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Abstract
Given the recent success of Deep Learning applied to a variety
of single tasks, it is natural to consider more human-realistic
settings. Perhaps the most difficult of these settings is that of
continual lifelong learning, where the model must learn online
over a continuous stream of non-stationary data. A successful
continual lifelong learning system must have three key capa-
bilities: it must learn and adapt over time, it must not forget
what it has learned, and it must be efficient in both training
time and memory. Recent techniques have focused their efforts
primarily on the first two capabilities while questions of effi-
ciency remain largely unexplored. In this paper, we consider
the problem of efficient and effective storage of experiences
over very large time-frames. In particular we consider the case
where typical experiences are O(n) bits and memories are
limited to O(k) bits for k << n. We present a novel scalable
architecture and training algorithm in this challenging domain
and provide an extensive evaluation of its performance. Our
results show that we can achieve considerable gains on top of
state-of-the-art methods such as GEM. 1

Introduction
A long-held dream of the AI community is to build a ma-
chine capable of operating autonomously for long periods
or even indefinitely. Such a machine must necessarily learn
and adapt to a changing environment and, crucially, man-
age memories of what it has learned for the future tasks it
will encounter. A spectrum of learning scenarios are avail-
able depending on problem requirements. In lifelong learning
(Thrun 1996) the machine is presented a sequence of tasks
and must use knowledge learned from the previous tasks to
perform better on the next. In the resource-constrained life-
long learning setting the machine is constrained to a small
buffer of previous experiences. Some approaches to lifelong
learning assume that a task is a set of examples chosen from
the same distribution (Rusu et al. 2016; Fernando et al. 2017;
Shin et al. 2017; Ramapuram, Gregorova, and Kalousis 2017;
Al-Shedivat et al. 2017; Lee et al. 2018). If instead the ma-
chine is given a sequence of examples without any batching,
then this is called continual learning. In this paper we focus
on this more challenging continual learning scenario.
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1See an extended version of this paper including the appendix at
https://arxiv.org/pdf/1711.06761.pdf.

Continual learning (Thrun 1994; Ring 1994; Thrun 1996)
has three main requirements: (1) continually adapt in a non-
stationary environment, (2) retain memories which are useful,
(3) manage compute and memory resources over a long pe-
riod of time. Most neural network research has focused on
methods to improve (1) and (2). In this paper we consider (3)
as well and further investigate the role of efficient experience
storage in avoiding the catastrophic forgetting (McCloskey
and Cohen 1989) problem that makes (2) so challenging.

Experience memory has been influential in many recent
approaches. For example, experience replay (Lin 1992)
was integral in helping to stabilize the training of Deep Q
Learning on Atari games (Mnih et al. 2015). Episodic stor-
age mechanisms (Schaul et al. 2015; Blundell et al. 2016;
Pritzel et al. 2017; Rebuffi, Kolesnikov, and Lampert 2017;
Lopez-Paz and Ranzato 2017) were also some of the earliest
solutions to the catastrophic forgetting problem in the super-
vised learning setting (Murre 1992; Robins 1995). Unlike
approaches which simply focus on remembering represen-
tations of old tasks (Li and Hoiem 2016; Riemer, Khabiri,
and Goodwin 2016; Kirkpatrick et al. 2017), episodic stor-
age techniques achieve superior performance because of their
ability to continually improve on old tasks over time as useful
information is learned later (Lopez-Paz and Ranzato 2017).

All of these techniques try to use stored experiences to sta-
bilize learning. However, they do not consider agents which
must operate independently in the world for a long time. In
this scenario, assuming the kind of high-dimensional data
which make up human experiences, the efficient storage of
experiences becomes an important factor. Storing full experi-
ences in memory, as these methods do, causes storage costs to
scale linearly with the number of experiences. To truly learn
over a massive number of experiences in a non-stationary
environment, the incremental cost of adding experiences to
memory must be sub-linear in the number experiences.

In this paper we propose a scalable experience memory
module which learns to adapt to a non-stationary 2 environ-
ment and improve itself over time. The memory module is
implemented using a variational autoencoder which learns to
compress high-dimensional experiences to a compact latent
code for storage. This code can then be used to reconstruct

2We assume the environment is non-stationary, but not adversar-
ial. So past experiences can be helpful for learning future tasks.
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realistic recollections for both experience replay training and
improvement of the memory module itself. We demonstrate
empirically that the module achieves sub-linear scaling with
the number of experiences and provides a useful basis for a
realistic continual learning system. Our experiments show
superior performance over state-of-the-art approaches for life-
long learning with a very small incremental storage footprint.

Related Work
Storing Parameters Instead of Experiences. Our method
is complementary to recent work leveraging episodic storage
to stabilize learning (Mnih et al. 2015; Blundell et al. 2016;
Pritzel et al. 2017; Rebuffi, Kolesnikov, and Lampert 2017;
Lopez-Paz and Ranzato 2017). Some recently proposed
methods for lifelong learning don’t store experiences at
all, instead recording the parameters of a network model
for each task (Rusu et al. 2016; Kirkpatrick et al. 2017;
Fernando et al. 2017). This yields linear (or sometimes worse)
storage cost scaling with respect to the number of tasks. For
our experiments, and in most settings of long-term interest
for continual learning, the storage cost of these extra model
parameters per task significantly exceeds the per task size of
a corresponding experience buffer.

Generative Models to Support Lifelong Learning.
Pseudorehearsals (Robins 1995) is a related approach for
preventing catastrophic forgetting that unlike our recollection
module does not require explicit storage of codes. Instead
it learns a generative experience model alongside the main
model. For simple learning problems, very crude approxima-
tions of the real data such as randomly generated data from an
appropriate distribution can be sufficient. However, for com-
plex problems like those found in NLP and computer vision
with highly structured high dimensional inputs, more refined
approximations are needed to stimulate the network with rel-
evant old representations. To the best of our knowledge, we
are the first to consider variational autoencoders (Kingma and
Welling 2014) as a method of creating pseudo-experiences
to support supervised learning. Some recent work (Ramapu-
ram, Gregorova, and Kalousis 2017) considers the problem
of generative lifelong learning for a variational autoencoder,
introducing a modified training objective. This is potentially
complementary to our contributions in this paper.

Biological Inspiration and Comparisons. Interestingly,
the idea of scalable experience storage has a biologically
inspired motivation relating back to the pioneering work of
McClelland, McNaughton, and O’Reilly (1995), who hypoth-
esized complementary dynamics for the hippocampus and
neocortex. In this theory, updated in (Kumaran, Hassabis, and
McClelland 2016), the hippocampus is responsible for fast
learning, providing a very plastic representation for retain-
ing short term memories. Because the neocortex, responsible
for reasoning, would otherwise suffer as a result of catas-
trophic forgetting, the hippocampus also plays a key role
in generating approximate recollections (experience mem-
ories) to interleave with incoming experiences, stabilizing
the learning of the neocortex. Our approach follows hip-
pocampal memory index theory (Teyler and DiScenna 1986;
Teyler and Rudy 2007), approximating this role of the hip-
pocampus, with a modern deep neural network model. As this

theory suggests, lifelong systems need both a mechanism of
pattern completion (providing a partial experience as a query
for a full stored experience) and pattern separation (main-
taining separate indexable storage for each experience). As
in the theory, we do not literally store previous experiences,
but rather compact indexes which can be used to retrieve
the experience from an association cortex, modeled as an
auto-encoder.

Storing Few Experiences. Recent work on continual life-
long learning in deep neural networks (Rebuffi, Kolesnikov,
and Lampert 2017; Lopez-Paz and Ranzato 2017) has fo-
cused on the resource constrained lifelong learning problem
and how to promote stable learning with a relatively small
diversity of prior experiences stored in memory. In this work,
we complete the picture by also considering the relationship
to the fidelity of the prior experiences stored memory. We
achieve this by considering an additional resource constraint
on the number of bits of storage allowed for each experience.

The Scalable Recollection Module (SRM)
The core of our approach is an architecture which supports
scalable storage and retrieval of experiences as shown in
Figure 1. There are three primary components: an encoder,
an index buffer, and a decoder. When a new experience is
received (in the figure, an image of the numeral ”6”), the
encoder compresses it to a sequence of discrete latent codes
(one hot vectors). These codes are concantenated and further
compressed to a k bit binary code or “index” shown in dec-
imal in the figure. This compressed code is then stored in
the index buffer. This path is shown in blue. Experiences are
retrieved from the index buffer by sampling a code from the
index buffer and passing it through the decoder to create an
approximate reconstruction of the original input. This path is
shown in red in the figure.

Figure 1: The scalable recollection module.

The recollection buffer is implemented using a discrete
variational auto-encoder (Jang, Gu, and Poole 2017)(Maddi-
son, Mnih, and Teh 2017). A discrete variational autoencoder
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is a generative neural model with two components: an en-
coder and a decoder. The encoder is trained to take the input
(say an image) and produce a discrete distribution over a set
of latent categories which describe that input. To generate
data, the discrete distribution is sampled. This can be done
in a differentiable way using the so-called “reparameteriza-
tion trick” which pushes the (non-differentiable) sampling
operation to the front of the network. The decoder takes the
sample and decodes it back into the original form of the input
(in our example, an image). The VAE can then be used to
encode experiences into a compact discrete code and later to
generate experiences by sampling codes in the latent space
and running them through the decoder.

Variational autoencoders have been used in the past to learn
generative models of experience (called “pseudo-rehearsals”
in the literature) (Robins 1995). Our model differs in two
respects: first we are using a discrete VAE which can produce
compact codes; and second we are maintaining a buffer of
those codes. Typical applications for VAEs focus on a fixed
distribution to be learned and require that the VAE repro-
duce samples from that distribution with high fidelity. For
continual learning it is also important that the VAE adapt to
the non-stationary data distribution. Without an index buffer,
the VAE’s parameters would quickly adapt to the current
input and forget its past experiences. Additionally, as we will
show later, the buffer leads to greater efficiency in generating
samples that capture the variation of the distribution seen.

Improving Experience Replay Training
The recollection module can be used in many ways in a con-
tinual learning setting. In Algorithm 1 we show one approach
which we will use later in our experiments.

In this setting the model must learn T tasks sequentially
from dataset D. At every step it receives a triplet (x, t, y)
representing the input, task label, and correct output. There
are two models to be trained: the recollection module which
consists of a memory index bufferM , an encoderENCφ and
decoderDECψ; and a predictive task model Fθ. The training
proceeds in two phases: in the first phase we ensure that the
recollection module itself is stabilized against forgetting; in
the second phase we stabilize the predictive model.

For the recollection module, we achieve stabilization
through a novel extension of experience replay (Lin 1992).
When an incoming example is received, we first sample multi-
ple batches of recollections from the index buffer and decode
them into experiences using the current decoder. We then
perform N steps of optimization on the encoder/decoder pa-
rameters φ and ψ by interleaving the current input example
with a different batch of past recollections at each of the N
optimization steps. For each optimization step, the error for
each experience in a batch is computed by encoding that
experience into a latent code using the encoder and then de-
coding back to an experience to compute the reconstruction
error. On the first optimization step, the the reconstruction
error is computed using the same decoder parameters that
were used in the creation of that input experience in the batch.
In subsequent steps, those parameters change as the recollec-
tion module is stabilized, learning parameters to successfully
reconstruct both the old experiences in the buffer as well

as the new experience. In this way the recollection module
continues to remember the relevant past experiences in the
buffer while integrating new experiences.

After the recollection module is trained with loss function
`REC and learning rate β, the predictive model Fθ is trained
on just one of the recollection sample sets (we arbitrarily
chose the first) using loss function ` and learning rate α.
Finally, the new sample is written to the index buffer. Perhaps
surprisingly, this strategy of reconstructing experiences from
codes and then performing experience replay training using
them can be as effective for enabling continual learning as
replaying real, uncompressed inputs in some cases.

In the resource constrained setting we study in this pa-
per, there is an upper limit on the number of allowable
episodic memories L which governs the memory update
M ←M ∪{(z, y)}. Our approach is fairly robust to changes
in the update rule. For experience replay, we maintain the
buffer using reservoir sampling (Vitter 1985). In constrast,
for the recently proposed Gradient Episodic Memory (GEM)
algorithm which modulates gradients on incoming examples
by solving a quadratic program with respect to past examples,
we follow prior work and keep an equal number of the most
recent examples for each task. As detailed in the appendix,
integration of Scalable Recollections across algorithms is
quite easy and the other differences between the experience
replay and GEM algorithms with Scalable Recollections are
contained to the different ways of utilizing episodic memory
inherent to each lifelong learning algorithm. We note that the
PROJECT function within GEM solves a quadratic program
explained in (Lopez-Paz and Ranzato 2017).

Recollection Efficiency
In this section we argue that it is more efficient to employ
an index buffer rather than sampling directly from the latent
VAE code space. This results from the ability of the model
to recreate the input distribution. A typical strategy is to
randomly sample from old experiences in episodic storage
and interleave them with new ones to stabilize learning. So to
the extent that the recollections are representative of the full
distribution of prior experiences, learning proceeds exactly
as if samples were drawn from a stationary i.i.d. distribution.

However, when sampling from the code space of the VAE
without a buffer, the sample distribution will be unlikely to
match that of the experiences from training. If the number
of examples is larger than the number of possible codes (the
capacity of the VAE) then the VAE will be unable to differen-
tiate truly different images and hence have poor reconstruc-
tion. This scenario must be avoided for performance reasons.
On the other hand, if the VAE capacity is considerably larger
than the number of training examples, then sampling it at
random is highly unlikely to reproduce the input distribution.

To alleviate this problem, a buffer can be added whose
distribution of codes will match the distribution of the in-
put data codes, if it is sufficiently large. Intuitively, setting
the buffer size to be less than the capacity of the VAE will
ensure that sampling from the buffer is more efficient than
sampling directly from the VAE code space. Our experiments
empirically support this hypothesis (Question 6):
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Algorithm 1 Experience Replay Training for Continual
Learning with a Scalable Recollection Module

procedure TRAIN(D,Fθ, ENCφ, DECψ, α, β)
M ← {}
for t = 1, ..., T do

for x, y in Dt do
Scalable Recollection Module Training:
# create N recollection sample sets
for s = 1,...,N do

# sample latent codes and labels
zs, ys ← Sample(M)
# decode the latent codes into recollections
xs ← DECψ(zs)
# save the current label
Ys ← ys ∪ y
# save the current recollection
Xs ← xs ∪ x

end for
# train the recollection module
for s = 1, ..., N do

# compute recollection module gradients
u← ∇φ,ψ`REC(DECψ(ENCφ(Xs))), Xs)
# update the encoder parameters
φ← φ− βuφ
# update the decoder parameters
ψ ← ψ − βuψ

end for
Experience Replay Training:
# compute main model gradients
g ← ∇θ`(Fθ(X1, t), Y1)
# update the main model parameters
θ ← θ − αg
# encode the recollection sample set
z ← ENCφ(x)
# store it in the index buffer
M ←M ∪ {(z, y)}

end for
end for
return Fθ, ENCφ, DECψ,M

end procedure

Hypothesis 1 An index buffer is a more efficient parameter-
ization of the input space seen by a variational autoencoder
than its latent code if:

`c ≥ L
` is the autoencoder latent variable size (i.e. 32 for typical

continuous latent variables), c is the number of latent vari-
ables in the autoencoders (i.e. the number of hidden units for
continuous latent variables), and L is the index buffer size.

In the vast majority of settings relevant to the study of
continual lifelong learning today it is safe to assume that
this inequality will hold. For example, even if we store an
index for every example in a dataset like MNIST or CIFAR,
this inequality will hold unless a continuous latent variable
autoencoder has 3 or fewer latent variables. To put it another
way, the per sample compression would have to be over 400X
for popular datasets like Omniglot and MNIST and well
over 1500X for CIFAR. These levels of compression with
good reconstruction are far beyond what is possible with any
known tools today. Moreover, given, as an example, the blurry

nature of CIFAR images, it is possible that this compression
quality is completely unfeasible. In practice, do to natural
redundancy in the space of samples, it is more likely that L
will also only need to be significantly less than the number
of examples seen. In our work we find that selecting subsets
works well although a buffer may be even more efficient with
online clustering strategies as in (Kaiser et al. 2017).

Evaluation
Datasets
Our experiments will primarily focus on three public datasets
commonly used for deep lifelong and multi-task learning.

MNIST-Rotations: (Lopez-Paz and Ranzato 2017) A
dataset with 20 tasks including 1,000 training examples for
each task. The tasks are random rotations between 0 degrees
and 180 degrees of the input space for each digit in MNIST.

Incremental CIFAR-100: (Lopez-Paz and Ranzato 2017)
A continual learning split of the CIFAR-100 image classifica-
tion dataset considering each of the 20 course grained labels
to be a task with 2,500 examples each.

Omniglot: A character recognition dataset (Lake et al.
2011) in which we consider each of the 50 alphabets to be a
task. This is an even more challenging setting than explored
in prior work on continual lifelong learning, containing more
tasks and fewer examples of each class.

Evaluation for Continual Lifelong Learning
In this section we evaluate the benefits of the Scalable Recol-
lection Module in enabling continual lifelong learning.

Metric: As in prior work, we measure retention as our key
metric. It is defined as the test set accuracy on all tasks after
sequential training has been completed over each task.

Architecture: We model our experiments after (Lopez-
Paz and Ranzato 2017) and use a Resnet-18 model as Fθ
for CIFAR-100 and Omniglot as well as a two layer MLP
with 200 hidden units for MNIST-Rotations. Across all of our
experiments, our autoencoder models include three convolu-
tional layers in the encoder and three deconvolutional layers
in the decoder. Each convolutional layer has a kernel size of
5. As we vary the size of our categorical latent variable across
experiments, we in turn model the number of filters in each
convolutional layer to keep the number of hidden variables
consistent at all intermediate layers of the network.

Module hyperparameters: In our experiments we used
a binary cross entropy loss for both ` and `REC . In the ap-
pendix we outline a constrained optimization procedure to
find the optimal discrete autoencoder latent code design for
a given resource footprint constraint. We follow this proce-
dure to derive architectures that can be directly compared to
various episodic storage baselines in our experiments.

The key question we consider is the following:
Question 1 Is the recollection module useful in improving

retention for continual lifelong learning?

To answer this question we compare the retention perfor-
mance of a system equipped with the recollection module to
one equipped with a buffer of real experiences. We consider
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three datasets: MNIST-Rotations, CIFAR-100, and Omniglot.
To account for the fact that real experiences take up more
storage, we give both approaches the same storage budget.
Specifically, we define two new quantities: incremental stor-
age and items. The incremental storage is the effective size of
the incremental storage used after the sunk cost of the initial
model parameters. For clarity we express the effective incre-
mental storage size in terms of the number of real examples
of storage that would have the same footprint of resources
used. The number of items by contrast refers to the number
of items used in the episodic storage buffer whether they are
real or approximate recollections. Obviously, by compressing
items stored in the buffer we are able to store more items at
the same effective incremental storage size.

In Table 1 we consider learning with a very small incre-
mental resource footprint on MNIST-Rotations where we
allow the effective storage of only one full experience or
fewer per class. We find that storing real experiences can
perform well in this regime, but the Scalable Recollection
Module significantly outperforms them. For example, we
achieve considerable improvements over results reported for
the popular elastic weight consolidation (EwC) algorithm
(Kirkpatrick et al. 2017) on this benchmark. We note that
EwC stores some items for computing the Fisher information.
We also note that the large incremental cost of the parameter
and Fisher information storage for each task is equal to that
of storing a real buffer of over 18 thousand examples.

In Table 2 we show results for Incremental CIFAR-100.
This is a significant challenge for the Scalable Recollection
Module since the CIFAR tiny image domain is known to be
a particularly difficult setting for VAE performance (Kingma
et al. 2016; Chen et al. 2017). We explore settings with a very
small incremental resource footprint, including a couple of
settings with even less incremental memory allowance than
the number of classes. Real storage performs relatively well
when the number of examples is greater than the number of
classes, but otherwise suffers from a biased sampling towards
a subset of classes. This can be seen by the decreased per-
formance for small buffer sizes compared to using no buffer
at all, learning online. Consistently we see that tuning the
recollection module to approximate recollections with a rea-
sonably sized index buffer results in improvements over real
storage at the same incremental resource cost.

To further validate our findings, we tried the Omniglot
dataset, attempting to learn continually in the difficult incre-
mental 50 task setting. With an incremental resource con-
straint of 10 full examples, replay achieves 3.6% final re-
tention accuracy (online learning produces 3.5% accuracy).
In contrast, the recollection module achieves 5.0% accuracy.
For an incremental resource footprint of 50 full examples,
replay achieves 4.3% accuracy which is further improved
to 4.8% accuracy by taking three gradient descent steps per
new example. The recollection module again achieves better
performance with 9.3% accuracy at one step per example and
13.0% accuracy at three steps per example.

Question 2 How does use of Scalable Recollections influ-
ence the long term retention of knowledge?

Method Incremental Storage Items Retention
GEM Real Storage 100 100 62.5

200 200 67.4
GEM Recollections 100 3000 79.0

200 3000 81.5
Replay Real Storage 100 100 63.4

200 200 71.3
Replay Recollections 100 3000 75.6

200 3000 81.1
EwC 18288 1000 54.6
Online 0 0 51.9

Table 1: Retention results on MNIST-Rotations for low effective
buffer sizes with an incremental storage resource constraint.

Model Incremental Storage Items Retention
Online 0 0 33.3
LwF (Li and Hoiem 2016) 0 0 34.5
Replay Real Storage 10 10 29.4

50 50 33.4
200 200 43.0

Replay Recollections 10 5000 39.7
50 5000 47.9
200 5000 51.6

GEM Real Storage 20 20 23.4
60 60 40.6
200 200 48.7

GEM Recollections 20 5000 52.4
60 5000 56.0
200 5000 59.0

Table 2: Incremental CIFAR-100 results for low effective incremen-
tal buffer sizes. GEM requires sizes that are multiples of T = 20.

The value of using recollections becomes even more ap-
parent for long term retention of skills. We demonstrate this
in Figure 2 by first training models on Incremental CIFAR-
100 and then training them for 1 million training examples
on CIFAR-10. The number of training examples seen from
CIFAR-100 is only 5% of the examples seen from CIFAR-
10. Not only does the recollection module allow experience
replay to generalize more effectively than real storage dur-
ing initial learning, it also retains the knowledge much more
gracefully over time. We provide a detailed chart in the ap-
pendix that includes learning for larger real storage buffer
sizes as a comparison. A six times larger real storage buffer
loses knowledge much faster than Scalable Recollections
despite better performance during training on CIFAR-100.

Question 3 Can Scalable Recollections overcome the over-

Figure 2: Retained accuracy on CIFAR-100 after prolonged
training on CIFAR-10. CIFAR-10 contains images with a
similar structure, but is drawn from a disjoint set of labels.
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Model Items Retention
Replay Real Storage 200 43.0
Replay Recollections - No Transfer 1392 43.7
Replay Recollections - CIFAR-10 Transfer 1392 49.7
GEM Real Storage 200 48.7
GEM Recollections - No Transfer 1392 43.7
GEM Recollections - CIFAR-10 Transfer 1392 54.2
iCaRL (Rebuffi et al., 2017) 200 43.6

Table 3: Retention results on Incremental CIFAR-100 with a 200
real episode effective total storage resource footprint.

head of autoencoder model parameters?

To achieve the greater goals of lifelong learning, we are
mostly interested in scaling to conditions where the number
of examples seen is very large and as a result the incremen-
tal storage footprint dominates the overhead of the initial
model parameters. However, we would like to empirically
demonstrate that we can overcome this overhead in practical
problems. Unfortunately, to demonstrate performance with
a very small total storage footprint on a single dataset, an
incredibly small autoencoder would then be required to learn
a function for the very complex input space from scratch.
We demonstrate in Table 3 that transfer learning provides
a solution to this problem. By employing unlabeled back-
ground knowledge we are able to perform much better at
the onset with a small autoencoder. We explore a total re-
source footprint on top of the size of Fθ equivalent to 200
real examples. This equates to the smallest setting explored in
(Lopez-Paz and Ranzato 2017) and we demonstrate that we
are able to achieve state of the art results by initializing only
the autoencoder representation with one learned on CIFAR-
10. CIFAR-10 is drawn from the same larger database as
CIFAR-100, but is non-overlapping.

Why Scalable Recollections Work
Given the impressive performance of the Scalable Recollec-
tions Module for supporting the continual lifelong learning
for neural networks, we would like to further explore the
proposed system to elucidate why it works so well.

Question 4 How do discrete latent codes compare with
continuous latent codes for compression?

In Figure 3 we empirically demonstrate that autoencoders
with categorical latent variables can achieve significantly
more storage compression of input observations at the same
average distortion as autoencoders with continuous variables.
In this experiment to make the continuous baseline even
tougher to beat on the training set, we leverage a standard
autoencoder instead of a variational one as it does not add
noise to its representation, which would make it harder to
reconstruct the original input. See the appendix for details.

Question 5 How do learned methods of compression com-
pare with static compression algorithms?

In Figure 3 we also compare the performance of autoen-
coders with JPEG, which is a static compression algorithm
commonly used in industry. We can see that JPEG per-

forms quite well for low degrees of compression, but scales
less gracefully than discrete autoencoder based compression
for larger degrees of sample compression. This is because
learned compression algorithms have the ability to further
customize to the regularities seen in the data than a generic
one. More detail is provided in the appendix.

Figure 3: Comparing reconstruction L1 distance on the
MNIST training set and sample compression for continuous
latent variable and categorical latent variable autoencoders.

Question 6 Do we see gains in learning efficiency as a
result of the index buffer as predicted by Hypothesis 1?

The recollection module must not only provide a means
of compressing the storage of experiences in a scalable way,
but also a mechanism for efficiently sampling recollections
so that they are truly representative of prior experiences.

Figure 4: Comparison of generative transfer learning perfor-
mance using a CNN teacher and student model on MNIST
while using code sampling and recollection module sampling.

We first consider the typical method of sampling a varia-
tional autoencoder, which we will refer to as code sampling,
where each latent variable is selected randomly. Obviously,
by increasing the capacity of the autoencoder we are able to
achieve lower reconstruction distortion. However, interest-
ingly, we find that while increasing the autoencoder capacity
increases modeling power, it also increases the chance that a
randomly sampled latent code will not be representative of
those seen in the training distribution. Instead, we maintain an
index buffer of indexes associated with prior experiences. Let
us call sampling from the index buffer, buffer sampling. Table
4 shows a comparison of code and buffer sampling for two dif-
ferent latent variable representation sizes. The reconstruction
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Latent Representation Sampling Strategy Reconstruction Distortion Nearest Neighbor Distortion
38 2d variables Code Sampling 0.058 0.074

Buffer Sampling 0.058 0.054
168 2d variables Code Sampling 0.021 0.081

Buffer Sampling 0.021 0.021

Table 4: Comparing the nearest training example L1 distance of code and buffer sampling based recollections averaged across
10,000 samples. Reconstruction distortion of the autoencoder is measured on the test set and is not influenced by the strategy.

distortion is the error in reconstructing the recollection using
the decoder. The nearest neighbor distortion is the distance
from the sampled code to its nearest neighbor in the training
set. We can see that for the same reconstruction distortion, the
buffer approach yields a significantly smaller nearest neigh-
bor distortion. This means that the buffer sampling produces
a more representative sample than code sampling.

How much does this matter in practice? Figure 4 demon-
strates its utility through a knowledge distillation experiment.
Here we compare the two representation sizes and approaches
at the task of distilling a CNN teacher model into a student
model of the same architecture through the latent codes. That
is the student is trained on the reconstructed data using the
teacher output as a label. By far the best learning curve is
obtained using buffer sampling. We would like to emphasize
that these results are not a byproduct of increased model
capacity associated with the buffer: the small representation
with the buffer significantly outperforms the big represen-
tation with code sampling despite 7.4x fewer total bits of
storage including the model parameters and buffer. In the ap-
pendix we include comprehensive experiments showing that
distillation based on buffer sampling with a discrete latent
code VAE is even more efficient than storing real examples.

Question 7 Does recollection based self-stabilization of
the autoencoder lead to effective continual lifelong learning?

We validate our recollection module training procedure by
demonstrating that recollections generated by an autoencoder
model can actually be effective in preventing catastrophic
forgetting for the very same model. As shown in Figure 5
for continual learning on CIFAR-100 with number of steps
N = 10 and an effective incremental buffer size of an aver-
age of two items per class, the recollection module is very
similarly effective to real storage for stabilizing the lifelong
autoencoder. The negative effects of the less effective syn-
thetic examples are apparently drowned out by the positive
effects of a larger diversity of stored examples.

Question 8 Can recollection efficiency improve over time?

We explore this question in Figure 6 where we consider
online training of the model with a random initialization
and no buffer (Online) and offline training with random ini-
tialization and full data storage (Offline) trained over 100
iterations. Predictably, access to unlimited storage and all
of the tasks simultaneously means that the performance of
Offline is consistently better than Online. To demonstrate the
value of transfer from a good representation in the continual
learning setting, we additionally plot an online model with no
replay buffer and a representation initialized after training for
100 iterations on CIFAR-10 (Transfer Online). Transfer adds

significant value, performing comparably to the randomly
initialized model with access to all tasks simultaneously and
unlimited storage (Offline). In fact, it performs considerably
better for the first few tasks where the number of prior expe-
riences is much greater than the number of new experiences.
Improvements from transfer learning thus have a substantial
effect in stabilizing Fθ as well as demonstrated in Table 3.

Conclusion
We have proposed and experimentally validated a general pur-
pose Scalable Recollection Module that is designed to scale
for very long time-frames. We have demonstrated superior
performance over other state-of-the-art approaches for life-
long learning using very small incremental storage footprints.
These increases can be dramatically boosted with unsuper-
vised recollection module pre-training. We have shown that
VAEs with categorical latent variables significantly outper-
form those with continuous latent variables (and even JPEG)
for lossy compression. Finally, we have also shown that main-
taining an explicit buffer is key to capturing the distribution of

Figure 5: Test set L1 reconstruction distortion on Incremental
CIFAR-100 with an effective incremental buffer size of 200.

Figure 6: Test set L1 reconstruction distortion on Incremental
CIFAR-100 of a 76 2d categorical latent variable autoencoder.
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previously seen samples and generating realistic recollections
needed to effectively prevent forgetting.
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