subnetworks, one for each subfunction, via separate learning
processes, and then combine them into a subitizing DCNN
that can generalize to different sizes and shapes of the objects.

Even we have finally succeeded in developing a DCCN
solution for subitizing, our success is not very satisfying be-
cause it is hardly a case for the power of DL in autonomous
cognition. DL accomplishes the cognitive task of subitizing
only after we provide the DCNN some predetermined rep-
resentations and primitives. In other words, it benefits from
human insight, far away from the pure end-to-end data driven
machine learning.

The above exercise in cognitive computing strongly sug-
gests the necessity of augmenting the black box DL method-
ology by preexisted (innate) cognitive constructs possessed
by humans.
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Figure 7: The RCNN architecture of connected components
and the inner atom subnetwork for erosion.

7 Conclusions

The black box data-driven methodology of DL, specifically
supervised learning with DCNN:S, is scrutinized on the sim-
ple cognitive task of numerosity. In our carefully controlled
experiments DCNNs failed to achieve number abstraction
from a large set of training images that exhibit the concept of
natural numbers unequivocally. Even with strong supervision,
DCNN:Ss did poorly on the tests of subitizing, which children
can pass with speed, accuracy and assurance. In contrast, we
are able to construct a simple and compact recurrent convo-
lutional neural network that can deterministically perform
subitizing. This work adds a fresh anecdote to the widely
held cautions and critiques about the absence of human-like
cognitive power of DL. But on the other hand, if DL is al-
lowed to build upon preexisted cognitive implements, it can
learn the abstract notion of numbers.
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