
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Stochastic Submodular Maximization with Performance-Dependent Item Costs∗

Takuro Fukunaga,1 Takuya Konishi,2 Sumio Fujita,3 Ken-ichi Kawarabayashi2

1RIKEN Advanced Intelligence Project and JST, PRESTO, takuro.fukunaga@riken.jp
2National Institute of Informatics, {takuya-ko,k keniti}@nii.ac.jp

3Yahoo Japan Corporation, sufujita@yahoo-corp.jp

Abstract

We formulate a new stochastic submodular maximization prob-
lem by introducing the performance-dependent costs of items.
In this problem, we consider selecting items for the case where
the performance of each item (i.e., how much an item con-
tributes to the objective function) is decided randomly, and the
cost of an item depends on its performance. The goal of the
problem is to maximize the objective function subject to a bud-
get constraint on the costs of the selected items. We present an
adaptive algorithm for this problem with a theoretical guaran-
tee that its expected objective value is at least (1− 1/ 4

√
e)/2

times the maximum value attained by any adaptive algorithms.
We verify the performance of the algorithm through numerical
experiments.

1 Introduction
In the stochastic submodular maximization, we are given a
set of items associated with a random utility function that has
a certain diminishing marginal return property. The goal of
the problem is to select items so as to maximize the utility
function subject to constraints. To deal with decision making
under uncertainty, several variants of stochastic submodular
maximization are actively being considered (see Section 2),
and the approaches proposed in this literature have been
successfully applied to numerous decision making tasks.

The aim of this paper is to introduce the performance-
dependent costs of items into the stochastic submodular max-
imization. In many decision making applications, we some-
times have to make a decision without exact information on
the performance of each item (i.e., how much an item con-
tributes to the utility function) because it varies on several
uncertain factors. Moreover, it is often the case that the cost
of selecting an item varies depending on its performance. To
deal with this situation, we introduce random performance
and performance-dependent costs of items, and consider the
stochastic optimization problem of maximizing the utility
function subject to a budget constraint on the costs of the
selected items.

∗The first author is supported by JSPS KAKENHI Grant Number
JP17K00040 and JST PRESTO Grant Number JPMJPR1759. The
second and the fourth authors are supported by JST ERATO Grant
Number JPMJER1201.
Copyright c⃝ 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This problem models many natural settings of decision
making. Here, we present two examples.

Recommendation: Diminishing marginal return property
plays a key role in designing objectives for recommender
systems (Ziegler et al. 2005). For example, in news recom-
mendation, users often browse news articles in order to cover
daily news or to know the different aspects of a favorite topic.
It is critical for such users to recommend diverse and unseen
items, and the objective function is modeled through submod-
ular functions (El-Arini et al. 2009; Yue and Guestrin 2011;
Ahmed et al. 2012). In several practical scenarios, the per-
formance of a recommended item is determined by some
random factors, and it incurs a cost according to the per-
formance; e.g., when a user receives recommended news
articles, he/she decides to skip or (partially) read them and
spends his/her own time or money by reading the selected
articles. The existing formulations are not applicable to this
situation because they cannot deal with the case where both
the performances and the costs of items are unknown before
recommending them.

Batch-mode active learning: In the batch-mode active
learning, we have a set of unlabeled data and the objective
is to select several data points to label subject to a budget
constraint on the cost. In a previous study (Hoi et al. 2006),
this task is formulated as a monotone submodular maximiza-
tion problem, where the objective function represents the
information amount of data. However, this existing formu-
lation does not consider uncertainty in the performance of
labeling. In many cases, time for labeling the given data is
limited, and it is uncertain in advance how much data can
be processed within the given time due to factors such as
variation of labelers’ skill and experimental conditions. Also,
it is natural that the cost (e.g., the fee paid to labelers) for
the labeling depends on the amount of processed data (see
also Figure 1). Our problem can model this situation while it
cannot be handled by the existing formulation.

We present algorithms that compute adaptive policies for
this problem together with the theoretical analysis of their
performances. One of our proposed algorithms is guaranteed
to achieve an expected objective value of least (1− 1/ 4

√
e)/2

(> 0.110) times that attained by any adaptive policy. In addi-
tion to the theoretical guarantee, we evaluate the empirical
performances of our algorithms through numerical experi-
ments. The experimental results indicate that our algorithms

1485

$ $

$ $ $ $

Cost

Performance

Figure 1: An illustration of the performance-dependent cost
of an item in the batch-mode active learning. In this figure, an
item corresponds to a group of data points and each cylinder
denotes one data point in a group. Once the number of the
processed data points is revealed, the corresponding expense
is incurred.

perform better than baseline algorithms in many settings. For
example, when the algorithms are applied to a task of the
batch-mode active learning, we observe that our algorithms
reduce the prediction errors of a learning algorithm compared
with baseline algorithms; see Section 6 for more details.

Our algorithms extend the algorithm of Gupta et al. (2011)
for a stochastic knapsack problem, which corresponds to a
special case of our problem where the objective function is
linear. Since the performance guarantee of Gupta et al. is
1/8 = 0.125, our guarantee is not much worse than it al-
though our algorithms deal with a more general problem;
relationships with previous studies are discussed more in
Section 2. Except for our algorithms, we are aware of no
algorithms that achieve a constant approximation ratio for
our problem. It is important to observe that the ratio is a con-
stant because it means that the algorithm behaves reasonably
for any instance. Indeed, numerical experiments show that
the empirical performance of our algorithms is stable while
baseline algorithms sometimes achieve only small objective
values; in a certain instance, the scores of baseline algorithms
are less than 70% of our proposed algorithms.

Our algorithms are based on the contention resolution
scheme, which is a general framework to design approxi-
mation algorithms for the submodular maximization. The
contention resolution scheme is so useful that many efficient
algorithms based on it have been proposed in the literature.
However, the existing scheme is not applied to our problem
because it is restricted to the submodular set-functions. In our
problem, the objective function is defined over the integer lat-
tice in order to represent the dependence of the objective on
the performance levels of selected items. Thus, we extend the
contention resolution scheme to lattice-submodular functions,
and design our algorithms based on this extended framework.
This technique is potentially useful in other contexts, and so
it is of independent interest.

To summarize, the contributions of this paper can be de-
scribed as follows.

• We formulate a new stochastic submodular maximization
by introducing the performance-dependent costs of items,
which has numerous natural applications.

• We present adaptive algorithms for the above problem, one
of which has the theoretical guarantee that its expected

objective value is at least (1 − 1/ 4
√
e)/2 times the opti-

mal value. Its empirical performance is verified through
numerical experiments.

• To design the algorithms, we extend the contention res-
olution scheme to lattice-submodular functions, which
is a new general framework of independent interests to
design approximation algorithms for maximizing lattice-
submodular functions.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related previous studies. Section 3 formulates
our problem. Our algorithms and their analysis are given in
Sections 4 and 5. Since our algorithms are based on a contin-
uous relaxation of the original problem, Section 4 formulates
this continuous relaxation and discusses how to solve it. Sec-
tion 5 explains how to construct an adaptive policy from a
continuous solution. Section 6 reports on numerical experi-
ments, and Section 7 concludes the paper.

2 Related Work
Since the body of previous studies on submodular maximiza-
tion is huge, we here review some of those on its stochastic
variants. A typical example of stochastic submodular max-
imization is the study of Golovin and Krause (2011) on
adaptive submodularity. They proposed the notions of adap-
tive submodularity and adaptive monotonicity of stochas-
tic set-functions, and presented an adaptive algorithm for
maximizing adaptive monotone submodular functions. Since
their study, adaptive algorithms for maximizing adaptive
submodular functions have been investigated in various set-
tings (Chen and Krause 2013; Fujii and Kashima 2016;
Gabillon et al. 2013; Gabillon et al. 2014; Gotovos, Karbasi,
and Krause 2015; Yu, Fang, and Tao 2016).

Another example of stochastic submodular maximization
is the submodular probing problem (Adamczyk, Sviridenko,
and Ward 2016; Gupta, Nagarajan, and Singla 2017). In this
problem, the given submodular function is deterministic but
each item takes the active or inactive state randomly. A cho-
sen item contributes to the objective value only when it is
active. The constraints consist of inner and outer constraints,
where the inner constraints restrict the chosen active items,
whereas the outer constraint restricts all chosen items. Thus,
the inner constraints depend on the states of the chosen items,
which as far as we know, is the only example where random-
ness in both the objective function and the constraints are
correlated as our problem.

Asadpour and Nazerzadeh (2016) considered a stochas-
tic submodular maximization with a monotone lattice-
submodular function. In their setting, each chosen item has a
state selected from nonnegative rational numbers. The objec-
tive function receives the vector encoding the states of chosen
items as an input. This setting for the objective function is
similar to that in our problem (there is a small difference that
their objective function receives real-valued vectors while our
objective function receives integer-valued vectors). However,
Asadpour and Nazerzadeh considered only a deterministic
matroid constraint. constraints do not include randomness
in Asadpour and Nazerzadeh, whereas the constraint in our
problem depends on the random states of items.

1486

When the objective function is linear, our problem coin-
cides with the stochastic knapsack problem studied by Gupta
et al. (2011). Gupta et al. gave a pseudo-polynomial time algo-
rithm with the performance guarantee of ratio 1/8 (= 0.125).
Observe that the ratio (1− 1/ 4

√
e)/2 (> 0.110) of our algo-

rithm is not much worse than the ratio of Gupta et al. even
though our algorithm is for a more general problem. Indeed,
our algorithm is equivalent to the algorithm of Gupta et al.
when the problem is restricted to their problem. Gupta et
al. also showed that their algorithm can be converted into a
polynomial-time algorithm with a constant loss of approx-
imation ratio. This conversion can be also applied to our
algorithm although we do not focus on it in this paper. The
algorithm of Gupta et al. was later improved by Ma (2014),
who gave a pseudo-polynomial time algorithm with ratio 1/2.
The conversion to a polynomial-time algorithm cannot be
applied to the algorithm of Ma.

3 Setting
First, we introduce the lattice-submodular functions. Let Z+

and R+ denote the sets of nonnegative integers and nonneg-
ative real numbers, respectively. For n ∈ Z+, we let [n]
denote {0, 1, . . . , n}. Let I be a set of items, and let B ∈ Z+.
For two vectors u, v ∈ [B]I , u ≤ v means that the relation
holds componentwise, i.e., u(i) ≤ v(i) for all i ∈ I . u ∧ v
and u ∨ v are the vectors in [B]I defined by (u ∧ v)(i) =
min{u(i), v(i)} and (u ∨ v)(i) = max{u(i), v(i)} for all
i ∈ I . For i ∈ I , let χi denote the vector in [B]I such
that χi(i) = 1 and χi(i

′) = 0 for all i′ ∈ I \ {i}. Let
f : [B]I → R+ be a function over the integer lattice [B]I .
Function f is called monotone if f(u) ≤ f(v) holds for
any u, v ∈ [B]I such that u ≤ v, and f is called lattice-
submodular if f(u) + f(v) ≥ f(u ∧ v) + f(u ∨ v) holds
for all u, v ∈ [B]I . The latter condition is equivalent to
f(u ∨ jχi) − f(u) ≥ f(v ∨ jχi) − f(v) holding for any
u, v ∈ [B]I such that u ≤ v, i ∈ I , and j ∈ [B]. Note
that the lattice-submodularity does not imply the property
called DR-submodularity, which is the diminishing marginal
returns along the direction of χi for each i ∈ I . That is,
f(u+ χi)− f(u) ≥ f(v + χi)− f(v) does not necessarily
hold for all u, v ∈ [B]I such that u ≤ v and i ∈ I even if f
is lattice-submodular.

We now formulate our new submodular optimization prob-
lem, which we call the correlated stochastic submodular
maximization problem (CSSMP). In CSSMP, we assume that
each item i ∈ I has a state θ(i) ∈ {1, . . . , B}, which is
independently determined at random. Let pi(j) denote the
probability that the level of an item i is j, where we as-
sume without loss of generality that pi(j) > 0 holds for all
j ∈ {1, . . . , B}. The state of an item represents its perfor-
mance level; as θ(i) is larger, the performance of item i is
better. The performance level of an item determines its cost
and contribution to the objective value. We let ci(j) denote
the cost of an item i when the state of i is j. We assume that
ci is monotone as follows, indicating that the cost of item i is
larger as the performance of i is better.

Assumption 1. 0 ≤ ci(1) ≤ ci(2) ≤ · · · ≤ ci(B) ≤ C
holds for any i ∈ I , where C is the given budget.

For S ⊆ I , let θS denote the vector in [B]I such that
θS(i) = θ(i) if i ∈ S, and θS(i) = 0 otherwise. The
objective function of our problem is a monotone lattice-
submodular function f : [B]I → R+, and the objective value
of our choice S of items is defined as f(θS). Thus, if a chosen
item performs well, then a better objective value is achieved.

Summarizing, the inputs of CSSMP are a set I of items,
a monotone lattice-submodular function f : [B]I → R+, a
budget C ∈ Z+, and the costs ci : {1, . . . , B} → Z+ and the
probabilities pi : {1, . . . , B} → [0, 1] associated with each
item i ∈ I . The objective of CSSMP is to find S ⊆ I that
maximizes f(θS) subject to

∑
i∈S ci(θ(i)) ≤ C. Recall that

θ is a random vector decided by the probabilities {pi : i ∈ I}.
Adaptive policy Our aim is to compute an efficient policy

for CSSMP. A policy chooses items sequentially and receives
feedback by observing the performance of the chosen items.
We will now explain more concretely. We assume that the dis-
tributions determining the states (or performances) of items
are known to the policy but that the realizations of the states
are not given beforehand. When a policy chooses an item
i ∈ I , its state θ(i) (which the policy observes) is determined
according to the probability distribution pi. The subsequent
behavior of an adaptive policy can depend on the observa-
tions made up to that point, whereas a policy is said to be
non-adaptive when the subsequent behavior is independent
of observations.

In this paper, we consider the situation where the cancella-
tion of items is prohibited. That is, once a policy chooses an
item, this choice is irrevocable. In addition, we also prohibit
the total costs of selected items from exceeding the budget.
This means that we assume the following.

Assumption 2. If a policy has already selected a set S of
items and ci(B) > C −

∑
i′∈S ci′(θ(i

′)) for some item i ∈
I \ S, then the policy cannot select item i.

We use a vector r ∈ [B]I to describe the behavior of a
policy. If an item i ∈ I is chosen by the policy and the state
of i is realized as θ(i), then r(i) = θ(i). If i ∈ I has not been
chosen yet, then r(i) = 0. We call this vector a realization
vector. For a policy π and a realization vector r ∈ [B]I , let
ωπ(r) ∈ [0, 1] denote the probability that the final state of the
policy π is r (i.e., π chooses each item i ∈ {i′ ∈ I : r(i′) >
0}, and the state of that item i is realized as r(i)). We note
that ωπ(r) reflects the randomness of both π and the states
of items when π is a randomized policy. Let favg(π) denote∑

r∈[B]I ωπ(r)f(r), i.e., the average objective value attained
by π. We evaluate the performance of a policy π by favg(π).
Our aim is to find a policy π for which favg(π) is as high
as possible. We say that π is an α-approximation policy for
α ∈ [0, 1] if favg(π) ≥ αfavg(π∗) holds for any policy π∗.

4 Continuous Optimization Phase
Our algorithm for CSSMP consists of two phases, the con-
tinuous optimization phase (which solves a continuous opti-
mization problem) and the rounding phase (which constructs
an adaptive policy from the computed solution for the contin-
uous optimization problem). This section explains the contin-
uous optimization phase.

1487

4.1 Formulation of Continuous Optimization
Problem

In this subsection, we define our continuous optimization
problem. Before presenting it, we first define a submodular
set-function f̄ : 2I → R+ from a lattice-submodular function
f : [B]I → R+. Let S ⊆ I . We randomly sample a vector
r ∈ [B]I as follows. The components of r are determined in-
dependently. If i ∈ S, then the corresponding component r(i)
takes a value from {1, . . . , B}, and r(i) = j with probability
pi(j). Otherwise, r(i) = 0. We let pS(r) denote the proba-
bility that r ∈ [B]I is sampled. We let r ∼ pS denote that
vector r is sampled according to the distribution pS . Then,
we define f̄(S) = Er∼pS

[f(r)] for any S ⊆ I . If f is mono-
tone lattice-submodular, then f̄ is monotone set-submodular
(Asadpour and Nazerzadeh 2016).

The continuous optimization problem is based on the con-
cept of time. We assume that, if an item i is selected, then
this selection uses time ci(θ(i)). In other words, if item i is
selected at time t, then the processing of i continues until
time t+ ci(θ(i)), after which the policy can choose the next
item. At time 0, the policy has selected no items. We regard
the budget C as the time limit. Because of Assumption 2, the
policy cannot choose item i if the processing of i may not
finish before time C.

A variable x(i, t) ∈ [0, 1] is defined for each i ∈ I
and t ∈ [C]. This variable indicates whether item i is se-
lected at time t. Let x̄ denote the vector in RI

+ defined by
x̄(i) =

∑
t∈[C−ci(B)] x(i, t). Our continuous optimization

problem includes a constraint x̄(i) ≤ 1 for each i ∈ I . De-
fine F̄ : [0, 1]I → R+ as the multilinear extension of f̄ , i.e.,
F̄ (y) =

∑
S⊆I

∏
i∈S y(i)

∏
i′ ̸∈S(1 − y(i′))f̄(S) for any

y ∈ [0, 1]I . Let P be the set of x ∈ [0, 1]I×[C] satisfying
x̄(i) ≤ 1 for all i ∈ I , and∑

i∈I

E[min{ci(θ(i)), t}]
∑
t′∈[t]

x(i, t′) ≤ 2t (1)

for all t ∈ {1, . . . , C}. Here, the expectation
E[min{ci(θ(i)), t}] is taken with respect to distri-
bution pi. In other words, E[min{ci(θ(i)), t}] =∑B

j=1 pi(j)min{ci(j), t}. Then, our continuous opti-
mization problem can be written as

max{F̄ (x̄) : x ∈ P}. (2)

Although we define x(i, t) even for t > C − ci(B), this is
only for notational convenience. Since it does not contribute
to the objective function, the objective value does not de-
crease even if it is set to 0. Thus we assume x(i, t) = 0 for
t > C − ci(B) in the remainder of this paper.

Note that (2) contains Ω(|I|C) variables and Ω(|I| + C)
constraints. Since the budget C is encoded in O(logC) bits,
the formulation size of (2) is not polynomial but pseudo-
polynomial on the input size. Due to this, our algorithm
based on (2) is a pseudo-polynomial time algorithm. We
can convert the algorithm into a polynomial-time algorithm
with a constant loss of approximation ratio by applying the
technique used in (Gupta et al. 2011) but we instead focus on
the current form. Evaluating the function F̄ can be also done

by sampling in polynomial time with an error of factor 1 + ϵ
for any constant ϵ > 0. This is standard in the submodular
maximization, and see e.g., (Asadpour and Nazerzadeh 2016)
and (Călinescu et al. 2011). In the rest of this section, we
assume that F can be evaluated exactly for ease of discussion.

In the following theorem, we relate the optimal value of the
continuous optimization problem to the maximum expected
objective value attained by any adaptive policy. This enables
us to compare adaptive policy based on this continuous opti-
mization problem with an optimal adaptive policy.

Theorem 1. The optimal value of (2) is at least (1− 1/e) ·
favg(π

∗) for any adaptive policy π∗.

This theorem is proven by the validity of constraints proven
by Gupta et al. (2011) and the relationship between F̄ and
the expected objective values achieved by adaptive policies
given by Asadpour and Nazerzadeh (2016).

4.2 Algorithms for the Continuous Optimization
Problem

To solve the continuous optimization problem (2), we have
two choices: one is the continuous greedy algorithm, which
was proposed by Călinescu et al. (2011) and was slightly
extended by Feldman (2013); the other is the stochastic con-
tinuous greedy algorithm proposed by Asadpour and Naz-
erzadeh (2016).

Continuous Greedy This algorithm is for maximizing the
multilinear extension G of a monotone set-submodular func-
tion g over a solvable downward-closed polytope. Here, a
polytope Q is said to be solvable if there is an algorithm
that optimizes linear functions over it, and is said to be
downward-closed if 0 ≤ y ≤ y′ ∈ Q imply y ∈ Q. The
algorithm is controlled by a parameter called stopping time.
Feldman (2013) observed that, if the continuous greedy al-
gorithm with stopping time b > 0 is applied to the prob-
lem with a solvable downward-closed polytope Q, then the
algorithm outputs a solution x such that x/b ∈ Q and
G(x) ≥ (1 − e−b − O(n3δ))maxy∈QG(y) hold, where
n is the size of the set over which g is defined and δ is the
step size used in the algorithm. Here Q is assumed to include
the characteristic vector of every singleton set. Stopping time
b should be set to 1 for computing a feasible continuous
solution attaining a better objective value. However, when
the continues greedy algorithm is combined with a round-
ing algorithm, we sometimes obtain a better performance
guarantee by setting b to a value smaller than 1.

It is not obvious that the continuous greedy algorithm can
be applied to our continuous optimization problem (2). This is
because the objective function F̄ (x̄) (defined over the domain
[0, 1]I×[C]) does not seem to be the multilinear extension of
a submodular set-function on I × [C]. Nevertheless, we can
claim that this earlier analysis is valid even for our prob-
lem (2), because the problem is equivalent to maximizing
F̄ (y) subject to y ∈ Q := {y′ ∈ [0, 1]I : ∃x ∈ P, y′ = x̄}.
Notice that Q is a downward-closed solvable polytope in
|I|-dimensional space. Therefore, combining Theorem 1 and
the analysis of Feldman (2013) gives the following theorem.

1488

Theorem 2. If the continuous greedy algorithm with stop-
ping time b ∈ (0, 1] and step size δ = o(|I|−3) is applied
to Problem (2), then it outputs a solution x ∈ bP such that
F̄ (x̄) ≥ (1−1/e)(1−e−b−o(1))favg(π∗) for any adaptive
policy π∗.

Let us sketch how the continuous greedy algorithm com-
putes a solution for (2). The algorithm first initializes all
variables in the temporary solution x to 0 and then updates
them by repeating the following two steps:

Step (i): find a vector dmax ∈ P that maximizes w⊤dmax

for the weight vector w ∈ RI×[C]
+ defined by w(i, t) =

F̄ (x̄ ∨ χi)− F̄ (x̄) for each (i, t) ∈ I × [C];

Step (ii): move the current solution x in direction dmax by
step size δ ∈ (0, 1] (i.e., x is updated to x+ δdmax).

When the stopping time is b ∈ (0, 1], the algorithm outputs x
after repeating these steps b/δ times.

Stochastic Continuous Greedy Theorem 2 states that us-
ing the continuous greedy algorithm to solve (2) imposes two
factors, one coming from the gap between (2) and the optimal
objective value, and the other being due to the performance
of the continuous greedy algorithm. By using the stochastic
continuous greedy algorithm, we can save the former factor.

The difference between the continuous greedy and the
stochastic continuous greedy algorithms is the weight vector
used for deciding dmax. Here, we define the weight vector w′

used in the stochastic continuous greedy algorithm. Let r ∈
[B]I be a random vector such that r(i) = j ∈ {1, . . . , B}
with probability x̄(i)pi(j) and r(i) = 0 with probability
1 − x̄(i) for each i ∈ I , where the different components
are determined independently. Moreover, for each i ∈ I ,
choose one integer j randomly from {1, . . . , B} according
to probability pi(j), and define the vector r′i ∈ [B]I by
r′i(i) = max{r(i), j} and r′i(i

′) = r(i′) for each i′ ∈ I \{i}.
The value of w′(i, t) is defined as E[f(r′i)− f(r)] for each
(i, t) ∈ I × [C]; w′(i, t) takes the same value for all t ∈ [C].
We note that, if r′i(i) is defined as j, then this weight vector
coincides with w used in the continuous greedy algorithm.
The stochastic continuous greedy algorithm uses w′ instead
of w in Step (i) of each iteration. The other part of the algo-
rithm is the same as the continuous greedy algorithm.

Asadpour and Nazerzadeh (2016) proved that the stochas-
tic continuous greedy algorithm with stopping time b = 1
outputs a solution of value at least (1− e−1− o(1))favg(π∗).
Note that this bound is better than that of the continuous
greedy algorithm by the factor 1− e−1. Their analysis can be
extended to an arbitrary value of the stopping time as follows
(we skip the proof because the extension is straightforward).

Theorem 3. If the stochastic continuous greedy algorithm
with stopping time b ∈ (0, 1] and step size δ = o(|I|−3) is
applied to Problem (2), then the algorithm outputs a solution
x ∈ bP such that F̄ (x̄) ≥ (1− e−b− o(1))favg(π∗) for any
adaptive policy π∗.

5 Rounding Phase
This section presents an algorithm that outputs an adap-
tive policy achieving at least half the objective value of

the continuous solution. For this, we introduce the con-
tention resolution scheme for lattice-submodular functions.
The existing contention resolution scheme is a general frame-
work that provides a rounding algorithm for maximizing set-
submodular functions (Călinescu et al. 2011; Feldman 2013;
Feldman, Naor, and Schwartz 2011). We extend this scheme
to the lattice-submodular functions, and show that the solu-
tion constructed by our policy coincides with the solution
output by a contention resolution scheme. Since the con-
tention resolution scheme for set-submodular functions is
widely used in the literature, our extension is of independent
interest.

5.1 Contention Resolution Scheme for
Lattice-Submodular Functions

The considered setting is defined as follows. Let f : [B]I →
R+ be a monotone lattice-submodular function and the prob-
ability distribution qi : [B]→ [0, 1] on [B] be given for each
i ∈ I . We write v ∼ q if v ∈ [B]I is a random vector such
that, for each i ∈ I , the corresponding component v(i) is
determined independently as j ∈ [B] with probability qi(j).
Let F ⊆ [B]I be a downward-closed subset of [B]I (i.e., if
u ≤ v ∈ F , then u ∈ F), and let α ∈ [0, 1]. A mapping
ψ : [B]I → F is referred to as an α-contention resolution
scheme (α-CRS) with regards to q if it satisfies the following
two conditions:

(i) ψ(v)(i) ∈ {v(i), 0} for each i ∈ I;

(ii) if v ∼ q, then Pr[ψ(v)(i) = j | v(i) = j] ≥ α holds for
each i ∈ I and j ∈ B, where the probability considers
the randomness of v as well as that of ψ when ψ is a
random mapping.

An α-CRS ψ is said to be monotone if, for each u, v ∈
[B]I such that u(i) = v(i) and u ≤ v, Pr[ψ(u)(i) = u(i)] ≥
Pr[ψ(v)(i) = v(i)] holds, where the probability here consid-
ers only the randomness of ψ.

We prove that a monotone α-CRS maps v ∈ [B]I into
a vector in F , for which the value of f is at least α times
that for v in expectation. The proof requires the following
preliminary lemma, known as the FKG inequality.

Lemma 1 (Fortuin, Kasteleyn, and Ginibre (1971)). Let
µ : L→ [0, 1] be a log-supermodular probability distribution
on a distributive latticeL (i.e., µ(u)·µ(v) ≤ µ(u∧v)·µ(u∨v)
for any u, v ∈ L). Then, for any non-increasing functions
h, l : L→ R+, we have

Eu∼µ[h(u)] · Ev∼µ[l(v)] ≤ Ev∼µ[h(v) · l(v)].

We note that, if µ is a distribution on [B]I such that the
components of a random vector v ∼ µ are decided indepen-
dently, then µ is log-supermodular.

Theorem 4. If ψ is a monotone α-CRS with respect to q,
then Ev∼q[f(ψ(v))] ≥ αEv∼q[f(v)].

Proof. For notational convenience, let I = {1, . . . , n} and
let u denote ψ(v). For a vector y ∈ [B]I and i ∈ I , we
let ŷi denote the vector defined by ŷi(i′) = y(i′) for i′ ∈
[i], and ŷi(i′) = 0 for i′ ∈ {i + 1, . . . , n}. In this proof,

1489

expectations are with regard to the randomness of v (sampled
with distribution q) and that of ψ unless stated otherwise.

We prove that

E[f(ûi)− f(ûi−1)] ≥ αE[f(v̂i)− f(v̂i−1)] (3)

holds for all i ∈ I . The theorem is proven by summing this
z1inequality over all i ∈ I .

Let us prove (3) for i ∈ I . We let ∆(x, y) denote f(y)−
f(x) for x, y ∈ [B]I and I be the indicator function of events;
i.e., I[E] = 1 if an event E occurs, and I[E] = 0 otherwise.
The left-hand side of (3) is bounded as

E[f(ûi)− f(ûi−1)]

= E[I[u(i) > 0]∆(ûi−1, ûi)]

=

B∑
j=1

Pr[v(i) = j] · E[I[u(i) > 0]∆(ûi−1, ûi) | v(i) = j]

=

B∑
j=1

Pr[v(i) = j] · E[I[u(i) = j]∆(ûi−1, ûi) | v(i) = j]

≥
B∑

j=1

Pr[v(i) = j] · E[I[u(i) = j]∆(v̂i−1, v̂i) | v(i) = j],

where the inequality is obtained from the lattice-
submodularity of f and ûi−1 ≤ v̂i−1.

We give a lower-bound on E[I[u(i) = j]∆(v̂i−1, v̂i) |
v(i) = j] for a fixed j ∈ [B]. Let L denote the sub-lattice
{x ∈ [B]I : x(i) = j} of [B]I . We define two functions
h, l : L → R+ by h(v) = Pr[ψ(v)(i) = j] and l(v) =
∆(v̂i−1, v̂i) for each v ∈ L. Then, both h and l are non-
increasing; indeed, the non-increasingness of h follows from
the monotonicity of ψ, and that of l follows from the lattice-
submodularity of f . Moreover,

E[I[u(i) = j]∆(v̂i−1, v̂i) | v(i) = j]

= E[h(v)l(v) | v(i) = j]

≥ E[h(v) | v(i) = j] · E[l(v) | v(i) = j],

= Pr[ψ(v)(i) = j | v(i) = j] · E[∆(v̂i−1, v̂i) | v(i) = j]

≥ αE[∆(v̂i−1, v̂i) | v(i) = j]

where the first inequality follows from the FKG inequality
and the second inequality follows from the definition of α-
CRS.

Hence we have
B∑

j=1

Pr[v(i) = j] · E[I[u(i) = j]∆(v̂i−1, v̂i) | v(i) = j]

≥ α
B∑

j=1

Pr[v(i) = j] · E[∆(v̂i−1, v̂i) | v(i) = j]

= αE[∆(v̂i−1, v̂i)].

This completes the proof of (3).

5.2 Proposed Algorithm
Our algorithm is given as Algorithm 1. It consists of two
parts. The first part is pre-processing. The algorithm is given

Algorithm 1 Pre-processing and adaptive policy
Input: set I of items, monotone lattice-submodular function

f : [B]I → R+, budget C ∈ Z+, costs ci : [1, B]→
Z+, and probabilities pi : [1, B]→ [0, 1] (i ∈ I)

Output: r ∈ [B]I

// Pre-processing
compute a solution x for (2) by the continuous greedy or the
stochastic continuous greedy algorithm with stopping time
1/4
r ←− 0, I ′ ←− ∅, C ′ ←− 0
for i ∈ I do

sample a number t from [C − ci(B)] with proba-
bility x(i, t) (or do nothing with probability 1 −∑

t∈[C−ci(B)] x(i, t) = 1− x̄(i))
if some number is chosen in the previous step then call

it t(i) and update I ′ ←− I ′ ∪ {i}
if I ′ = ∅ then output r and terminate
Π←− sequence of items in I ′ obtained by sorting in a non-

decreasing order of t(i), breaking ties arbitrarily
// Adaptive Policy
for i = 1, . . . , |I ′| do

if C ′ ≤ t(Πi) then
observe θ(Πi)
r(Πi)←− θ(Πi)
C ′ ←− C ′ + cΠi(θ(Πi))

output r and terminate

the problem instance and computes an ordering of items. The
second part corresponds to an adaptive policy. The algorithm
sequentially chooses items according to the ordering com-
puted in the first part, and then observes their states. The
output of the algorithm is the realization vector representing
the final states of items.
Theorem 5. Let π denote Algorithm 1, and x denote the
solution for (2) computed in Algorithm 1. Then favg(π) ≥
F̄ (x̄)/2 holds.

The following corollary is derived from Theorems 2, 3,
and 5.
Corollary 1. Let π denote Algorithm 1. If π uses the con-
tinuous greedy algorithm with δ = o(|I|−3) to compute x,
then favg(π) ≥ (1− 1/e)(1− 1/ 4

√
e− O(1))/2 · favg(π∗)

holds for any adaptive policy π∗. If π uses the stochas-
tic continuous greedy algorithm with δ = o(|I|−3), then
favg(π) ≥ (1 − 1/ 4

√
e − o(1))/2 · favg(π∗) holds for any

adaptive policy π∗.
The remainder of this subsection is the proof of Theorem 5.

To analyze Algorithm 1, we present two mappings σ : P →
[B]I and τ : [B]I → [B]I such that the output of Algorithm 1
is bounded by τ(σ(x)) from below, where x is the solution
for (2) computed in the first step. σ(x) is a random vector
which is given to a CRS, and τ is a CRS. Our proof of
Theorem 5 shows these correspondences. Below, we first
present the definitions of σ and τ .

The mapping σ(x) returns a random vector v ∈ [B]I from
x ∈ P as follows. Let i ∈ I . The component v(i) correspond-
ing to i is j ∈ [B] with probability pi(j)x̄(i), and otherwise

1490

(probability 1 − x̄(i)) is v(i) = 0. Each component of v is
determined independently. We note that the construction v
corresponds to the construction of I ′ in Algorithm 1; the
probability that v(i) is set to j > 0 is equal to the one that
the state of i is realized as j and i is included in I ′.

The mapping τ maps v ∈ [B]I to y ∈ [B]I as follows.
Let S = {i ∈ I : v(i) ̸= 0}. For each i ∈ S, we choose an
integer t(i) from [C−ci(B)] with probability x(i, t(i))/x̄(i).
We sort the members of S into non-decreasing order of t(i).
We assume without loss of generality that S = {1, . . . , k}
and t(1) ≤ t(2) ≤ · · · ≤ t(k). Vector y is defined as follows.
For i ∈ I \ S, y(i) is set to 0. For i ∈ S, y(i) = v(i) if

i−1∑
i′=1

ci′(v(i
′)) ≤ t(i), (4)

and y(i) = 0 otherwise. We notice that setting y(i) to v(i) >
0 corresponds to π choosing item i. However, condition (4) is
slightly stronger than the condition for π to choose i, which
is represented as

∑
i′=1,...,i−1:y(i′)>0 ci′(v(i

′)) ≤ t(i).
We can observe that Algorithm 1 outputs r such that r ≥

τ(σ(x)) if realizations of randomness coincide between Algo-
rithm 1 and mappings σ and τ ; r may not be equal to τ(σ(x))
because condition (4) for y(i) = v(i) in the definition of τ
is stronger than the corresponding condition for choosing
item i in π. This implies that E[f(r)] ≥ E[f(τ(σ(x)))], by
the monotonicity of f . Hence, it suffices for proving Theo-
rem 5 to show E[f(τ(σ(x)))] ≥ F̄ (x̄)/2. For proving this
relationship, we use the contention resolution scheme for
lattice-submodular functions. For this, we first observe the
following lemma.

Lemma 2. E[f(σ(x))] = F̄ (x̄) holds for any x ∈ P .

Proof. Let S be a random subset of I such that each i ∈ I
is included in S independently with probability x̄(i). By
the definition of F̄ , we have F̄ (x̄) = E[f̄(S)]. Recall that
f̄(S) = Eu∼pS

[f(u)], and hence F̄ (x̄) = Eu∼pS
[f(u)].

Further, notice that σ(x) ∼ pS , and hence Eu∼pS
[f(u)] =

E[f(σ(x))].

Lemma 3. Let q : [B]I → [0, 1] be the probability distribu-
tion over [B]I such that, if v ∼ q, then v(i) = j with proba-
bility pi(j)x̄(i) for each j ∈ {1, . . . , B}, v(i) = 0 with prob-
ability 1−x̄(i), and different components of v are determined
independently. Let I = {y ∈ [B]I :

∑
i∈I:y(i)>0 ci(y(i)) ≤

C}. Then, τ(v) ∈ I holds for any v ∈ [B]I . Moreover, τ is
a monotone 1/2-CRS with respect to q.

Proof. First, let us observe that τ(v) ∈ I for any v ∈
[B]I . We denote τ(v) by y. We also use the notation S =
{1, . . . , k} and t(1), . . . , t(k) used in the definition of τ . If
y(i) = 0 for all i ∈ S, then obviously y ∈ I. Hence we sup-
pose the other case, and let i denote the largest member of S
such that y(i) > 0. Then,

∑
i′∈I:y(i′)>0 ci′(y(i

′)) = ci(yi)+∑
i′<i:y(i′)>0 ci′(y(i

′)) ≤ ci(y(i)) + t(i) ≤ C holds, where
the equality follows from the definition of i, the first inequal-
ity follows from y(i) > 0 and (4), and the second inequality
follows from the fact that t(i) ≤ C − ci(B) ≤ C − ci(y(i)).

Next, we show that τ is a 1/2-CRS. Here, define v as a
random vector with v ∼ q. Let v(i) = j > 0. The probability
that y(i) = j holds is

Pr

[
i−1∑
i′=1

ci′(v(i
′)) ≤ t(i)

]

= Pr

[
i−1∑
i′=1

min{ci′(v(i′)), t(i)} ≤ t(i)

]
. (5)

Each i′ ∈ I belongs to S (i.e., v(i′) > 0) and then chooses
t(i′) from [t(i)] with probability

∑
t∈[t(i)] x(i

′, t). Condi-
tioned on v(i′) > 0, the probability that v(i′) = j is pi′(j).
Hence, we have

E

[
i−1∑
i′=1

min{ci′(v(i′)), t(i)}

]
=

∑
i′∈I

E[min{ci′(θ(i′)), t(i)}]
∑

t∈[t(i)]

x(i′, t).

The right-hand side of this equation is at most t(i)/2 because
4x ∈ P . Hence, by Markov’s inequality, (5) is at least 1/2.

Lastly, let us show that τ is monotone. Suppose that vectors
u, v ∈ [B]I satisfy u ≤ v and u(i) = v(i) = j > 0. It
suffices to show Pr[τ(u)(i) = j] ≥ Pr[τ(v)(i) = j]. In this
case, i ∈ S. Since the choices of t(i′), i′ ∈ S, depend on
only x, we can consider each i′ ∈ S to choose the same
t(i′) in the constructions of both τ(u) and τ(v). In this case,∑i−1

i′=1 ci′(u(i
′)) ≤

∑i−1
i′=1 ci′(v(i

′)) follows from u ≤ v,
and hence Pr[τ(u)(i) = j] ≥ Pr[τ(v)(i) = j] holds.

Proof of Theorem 5. The output r of Algorithm 1 satisfies
E[f(r)] ≥ E[f(τ(σ(x)))]. We can also observe that r is
always feasible.

By Lemma 3, τ is a monotone 1/2-CRS with respect to q,
where q is the probability distribution over [B]I defined in
Lemma 3. Moreover, σ(x) ∼ q holds. Hence, by Theorem 4,
E[f(τ(σ(x)))] ≥ E[f(σ(x))]/2. The right-hand side of this
inequality is F̄ (x̄)/2 by Lemma 2. Therefore, favg(π) =
E[f(r)] ≥ E[f(τ(σ(x)))] ≥ F̄ (x̄)/2.

We note that Assumptions 1 and 2 are required for proving
the monotonicity of τ in Lemma 3. In the previous studies
(Gupta, Nagarajan, and Singla 2017; Ma 2014) on the stochas-
tic knapsack problem, adaptive algorithms achieve a constant
approximation guarantee without these assumptions. Hence
it is interesting to investigate whether those assumptions are
really necessary for CSSMP.

6 Experimental Results
As proposed algorithms, we prepared two implementations;
one employs the continuous greedy algorithm to solve the
continuous optimization problem (2), and the other does
the stochastic continuous greedy algorithm. The step size
δ was set to o(|I|−3) in the performance guarantee given
in Corollary 1, but this setting requires large computational
time. Hence we set δ to (2|I|)−1 in our implementations. The
stopping time b was set to 1. Again, this is different from the

1491

Algorithm 2 Greedy algorithm
Input: set I of items, monotone lattice-submodular func-

tion f : [B]I → R+, budget C ∈ Z+,
costs ci : {1, . . . , B} → Z+ and probabilities
pi : {1, . . . , B} → [0, 1] (i ∈ I)

Output: r ∈ [B]I

r ←− 0, C ′ ←− 0, S ←− ∅
I ′ ←− {i ∈ I \ S : ci(B) + C ′ ≤ C}
while I ′ ̸= ∅ do

for i ∈ I ′ do compute ∆(i | r) by (6) or (7)
i = argmaxi′∈I′ ∆(i′ | r)
observe θ(i), and r(i)←− θ(i)
C ′ ←− C ′ + ci(θ(i))
S ←− S ∪ {i}, I ′ ←− {i′ ∈ I \ S : ci′(B) + C ′ ≤ C}

output r and terminate

setting of Algorithm 1, but in our experiments, the setting of
b = 1 attained the best performance with the above parameter
settings.

We compare these implementations with two baseline al-
gorithms obtained by extending the well-known greedy al-
gorithms for the maximization of set-submodular functions.
The algorithms iteratively select an item that maximizes an
evaluation metric defined as follows. Let S be the set of
items chosen so far, and r ∈ [B]I be the realization vector
(i.e, r(i) = 0 for i ∈ I \S, and r(i) is the state of i for i ∈ S).
Both of the algorithms evaluate an item i ∈ I \ S by using
the expected ratio of the function gain to the cost when i is
chosen. The first baseline evaluates the gain of item i by

∆(i | r) = E
[
f(r ∨ θ(i)χi)− f(r)

ci(θ(i))

]
, (6)

whereas the second baseline does by

∆(i | r) = E[f(r ∨ θ(i)χi)− f(r)]
E[ci(θ(i))]

. (7)

The details of these baseline algorithms are given in Algo-
rithm 2.

We also incorporate a heuristic to pick items greedily into
the implementations of the proposed algorithms; if all the
budget is not spent after executing the rounding phase, the
remaining items are picked greedily.

6.1 Recommendation
We first report the results on synthetic datasets constructed
with a motivation to apply our algorithms to recommenda-
tions. More concretely, we consider recommending items
(e.g., news article or movie) to a user so as to maximize
the user’s utility. If an item i is recommended, then the user
evaluates it through his/her action (e.g., skipping or reading
articles). We define B levels of evaluations. The history of
the recommendations is represented by a vector r ∈ [B]I ;
r(i) = 0 indicates that item i is not recommended to the
user, whereas r(i) > 0 means that i is recommended to the
user and its evaluation is r(i). When the evaluation for item
i is j, the user incurs a cost ci(j). Here, the cost is such as
the fee or time to obtain the evaluation j. For example, in

pay-per-article news platforms, e.g., Blendle, the user needs
to pay the fee for reading an article completely. We assume
that the budget C of the user is known or can be estimated
from the user activities, and the task is to recommend items
under the budget constraint defined by C.

We define the utility of the user by extending the prob-
abilistic topic coverage function, that is often used in rec-
ommendation (e.g., (El-Arini et al. 2009)). While the func-
tion is originally defined as a set-function, we extend it to
an integer lattice for modeling the levels of evaluations.
Let K be the number of topics. We define weight vec-
tors w ∈ [0, 1]K and φi ∈ [0, 1]K (i ∈ I) such that∑K

k=1 w(k) = 1 and
∑K

k=1 φi(k) = 1 for all i ∈ I . w(k)
indicates a user’s preference for the kth topic, and φi(k) in-
dicates the proportion of the kth topic in item i. Given w and
φi (i ∈ I), the utility function f : [B]I → R+ is defined by
f(r) =

∑
k∈K w(k)

(
1−

∏
i∈I

(
1− r(i)φi(k)

B

))
for each

r ∈ [B]I . This is monotone lattice-submodular.
In the experiments, we constructed probability distribution

pi : {1, . . . , B} → [0, 1] randomly according to the symmet-
ric Dirichlet distribution with parameter 1.0, and the vectors
w and φi (i ∈ I) were sampled from the symmetric Dirichlet
distribution with parameter α. The cost ci(j) (i ∈ I , j ∈ [B])
was set to ⌈max{Cf(jχi), 1}⌉. We considered 18 different
settings corresponding to each combination of parameters
B ∈ {3, 5}, K ∈ {5, 15, 30}, and α ∈ {0.1, 0.05, 0.01}. In
all experiments, both C and |I| were set to 100. We gener-
ated three datasets randomly from a single setting. For each
dataset, the algorithms performed 100 random trials of adap-
tive selection, and report the average of the objective values
attained by the algorithms.

Figure 2 (a) compares the average objective values for
18 settings. In this figure, each point in the coordinate cor-
responds to a single setting. The x-coordinate of a point
shows the average objective value attained by the proposed
algorithm with the stochastic continuous greedy algorithm,
where the first baseline algorithm is used when the budget
is not spent when the proposed algorithm terminates. The
y-coordinate represents the maximum of the average objec-
tive values achieved by the two baseline algorithms. Hence,
a point in the lower half indicates that the proposed algo-
rithm outperformed both of the baseline algorithms in the
corresponding setting. We can observe that the proposed al-
gorithm outperformed the baseline algorithms in 14 settings.
The difference between the objective values is large when
the proposed algorithm is better, while the difference is small
even when one of the baseline algorithms achieved a better
objective value. This proves that the proposed algorithm is
more stable than the baseline algorithms.

Figure 2 (b) compares the average objective values at-
tained by the continuous greedy and the stochastic continuous
greedy algorithms for problem (2). The stochastic continu-
ous greedy algorithm outperformed the continuous greedy
algorithm in 15 settings. Thus, we can conclude that the
modification of the continuous greedy algorithm given in the
stochastic continuous greedy algorithm makes a difference
even on empirical performance.

1492

0.41 0.56 0.71 0.86
0.41

0.56

0.71

0.86

Proposed

B
as

el
in

e
(a)

win
loss

0.83 0.87 0.91 0.95
0.83

0.87

0.91

0.95

Stochastic
St

an
da

rd

(b)

1,000 1,100 1,200 1,300
1,000

1,100

1,200

1,300

Proposed

B
as

el
in

e

(c)

4.7 5.1 5.5 5.9
·10−2

4.7

5.1

5.5

5.9
·10−2

Proposed

B
as

el
in

e

(d)

Figure 2: Summaries of experimental results. A blue (red) point denotes our proposed algorithm was better (worse) than the
compared baseline algorithms in the corresponding parameter setting.

6.2 Budgeted Batch-Mode Active Learning

Next, we report the results for applying the algorithms for
CSSMP to a budgeted batch-mode active learning. In this
problem, we have a set D of data, wherein each data point
is represented by a feature vector x ∈ Rd and is associated
with a label y ∈ {−1, 1}. However, the labels of data are
not known in advance. The purpose is to select a part of the
data to label under a budget constraint so as to maximize the
performance of a classifier trained from the labeled data.

In particular, we consider the following setting. The dataset
D is divided into data subsets Di (i ∈ I), and we seek to
select several subsets. A subset Di consists of data points
xi1, . . . , xiB . If subset Di is selected, then the data points in
Di are processed sequentially from xi1 to xiB . It is unclear
how many data points are processed in advance, but we know
the probability pi(j) that the processing of xi1, . . . , xij is
completed but that of xij+1 is not. How many data points in
Di will be processed is revealed immediately after selecting
Di, and a cost ci(j) from the budget is paid if data points
xi1, . . . , xij will be processed. Each item in CSSMP corre-
sponds to each subset, and the state of an item corresponds to
the number of processed data points in the subset. We assume
that at least one data point will be processed if Di is selected.
We consider algorithms to select subsets adaptively under the
constraint that the total cost does not exceed budget C.

To obtain a better classifier, we should maximize the
informativeness of the processed data points. In order to
measure informativeness, we use a function derived from
the Fisher information ratio of logistic regression (Hoi et
al. 2006). This function is defined from an existing linear
classifier parameterized by a weight vector β ∈ Rd and a
bias term β0 ∈ R. Define η : Rd → (0, 1/4] as η(x) =

1

1+eβ
⊤x+β0

(
1− 1

1+eβ
⊤x+β0

)
. Let γ be a small positive pa-

rameter. Let r ∈ [B]I be the vector representing how many
data points in each subset will be processed; r(i) = j > 0
represents that Di is selected and data points xi1, . . . , xij
in Di are processed, whereas r(i) = 0 means that Di

is not selected. Then, the objective function f : [B]I →
R+ is formulated by f(r) = 1

γ

∑
i∈I

∑B
j=1 η(xij) −∑

i∈I

∑
j>r(i)

η(xij)

γ+
∑

i′∈I

∑r(i′)
j′=1

η(xi′j′)(x
⊤
ijxi′j′)

2
. The mono-

tonicity and the lattice-submodularity of this function fol-
low from the monotonicity and set-submodularity of the set-
function considered in Hoi et al. (2006).

For our experiments, we used the WDBC dataset (569
instances; 32 features) from the UCI machine learning repos-
itory (http://archive.ics.uci.edu/ml). We used half of the
dataset for the pooled data and the other for the test data. First,
we randomly selected 20 initial instances from the pooled
data and learned the L2-regularized logistic regression using
the initial data to obtain β and β0. Then, we selected addi-
tional instances from the pooled dataset by using the baseline
and proposed methods for CSSMP under a budget constraint.
Notice that the given labels of these instances are not used up
to this point. Finally, with the labels of these instances, we
again learned the classifier by using the initial and additional
instances.

To implement the logistic regression, we used scikit-learn
(http://scikit-learn.org). For all training of the logistic re-
gression, the regularization parameter ρ was selected from
{0.1, 0.5, 1.0, 2.0, 10.0} by 5-fold cross-validation. All fea-
tures in the dataset were standardized; it makes each feature
have zero mean and unit variance. Note that we did not scale
the features so that ||x||22 = 1 for improving the performance
of the classifiers.
C and γ were set to 100 and 0.01 respectively. pi (i ∈ I)

was constructed randomly according to the symmetric Dirich-
let distribution with parameter 1.0. To make the correlation
between performance and costs, we sorted all the instances
in the pool data by the objective function values, then di-
vided the sorted instance list into the subsets. We considered
eight experimental settings on B and item costs; B was se-
lected from {3, 4, 5, 6}, and ci(j) (i ∈ I; j ∈ [B]) was set
to ⌈max{Cf(jχi), 1}⌉ or ⌈max{jCf(jχi)/B, 1}⌉. In the
same as the experiments of recommendation, we generated
three datasets randomly from each setting, repeated the trial
of selections 100 times, and report the average of the objec-
tive values and the error rates attained by the algorithms.

Figure 2 (c) shows the average objective values of the pro-
posed and the baseline algorithms. The proposed algorithm
showed better performances in seven settings. Figure 2 (d)
shows the error rates of the trained classifiers. Note that a
smaller error rate indicates better performance, and hence a

1493

http://archive.ics.uci.edu/ml
http://scikit-learn.org

point in the upper half indicates that the proposed algorithm
is better than the baseline algorithms. It can be observed that
the proposed algorithm reduced the error of the classifier in
seven settings.

7 Conclusion
We considered adaptive algorithms for CSSMP. In design
of our proposed algorithms, we extend the framework of
the contention resolution scheme, known to be useful in
the maximization problem of set-submodular functions, to
lattice-submodular functions. We believe these contributions
to be potentially useful in other problems related to lattice-
submodular functions.

Through the experiments, we verified that algorithms out-
put better solutions compared with baseline algorithms. A
disadvantage of our algorithms is their computational com-
plexity. In particular, the continuous optimization phase (re-
lying on the continuous greedy or the stochastic continu-
ous greedy algorithm) is slow. There are several attempts
to speed up this part (Badanidiyuru and Vondrák 2014;
Chekuri, Jayram, and Vondrák 2015), and it is a future work
to consider them in our algorithms.

References
Adamczyk, M.; Sviridenko, M.; and Ward, J. 2016. Sub-
modular stochastic probing on matroids. Mathematics of
Operations Research 41(3):1022–1038.
Ahmed, A.; Teo, C. H.; Vishwanathan, S. V. N.; and Smola,
A. J. 2012. Fair and balanced: learning to present news
stories. In Proceedings of the Fifth International Conference
on Web Search and Web Data Mining, 333–342.
Asadpour, A., and Nazerzadeh, H. 2016. Maximizing stochas-
tic monotone submodular functions. Management Science
62(8):2374–2391.
Badanidiyuru, A., and Vondrák, J. 2014. Fast algorithms
for maximizing submodular functions. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, 1497–1514.
Călinescu, G.; Chekuri, C.; Pál, M.; and Vondrák, J. 2011.
Maximizing a monotone submodular function subject to a
matroid constraint. SIAM Journal on Computing 40(6):1740–
1766.
Chekuri, C.; Jayram, T. S.; and Vondrák, J. 2015. On multi-
plicative weight updates for concave and submodular func-
tion maximization. In Proceedings of the 2015 Conference
on Innovations in Theoretical Computer Science, 201–210.
Chen, Y., and Krause, A. 2013. Near-optimal batch mode
active learning and adaptive submodular optimization. In
Proceedings of the 30th International Conference on Machine
Learning, 160–168.
El-Arini, K.; Veda, G.; Shahaf, D.; and Guestrin, C. 2009.
Turning down the noise in the blogosphere. In Proceed-
ings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 289–298.
Feldman, M.; Naor, J.; and Schwartz, R. 2011. A unified con-
tinuous greedy algorithm for submodular maximization. In

IEEE 52nd Annual Symposium on Foundations of Computer
Science, 570–579.
Feldman, M. 2013. Maximization Problems with Submodular
Objective Functions. Ph.D. Dissertation, Technion – Israel
Institute of Technology.
Fortuin, C. M.; Kasteleyn, P. W.; and Ginibre, J. 1971. Cor-
relation inequalities on some partially ordered sets. Commu-
nications in Mathematical Physics 22(2):89–103.
Fujii, K., and Kashima, H. 2016. Budgeted stream-based
active learning via adaptive submodular maximization. In
Advances in Neural Information Processing Systems 29, 514–
522.
Gabillon, V.; Kveton, B.; Wen, Z.; Eriksson, B.; and Muthukr-
ishnan, S. 2013. Adaptive submodular maximization in ban-
dit setting. In Advances in Neural Information Processing
Systems 26, 2697–2705.
Gabillon, V.; Kveton, B.; Wen, Z.; Eriksson, B.; and Muthukr-
ishnan, S. 2014. Large-scale optimistic adaptive submodular-
ity. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, 1816–1823.
Golovin, D., and Krause, A. 2011. Adaptive submodularity:
Theory and applications in active learning and stochastic
optimization. Journal of Artificial Intelligence Research
42:427–486.
Gotovos, A.; Karbasi, A.; and Krause, A. 2015. Non-
monotone adaptive submodular maximization. In Proceed-
ings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, 1996–2003.
Gupta, A.; Krishnaswamy, R.; Molinaro, M.; and Ravi, R.
2011. Approximation algorithms for correlated knapsacks
and non-martingale bandits. In IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, 827–836.
Gupta, A.; Nagarajan, V.; and Singla, S. 2017. Adaptivity
gaps for stochastic probing: Submodular and XOS functions.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 1688–1702.
Hoi, S. C. H.; Jin, R.; Zhu, J.; and Lyu, M. R. 2006. Batch
mode active learning and its application to medical image
classification. In Proceedings of the Twenty-Third Interna-
tional Conference on Machine learning, 417–424.
Ma, W. 2014. Improvements and generalizations of stochastic
knapsack and multi-armed bandit approximation algorithms:
Extended abstract. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, 1154–1163.
Yu, B.; Fang, M.; and Tao, D. 2016. Linear submodular
bandits with a knapsack constraint. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, 1380–
1386.
Yue, Y., and Guestrin, C. 2011. Linear submodular bandits
and their application to diversified retrieval. In Advances in
Neural Information Processing Systems 24, 2483–2491.
Ziegler, C.-N.; McNee, S. M.; Konstan, J. A.; and Lausen,
G. 2005. Improving recommendation lists through topic
diversification. In Proceedings of the 14th international
conference on World Wide Web, 22–32.

1494

