The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Approximate Inference of Outcomes in Probabilistic Elections

Batya Kenig*

Paul G. Allen School of Computer Science and Engineering

University of Washington
batyak @cs.washington.edu

Abstract

We study the complexity of estimating the probability of an
outcome in an election over probabilistic votes. The focus
is on voting rules expressed as positional scoring rules, and
two models of probabilistic voters: the uniform distribution
over the completions of a partial voting profile (consisting of
a partial ordering of the candidates by each voter), and the
Repeated Insertion Model (RIM) over the candidates, includ-
ing the special case of the Mallows distribution. Past research
has established that, while exact inference of the probabil-
ity of winning is computationally hard (#P-hard), an additive
polynomial-time approximation (additive FPRAS) is attained
by sampling and averaging. There is often, though, a need
for multiplicative approximation guarantees that are crucial
for important measures such as conditional probabilities. Un-
fortunately, a multiplicative approximation of the probability
of winning cannot be efficient (under conventional complex-
ity assumptions) since it is already NP-complete to determine
whether this probability is nonzero. Contrastingly, we devise
multiplicative polynomial-time approximations (multiplica-
tive FPRAS) for the probability of the complement event,
namely, losing the election.

Introduction

Various processes require the preferences of different vor-
ers over candidates to be aggregated towards a joint deci-
sion; these include political elections, website rankings in
search engines, and multiagent systems. In the general ap-
proach that has gained the focus of the field of computa-
tional social choice, every voter provides a ranking (total
order) of the candidates, and a voting rule maps the col-
lection of rankings, called a voting profile, to a set of se-
lected alternatives, namely the winners (Brandt et al. 2016).
A well studied family of such rules is that of the positional
scoring rules: a voter contributes a score to each candidate
from a shared scoring vector according to the position of the
candidate in the total order. This family includes the plural-
ity rule defined by the scoring vector (1,0, ...,0), the veto
rule defined by (1,...,1,0), the k-approval rule defined by

*This work was supported by the Schmidt Family Foundation.
TThis work was supported by ISF Grant 5921551 and NSF-BSF
Grant 1814152.
Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2061

Benny Kimelfeld'
Technion Israel Institute of Technology
Haifa 3200003, Israel
bennyk @cs.technion.ac.il

(1,...,1,0,...,0) starting with k ones, the k-veto rule de-
fined by (1,...,1,0,...,0) ending with k zeros, and the
Borda rule defined by (m — 1,m —2,...,0).

Yet, rankings of voters may be uncertain due to miss-
ing or unreliable information. A simple form of uncer-
tainty is incompleteness: voters provide only partial orders
over the candidates, thereby collectively forming a partial
voting profile. Another form of uncertainty is probability,
where we associate with each voter a probability distribu-
tion over the complete rankings of the candidates. For par-
tial voting profiles, Konczak and Lang (2005) introduced
the notions of possible and necessary winners: a candi-
date c is a possible winner if there is a completion of (the
partial orders in) the partial profile into a complete profile
wherein c is a winner, and c is a necessary winner if c is
a winner in every completion of the partial profile. In the
case of probabilistic votes, every candidate ¢ has a win-
ning probability—the probability that ¢ is a winner in a
random profile (Bachrach, Betzler, and Faliszewski 2010;
Hazon et al. 2012).

The above voting framework entails computational prob-
lems. In the possible winner problem, we are given a partial
profile and a candidate ¢, and wish to determine whether
c is a possible winner. Similarly, in the necessary-winner
problem, the goal is to determine whether ¢ wins in every
completion of the partial profile. In the winning probability
problem, we are given a representation of the correspond-
ing distribution over profiles (which we discuss later in this
section), and a candidate ¢, and the goal is to calculate the
probability that c is a winner. The complexity of the first two
problems has been studied thoroughly for the family of posi-
tional scoring rules. It has been established that the possible
winner problem is solvable in polynomial time for the case
of plurality and veto, but NP-complete for any other posi-
tional scoring rule,! under a common assumption that the
rule is pure, as we formally define later on (Konczak and
Lang 2005; Betzler and Dorn 2010; Baumeister and Rothe
2012). On the other hard, the necessary-winner problem can
be solved in polynomial time for every positional scoring
rule (Xia and Conitzer 2011).

"Here and throughout the paper, we make the standard assump-
tion that the scores form a coprime set of natural numbers (Betzler
and Dorn 2010).

In this paper, we investigate the winning probability prob-
lem. We begin by focusing on the probability distribution
studied in past research on this problem—the uniform dis-
tribution over all the completions of a given partial pro-
file (Hemaspaandra and Hemaspaandra 2007; Betzler and
Dorn 2010). This problem generalizes the possible winner
problem in the sense that a candidate c is a possible win-
ner if and only if ¢ has a nonzero probability of winning.
Hence, computing the winning probability is intractable in
the case of a pure positional scoring rule that is neither plu-
rality nor veto. Moreover, even for these two rules, the prob-
lem is #P-hard (Bachrach, Betzler, and Faliszewski 2010;
Hazon et al. 2012). But this is not the end of the story, as in
realistic settings, it is often the case that approximate proba-
bilities suffice. An additive Fully Polynomial-Time Random-
ized Approximation Scheme (FPRAS) can be obtained by a
simple Monte Carlo estimation (sample and take the ratio of
the times in which c is a winner), provided that we are able
to efficiently sample a random completion of the partial pro-
file (Hazon et al. 2012; Bachrach, Betzler, and Faliszewski
2010).

Yet, when approximating probabilities, one oftentimes
seeks estimations with a guarantee stronger than an additive
approximation, namely a multiplicative (or relative) approx-
imation. This is because a multiplicative guarantee allows
for approximating divisions of probabilities, which is what
we need for estimating conditional probabilities. Neverthe-
less, this brings us back to the hardness of the possible win-
ner problem—a multiplicative FPRAS allows to detect the
possible winners in polynomial time (or, more precisely, in
the complexity class BPP), since it allows to distinguish be-
tween zero and nonzero probabilities. In particular, there is
no multiplicative FPRAS for the winning probability for ev-
ery positional scoring rule other than plurality and veto. So,
what multiplicative guarantees can we make? In this work,
we seek such error guarantees for the complement probabil-
ity, namely that of losing the elections.

For example, consider an election scenario where a
promising candidate c receives the word that she is likely
to lose the election. Equipped with this information, she
wishes to identify strong candidates she should support in
the race. These are the candidates d for which the proba-
bility Pr(d loses|c loses) = Pr(c and d lose) /Pr(c loses) is
relatively low. Now, suppose that a political party wishes to
secure a representative among the winners of an election.
Towards that, it wishes to determine whether it is worthwhile
to invest in candidate ¢; or candidate cy. So, it might be
interested in finding the ratio Pr(c; loses)/Pr(cs loses). To
approximate both of these ratios, multiplicative approxima-
tions are required, while additive guarantees do not suffice.

The main contribution of this paper is a multiplicative
FPRAS for the probability of losing. We do so for a large
class of positional scoring rules, namely the almost-constant
positional scoring rules, that is, the scoring rules that have
the same value in every position, except for a constant num-
ber of positions. This class includes plurality, k-approval,
veto and k-veto, as well as the rule (2,1,1,...,1,0) that
received a considerable attention (Baumeister, Roos, and
Rothe 2011). Note that we do not encounter the computa-

2062

tional hardness of distinguishing between zero and nonzero,
as this is the tractable necessary-winner problem. To this
end, we adapt the Karp-Luby-Madras approximation algo-
rithm (Karp, Luby, and Madras 1989), and the main theoret-
ical challenges we face is in establishing (provable approx-
imations of) the requirements that this algorithm makes on
a specific use case. To the best of our knowledge, this paper
presents the first multiplicative approximation algorithm in
the context of elections over probabilistic voters.

Our FPRAS relies on the ability to sample a complete pro-
file from the uniform distribution over the completions of a
given partial profile. Since we assume that the voters rank
candidates independently, this problem reduces to the one
of sampling a completion of a partial order uniformly at ran-
dom. The theoretically most efficient algorithms known to
date sample completions of a partial order along a rapidly
mixing Markov Chain (Sinclair and Jerrum 1989). The worst
case mixing time is ©(n>logn) for an n-element partial
order (Karzanov and Khachiyan 1991; Bubley and Dyer
1999). This mixing time leads to an FPRAS for counting
the completions of a partial order that scales as ¢ ~2n® for
an n-element partial order, and relative error ¢ (Huber 2006;
Banks et al. 2010). In contrast, exact counting of the com-
pletions of a partial order is # P-complete (Brightwell and
Winkler 1991). While the worst-case mixing times of the
Markov chain are practically prohibitive, recent empiri-
cal results have shown that the MCMC approach can be
made to scale well in practice (Talvitie, Niinimaki, and
Koivisto 2017), and techniques for improving the mixing
time are an active area of research (Talvitie et al. 2018a;
2018b).

Finally, we consider another model of probabilistic votes,
namely the Repeated Insertion Model (RIM) (Doignon,
Pekec, and Regenwetter 2004), which generalizes other pop-
ular probabilistic models such as Mallows (Mallows 1957),
generalized Mallows (Fligner and Verducci 1986), and the
multistage ranking model (Fligner and Verducci 1988).
More precisely, we assume that every voter is represented
as an independent RIM model over the set of candidates.
We show that, although the voters are not associated with
any partial order, the hardness of the possible winners (i.e.,
determine whether the winning probability is nonzero) still
holds. On the positive side, we show that our multiplicative
FPRAS can be adjusted to RIM voters.

Due to a lack of space, most of the proofs are omitted
from the paper, and will appear in the full version.

Preliminaries

We begin with basic notation and terminology that we use
throughout the paper.

Elections and Voting Rules

We use the standard formal modelling of an election, where
the winners are determined by preferences of voters over
candidates (Brandt et al. 2016). Formally, we have a set
C = {c1,...,cm} of candidates and a set of n voters. A
voting profile T is a sequence (>1,. .., >y,) of total (linear)
orders over C, where each -; stands for the ranking of the

candidates by the ¢th voter. A voting rule r is a function that
maps a given voting profile T into a nonempty set r(T) of
winners. A candidate c is a winner if ¢ € r(T).

A large and extensively studied class of voting rules is
that of the positional scoring rules, where voters score can-
didates according to the position in the total order. For-
mally, a scoring vector over a set of m candidates is a se-
quence & = (Qp, - - ., 1) of m natural numbers such that
Qm > -+ > «ay. Whenever the ith voter positions a can-
didate c in the jth place according to the linear order >;,
it contributes the portion s;(c) = «; to the total score of
c. The winners are the candidates ¢ with a maximum to-
tal score >, s;(c). A positional scoring rule r is a func-
tion that associates a scoring vector with each number m
of candidates. Computationally, we assume that r is repre-
sented as a polynomial-time computable function that com-
putes, for all m and j < m, the score r(j,m). In par-
ticular, the numbers «,, > --- > «; are represented by
r(l,m) > --- > r(m,m). We denote by r(-,m) the se-
quence (r(1,m),...,r(m,m)).

Well studied instances of positional scoring rules include
the plurality rule (1,0,...,0), where the winners are the
top candidates according to the maximal number of the vot-
ers; the k-approval rule (1,...,1,0,...,0) that begins with
k ones, where the winners are the in the top-k candidates
according to the maximal number of voters; the veto rule
(1,...,1,0), where the winners are the bottom candidates
according to the minimal number of voters; the k-veto rule
that ends with &k zeros, where the winners are in the bottom-&
candidates according to the minimal number of voters; and
the Borda rule (m — 1,m — 2,...,0) where the score de-
pends linearly on the position of the candidate.

Let r be a positional scoring rule. We assume that for
all m > 0, the scoring vector 7(-,m) contains at least one
nonzero element. We also assume that r is normalized in
the sense that for every m > 0, the greatest common divi-
sor of the numbers in 7(-,m) is 1. These assumptions do
not restrict the generality of the class of positional scor-
ing rules (Hemaspaandra and Hemaspaandra 2007; Betzler
and Dorn 2010). The rule r is pure if for every m > 2,
the scoring vector r(-,m) is obtained from r(-,m — 1)
by inserting a score value at some position. All aforemen-
tioned positional scoring rules (plurality, k-approval, etc.)
are pure. We say that r is almost constant if there is a fixed
number K such that for all m > 0 it is the case that at
least m — K of the scores in r(-,m) are equal. For ex-
ample, the class of almost constant positional scoring rules
includes plurality, k-approval, veto and k-veto, as well as
the rule (2,1, 1,...,1,0) that received a considerable atten-
tion (Baumeister, Roos, and Rothe 2011). The Borda rule,
on the other hand, is not almost constant.

A partial voting profile is defined similarly to an ordinary
(complete) profile, except that the candidate ordering of vot-
ers is allowed to be partial. Similarly, in a probabilistic vot-
ing profile, we replace the total orders of voters with prob-
ability distributions over total orders. We formalize these in
the next two sections. In both sections, we assume a set C of
m candidates, and a set of n voters.

2063

Partial Voting Profiles

A partial voting profile P is a sequence (Ji,...,,) of
partial orders over C. We denote by lin(J;) the set of all
linear extensions of TJ;, where a linear extension of —1; is
a total order =; such that ¢ =; ¢ whenever ¢ 3; ¢’. An
extension of P is a member of lin(J1) X - - - x lin(3,,), that
is, a voting profile T = (>~1,...,>,) where each ~; is a
linear extension of ;. Let r be a voting rule. A candidate ¢
is a possible winner if there is an extension T of P such that
c is a is winner under T. Similarly, c is a necessary winner
if ¢ is a winner under every extension T of P.

The following is known about the complexity of deter-
mining the necessary and possible winners under positional
scoring rules. Note that the rule is fixed, and the input con-
sists of the candidate set and partial profile.

Theorem 1. (Xia and Conitzer 2011; Baumeister and Rothe
2012) Let r be a positional scoring rule.

o The necessary winners can be found in polynomial time.

o Assume that r is pure. The possible winners can be found
in polynomial time if r is either the plurality rule or
the veto rule; otherwise, it is NP-complete to determine
whether a given candidate is a possible winner.

Probabilistic Voting Profiles

In a similar manner, a probabilistic voting profile I1 is a se-
quence (71, ...,7Ty,), where each 7; is a probability distri-
bution over total orders over C. A sample of II is a voting
profile T = (>1,...,>,) such that each >, is a random
total order sampled from ;. We implicitly assume indepen-
dence among voters, and therefore, the probability of a sam-
ple T = (>1,...,>,) is given by

Pr(T) d:efﬂ1(>'1) X oo X (=)

where 7;(>;) is the probability of =; under 7;. Hence, a
probabilistic voting profile defines a probability distribution
over ordinary voting profiles. In particular, for a voting rule
r and a candidate c, the probability that c is a winner is given
by Z{T|c€r(T)} Pr(T).

An example of a probabilistic voting profile is the uniform
distribution over all the completions of a partial voting pro-
file P. Such a probabilistic voting profile IT = (71, ..., m,)
is represented by a partial voting profile P = (J1,...,3,)
such that 7;(>;) is given by

I
mi(s5) & {Olmmm

if -, is a linear extension of 7;;

otherwise.

In other words, each 7 is the uniform distribution over to-
tal orders, a.k.a. impartial culture (Black 1958), subject
to the precedence constraints stated in ;. The probability
that candidate ¢ is winner over a partial profile P is then
m, where N is the number of extensions T of P

in which c is winner. We denote by Win(c | r, P) the event
that ¢ is a winner in a random completion of P according to
the positional scoring rule . When P and r are clear from
the context we denote this event by Win(c).

As for the complexity of probability computation, recall
that #P-hardness means that there exists a polynomial-time
(Turing) reduction from the problem of counting the solu-
tions for a problem in NP, for instance, the number of truth
assignments of a given CNF formula. A Fully Polynomial-
time Randomized Approximation Scheme (FPRAS for short)
for a probability function p(x) is a randomized algorithm A
that, given as input a problem instance x, an error bound € >
0 and a reliability ratio § > 0, returns an e-approximation
of p(x) with probability 1 — ¢, where the running time is
polynomial in the size of x, in 1/¢, and in log(1/4). An e-
approximation can be additive, that is, in (p(z)—¢, p(x)+€),
or multiplicative, that is, in ((1 — €)p(z), (1 + €)p(z)).

The following is known about the complexity of comput-
ing the probability of winning for positional scoring rules.

Theorem 2. (Bachrach, Betzler, and Faliszewski 2010;
Hazon et al. 2012) The problem of computing Pr(Win(c |
r,P)), given c and P:

1. is #P-hard when r is veto, Borda, and k-approval for ev-
ery k > 0 (including plurality);

2. has an additive FPRAS for all positional scoring rules r.

Later in the paper, we also consider representations of
probabilisitic voting profiles by means of the Repeated In-
sertion Model (RIM) (Doignon, Peke¢, and Regenwetter
2004) and its special case of Mallows (Mallows 1957).

Our definitions are given under the semantics of co-
winners, where an election can have multiple winners,
namely, all members of 7(T). A candidate c is a unique win-
ner if r(T) = {c}. While we present our complexity results
in the context of co-winners, all of these results apply to the
semantics a single winner as well.

Main Result

The existence of an additive FPRAS, as stated in Theorem 2,
does not imply the existence of a multiplicative FPRAS. The
difference between the two is fundamental in probability es-
timation. For example, multiplicative guarantees of proba-
bilities extend to the division of probabilities when estimat-
ing conditional probabilities; this is not the case for the ad-
ditive approximation. Moreover, a multiplicative FPRAS al-
lows to determine, with high probability, whether the prob-
ability is nonzero (since a multiplicative approximation is
zero if and only if the exact number is zero), while an addi-
tive approximation does not.

In particular, it follows from Theorem 1 that, under con-
ventional complexity assumptions, there is no multiplica-
tive FPRAS for Pr(Win(c|r, P)) under the pure positional
scoring rules, except for plurality and veto. If there was, we
would get a BPP algorithm for determining whether c is a
possible winner by executing the FPRAS algorithm and test-
ing whether the result is nonzero (implying NP C BPP in
contradiction to the common belief). Contrasting that, we
establish an FPRAS for the complement probability, namely
the probability of losing, for the class of almost constant
scoring rules.

Theorem 3. Let r be an almost constant positional scor-
ing rule. There is a multiplicative FPRAS for estimating

2064

the probability of losing, that is, the problem of computing
1 —Pr(Win(c | r,P)), given c and P.

In particular, we conclude that there is a multiplica-
tive FPRAS for the probability of losing for plurality, k-
approval, veto, k-veto, and (2,1,1,...,1,0). In the next sec-
tion, we discuss the proof of Theorem 3.

Approximation Algorithm

In this section, we describe a multiplicative FPRAS for
the losing probability in elections over the class of almost-
constant scoring rules, thereby proving Theorem 3. We
adapt the well known estimation technique of Karp-Luby-
Madras (Karp, Luby, and Madras 1989) for approximating
the number of satisfying assignments of a DNF formula.

Consider an election over a partial profile P, and a posi-
tional scoring rule r. Recall that we study the uniform dis-
tribution over possible completions T of P. We denote by
Lose(c | r, P) the event that ¢ is not a winner in the random
completion T of P according to the positional scoring rule
r. This happens if some candidate = € C gains a higher num-
ber of points than c. We denote by L(z, ¢|r, P) the event that
candidate x gains a higher number of points than c in the ran-
dom extension of P according to the positional scoring rule
r. When r and P are clear from the context, we denote this
event simply by L(z, ¢). Therefore:

Pr(Lose(c)) = Pr (\/ L(z, c))
zeC\{c}

The Karp-Luby-Madras algorithm (Karp, Luby, and
Madras 1989) provides a multiplicative FPRAS for the prob-
ability Pr(V,c x E;) of a disjunction X of events, under the
assumption that each of the following three tasks can be per-
formed in polynomial time.

1. Test whether E, is true in a given sample.

)

2. Compute the exact probability Pr(E,,) of every E,.
3. Sample from the posterior distribution conditioned on .

The third task requires a randomized algorithm for produc-
ing a random sample s in which F;, is true, so that the prob-
ability of each sample s is Pr(s)/Pr(E,).

In our case, the event E, is L(x,¢). The first task (i.e.,
testing whether 2 gains a higher score than c in a complete
profile T) is straightforward. However, the second task is
not as simple.

Theorem 4. Computing Pr(L(z,c | r,P)), given P, x and

¢, is #P-hard even for a single voter when r is veto, k-

approval for every k > 0 (including plurality), or Borda.

Nevertheless, we are still able to use the Karp-Luby-
Madras algorithm by replacing the second and third tasks
with approximate versions, as follows.

e We show a multiplicative FPRAS for Pr(L(z, ¢)).

e We design a polynomial-time approximate sampling al-
gorithm from the uniform distribution of completions of
P conditioned on L(z, ¢), that is, the probability of each
completion T in our sampling is inside the interval

(Pr(T | L(z,¢))(1 - €), Pr(T | L(z,))(1 + ¢))
where € is given as part of the input.

We can show that the above approximations allow to re-
tain the FPRAS guarantees of the Karp-Luby-Madras algo-
rithm. Hence, we have the following lemma.

Lemma 1. If there is an FPRAS for Pr(L(x,c | r,P)) and a
polynomial-time approximate sampler from the uniform dis-
tributions over the completions of P conditioned on L(z,),
then there is an FPRAS for Pr(Lose(c | r, P)).

In the following sections, we devise the two approxima-
tion algorithms for the class of almost-constant positional
scoring rules.

Approximating the Probability of L(x, ¢)

Our approach to devising an FPRAS for Pr(L(z,c)) uses
known approximation algorithms for the problem of count-
ing the linear extensions of a partially ordered set. These
approximation algorithms are based on the ability to sam-
ple rankings uniformly at random from the space of lin-
ear extensions of a partial order (Huber 2006; Banks et al.
2010). Such sampling gives rise to a multiplicative FPRAS
for counting the linear extensions (Banks et al. 2010).

Recall our assumption that the scoring rule r over the set
C of candidates is almost constant. We denote by K the con-
stant such that r(-, m) contains at least m — K positions with
an identical value, which, in turn, we denote by «.. Hence, at
most K elements of r(-,m) are different from c.

For a partial order 1, let Pr(3) denote the probability of
sampling a linear extension of JJ from the uniform distribu-
tion over all permutations. That is, Pr(3) = |lin(3)|/m!.
Dividing the FPRAS for counting lin(Z) by m! gives an
FPRAS for Pr(3). We denote by Pr(3) the resulting ap-
proximation of Pr(Z). Then, in time polynomial in m, in
1/€, and in In(1/4), we get the following guarantee:

Pr ((1 —) Pr(3) <Pr(0) < (1+¢) Pr(:)) >1-6

Let 74, ..., 3, denote the partial orders of the voters, and
lett € {1,...,n}. We denote by F}[s, s.] the event that the
candidates x and c gain s, and s. points, respectively, from
the first ¢ votes (i.e., J1,..., ;). We can then define the
required probability Pr(L(x, ¢)) as:

Pr(L(z,c)) = Y Pr(F,[sa, sc))

Sg>Se

(@)

The algorithm proceeds by approximating the probabilities
of the events Fy[s,, s¢| forall ¢ € {1,...,n} and scores s,
and s., by dynamic programming over t.

For every partial order J;, we look at all possible combi-
nations (st s%) of points that the candidates z and ¢ can gain
from the tth voter. The key to the efficiency of our algorithm,
and the way we take advantage of the almost-constant prop-
erty, is the distinction between the actual complete vote (i.e.,
ranking) cast by voter ¢, and her voting outcome. A voting
outcome captures the information in the ¢th vote by specify-
ing, for every one of the K + 1 score values in 7 (-, m), the
set of candidates that receive this score in by the ¢th voter.

Definition 1. Denote by Vals(r, m) the set of distinct scores
inr(-,m), and by 2° the set of subsets of C. The voting out-
come of the partial vote 1 is a function f; : Vals(r,m) —

2065

2€ that maps each score value to the set of candidates in C
that are granted this score in .

Let s; > so > --- > s; be the scores in Vals(r, m)
where, by assumption, £k < K 4+ 1. A voting outcome f;

induces a partial order j{ over the candidates where

def

2f £ fils1) = fulsa) == filse).

Here, fi(s;) > fi(s;+1) means that all candidates mapped
to s; precede all candidates mapped to s;41, and the candi-
dates in f;(s;) (and f;(s;4+1)) are incomparable. We say that
a voting outcome f; is valid if the partial orders JJ; and j{
are consistent. Voting outcomes resulting in invalid partial
orders can be ignored, since they have a zero probability.

Lemma 2. The number of voting outcomes over an almost
constant positional scoring rule is polynomial in m, the
number of candidates.

Proof. Every voting outcome is determined by the assign-
ment of candidates to one of (at most) K score values differ-
ent from « (i.e., the value that appears in m — K positions
of 7(-,m)). Let Vals(r,m) \ {a} be {s},...,s),_,}. Letd;
be the cardinality of the set f;(s;) (i.e., d; = |f:(s;)]). By
definition, each d; is at most K. Therefore, the number of
voting outcomes is:

B)

m'

: K

m

<

This completes the proof. O

Given two consistent partial orders ZJ; and s, we denote
by 1 A T the partial order that results from combining
(i.e., taking the union of) the two.

Since every voting outcome f; induces a unique partial
order 3/, we identify f, with 1/ . We denote by O,[st, s']
the combination of JJ; with the set of all valid voting out-
comes f;, where z is granted s!, points (i.e., z € fi(s.)),
and c is granted s’ points (i.e., ¢ € f;(s')). Formally:

Ot [St

T

sl={Af|z € fi(st),ce fi(sh)} B

Therefore, approximating Pr(O;[st, s!]) involves enu-

merating all partial orders j{ where z € fi(st), and ¢ €
fi(st), combining them with the partial order J;, and ap-
proximating their count. Formally:

D

€0 [st ,st]

Pr(O)[st, st)) Pr(0) 4

where Pr(3) is calculated by applying an FPRAS for count-
ing the linear extensions of 1 (Huber 2006), and dividing by
m!. By Lemma 2, the cardinality of O;[s’, s!] is polynomial
in m for almost-constant positional scoring rules. The dy-

namic programming algorithm proceeds as follows.

Base Case: Computing F[s;,s.]. For every pair (a,b)
where a, b € Vals(r, m), the event F}[a, b] amounts to com-
puting the probability of the partial orders in O1[a,b] as
in (4).

ﬁ(Fl [CL, b])

= Pr(O1[a, b)))

Step: Computing F}[s;, s.]. In this case, we consider all
possible configurations of points (a,b) that can bring the
score value to (s, s.) after processing the tth vote.

Pr(Fy[sz, sc]) =
Z Pr(F,_1[sy—a, s.—b]) - Pr(Oy|a, b])

a,ber(-,m)

(6)

where, again, Pr(O,[a, b]) is computed as in (4).

Analysis In order to show that the dynamic programming
algorithm described in (2), (5), and (6) runs in polynomial
time, we need to prove the following for almost constant
scoring rules: (1) the set of possible score values s, and s.
that candidates x and c can obtain in any extension of the
partial profile is polynomial in m. (2) For every pair of score
values a,b € r(-,m) the cardinality of the set Oy[a,b] is
polynomial in m. The former is stated in Lemma 3, and the
latter in Lemma 2. Detailed proofs will be included in the
complete version of the paper.

Lemma 3. Let r be an almost constant positional scoring
rule with at most K positions containing values different
from «. Then, for any number of candidates m € 7, the
number of possible scores over n votes is in O((n + K)¥).

Let ¢ denote the relative error of the approximation for
Pr(L(z,c)). By (2), this is the approximation required for
the probabilities of the events F),[s., s.]. Let p denote the
relative error bound used for the FPRAS for counting lin-
ear extensions. In the proof of Theorem 5, we show that by
setting p = 111(27;5) for every step t € {1,...,n} in the dy-
namic programming algorithm, we arrive at an FPRAS for
computing F}[a, b] with a relative error factor of €. By (2)
this gives us an FPRAS for Pr(L(x,c)) with the required
approximation.

Theorem 5. The dynamic-programming algorithm de-
scribed in (5) and (6) is an FPRAS for Fi[a, b].

Sampling Conditioned on L(z, ¢)

We now consider the task of sampling from the subspace
conditioned on L(z, ¢). Recall that our goal is to sample
a complete profile T = {>1,...,>,} where each ;€
lin(3;) is drawn, uniformly at random, from the subspace
of rankings conditioned on the event L(z, ¢).

The algorithm samples the complete votes sequentially,
starting from >. For each voter ¢, we sample a complete
vote >, a linear extension of J;, given the total number of
points that the candidates obtained in votes >1,...,>¢_1
denoted s:~! and s~!. The sampling of >, given the can-
didates’ current score, proceeds as follows.

2066

1. The algorithm samples the scores (a,b) that candidates

x and c are awarded in >;. This probability corresponds
to the event of generating a complete ranking that is con-
sistent with a partial order in O;[a, b] (see (3)). By the
previous section, we have an FPRAS for approximating
the probability Pr(O;[a,b]) of this set of partial orders
(see (4)).

The algorithm samples, uniformly at random, a partial or-
der T from O;]a, b] (see (3)). By Lemma 2, the cardinality
of O¢[a, b] is polynomial in m.

. The algorithm samples, uniformly at random, a linear ex-
tension >, of 1 by using the uniform sampler of (Huber
2006; Banks et al. 2010).

The idea behind the sampling is, that once the scores (a, b)
of candidates = and c are determined, the actual linear ex-
tension drawn from the set rankings that extend the partial
vote T (i.e., lin(3;)) is independent of the event L(x, c).
For every voter ¢t € {1,...,n}, and every pair (a,b) €
r(-,m), we denote by Q(a, b, t) the event that candidates x
and c gain @ and b points, respectively, in >;, given their
scores st=1, st~ over votes {~1,...,>;_1}, and the fact
that z galned more points than c (i.e., the event L(z, ¢)). For-
mally: Pr(Q(a,b,t)) = Pr(Oya,b] | L(x,c),st71, st71).
Figure 1 contains the pseudocode of the samphng algo-
rithm. Relative approximations to the probabilities of the
events Q(a, b, t) for all a,b € r(-,m),and ¢t € {1,...,n}
are calculated in lines 6-9, where the algorithm applies the
techniques described in the previous section in order to com-
pute the relative approximations of these events (line 9).
The main ingredient of computing Pr(Q(a,b,t)) is an
FPRAS for Pr(L(z, ¢)|Fy[Ss, s¢])- By (2), we have that

Pr(L(z, ¢)| Filsa, sc) = Y Pr(F,[s, s2]|Fi[sa, scl) -

sn>sn

The algorithm for computing Pr(F [s2, s F[Sx, Sc]) 1s
similar to the dynamic programming algorithm for comput-
ing Pr(F,[s?, s7]), presented in the previous section, and is
therefore omitted. In the full version of this paper we will
show that Pr(F,[s”, s”]| Fi[sz, 5c]) can be approximated to
within an error bound of € by applying the FPRAS for count-
ing linear extensions a polynomial number of times with an

approximation ratio of p = l(r;(i;g)sz))

In Lemma 4 we show that the expression in line 9 of
the sampling algorithm is a relative approximation for the
probability of the event Q(a, b, t). Formally, the probabil-
ity we use for sampling a vote >, from the subspace condi-
tioned on L(z, ¢) is inside the interval (Pr(Q(a,b,t))(1 —
"), Pr(Q(a, b, t))(1 4 ¢’)). Since the voters cast their votes
independently, then by setting ¢’ = m(rllija) the probability
of sampling a complete profile T from the subspace condi-
tioned on L(x, ¢) is inside the interval (Pr(T | L(x,¢))(1 —
e), Pr(T | L(x,¢))(1 4 €)), as required.

Lemma 4. There is an FPRAS for Q(a,b,t). Specifically,
the following equality holds:

Pr (L(z, ¢)|Fi[sz, s¢]) - Pr(O¢[a, b))
Pr (Q(a b, t)) Pr (L(SC C)|Ft 1[t—1 Sé 1])

Algorithm sample(P = {T1,..., 3, },L(x, ¢))

1: s2 < 0 (initialize score for c)

2: s2 « 0 (initialize score for x)

3: m«+ |C|

4: fort=1,...,ndo

5: forall (a,b) € r(-,m) do

6: Sg 1= sf;l +a

7: Se 1= sifli—i— b

8: Compute Pr(Q(a, b, t)) as follows:

9 Pr(Q(a,b1) = P e el
10: Randomly choose (a, b) with prob. Pr(Q(a, b, t)).
11: Randomly choose 1 € Oq[a, b] with prob. enrmn
12: Randomly choose > uniformly from lin ()

13: st st 4a
14: st si7t4p

15: return {>1,...,>n}

Figure 1: Sampling conditioned on L(z, ¢)

Elections over RIM Voters

In this section, we assume that the voter preferences are rep-
resented by a parametric model called the Repeated Inser-
tion Model (RIM). A voter profile is a RIM profile if every
vote is represented by a RIM model. We begin by describ-
ing RIM and then show how our approach carries over to
elections over RIM profiles. Specifically, we show how to
efficiently compute the probability Pr(L(z, ¢)), and how to
sample a complete profile conditioned on the event L(z, ¢).

The Repeated Insertion Model (RIM)

An instance of RIM is defined by a generative process with
two parameters, o and II, and is denoted by RIM(o,II).
The parameter o is a ranking (o1, ..., 0.,), referred to as
a reference ranking. The model RIM (o, IT) defines a proba-
bility distribution over the sample space lin({o1,...,0m}),
which is the set of all rankings over the items of o. The pa-
rameter 11, referred to as the insertion probability function,
maps every pair (7, j) of integers, with 1 < j < i < m,
to a probability I1(4, j) € [0,1], so that 3., I1(i,) = 1
for all 7 = 1,..., m. Semantically, a ranking is generated
by the following randomized process. Beginning with the
empty ranking, scan the items o4,...,0,, in order, start-
ing with o;. Each o; is inserted into a random position
j € {1,...,i} with probability II(¢,) into the current
(T1,...,Ti—1), pushing 7;,..., 7,1 forward and resulting
in(r,...,7j-1,04,7j,...,Ti—1). Importantly, the insertion
position of o; is probabilistically independent of the posi-
tions of the previous o1,...,0;,_1. An easy observation is
that every insertion sequence gives rise to a unique ranking.

The above process defines a probability, denoted II, (1),
for each ranking T over {o1,...,0.,}, as follows. Let
J = (j1,...,Jm) denote the insertion vector for T, that
is, j; € [1,4] is the position into which o; is inserted into

2067

(T1,...,7i—1). Then:

111G, i)
i=1

A special case of RIM is the Mallows model (Mal-
lows 1957), parameterized by a reference ranking o
(61,...,0m) and a dispersion parameter ¢ € (0,1]. The
model assigns to every ranking T a probability defined by

I, (T)

@)

def 1

Pr(r|o,¢) = E¢d(‘r’a)~

®)

Here, d(7,0) is Kendall’s tau distance between T and o
that counts the number of pairwise disagreements between
T and o (Kendall 1938), and Z is a normalization factor.
Doignon, Peke¢, and Regenwetter (2004) showed that the
Mallows distribution with parameters o, ¢ is the same as
RIM(o, IT) where T1(4,5) = ¢* 7 /(1 + ¢ + - - - + ' 1).

Approximations for RIM Profiles

We consider an election with m candidates, a positional
scoring rule r, and a RIM profile R = {Ry, ..., R, } where
every voter R; = RIM(o;,11;) is (represented as) a RIM
model over the candidates. We begin by proving the follow-
ing hardness result.

Theorem 6. It is NP-complete to determine whether the
winning probability of a candidate c is nonzero, in an elec-
tion with a given RIM profile, over every pure positional
scoring rule other than k-approval, and k-veto, for any
k>1and(2,1,...,1,0).

Next, we discuss the proof of Theorem 6. We call a partial
order 1 over the m candidates all-but-one complete if it in-
duces a linear order over (at least) m — 1 of the candidates.
The reductions used by Dey and Misra (2017) for proving
the hardness of the possible-winner problem for all but k-
approval, and k-veto, forany k£ > 1,and (2,1,...,1,0), use
partial orders that are all-but-one complete. Hence, we get
the following.

Theorem 7. (Dey and Misra 2017) Let r be a pure posi-
tional scoring rule that is neither k-approval, nor k-veto,
forany k > 1, nor (2,1,...,1,0). It is NP-complete to de-
termine whether a given candidate is a possible winner, even
if every vote is all-but-one complete.

In the complete version of the paper we will include the
details of how RIM can be used to emulate any all-but-one
complete partial order. Therefore, for the positional scoring
rules excluding k-approval, and k-veto (for any k£ > 1), and
(2,1,...,1,0), we reduce the possible-winner problem over
an all-but-one partial profile (shown to be NP-complete (Dey
and Misra 2017)) to possible-winner over a RIM profile.

Since a multiplicative FPRAS for the winning probability
over RIM would solve the non-zeroness problem, we con-
clude from Theorem 6 that it is unlikely to exist. Here, we
again seek an FPRAS for the complement probability.

Recall that to apply the Karp-Luby-Madras algorithm for
estimating the losing probability of a distinguished candi-
date ¢, we again need to be able to perform the following in

polynomial time for candidates « # c: (a) compute the prob-
ability Pr(L(x, ¢)), and (b) sample a complete profile from
the subspace conditioned on L(z, ¢). We prove that these are
possible (the details will be given in the full version of the
paper). In fact, in contrast to Theorem 3, this result applies
not only to every almost-constant rule, but rather to every
positional scoring rule. The main result is then as follows.

Theorem 8. Let r be a positional scoring rule. There is a
multiplicative FPRAS for estimating the probability of los-
ing, given a RIM profile R and a candidate c.

Conclusions

We developed a multiplicative FPRAS for the probability of
losing in elections with positional scoring rules. We focused
on two models of probabilistic voters: a uniform distribu-
tion over the completions of incomplete profiles, for which
we covered the almost-constant scoring rules, and RIM, for
which we covered all positional scoring rules. Immediate
open problems for future investigation include rules beyond
almost-constant ones in the first model, approximating the
winning probability in the case of plurality and veto, and
approximation of expressive queries over election outcomes
in the context of a database (Kimelfeld, Kolaitis, and Stoy-
anovich 2018).

References

Bachrach, Y.; Betzler, N.; and Faliszewski, P. 2010. Proba-
bilistic possible winner determination. In AAAIL

Banks, J.; Garrabrant, S.; Huber, M. L.; and Perizzolo,
A. 2010. Using TPA to count linear extensions. CoRR
abs/1010.4981.

Baumeister, D., and Rothe, J. 2012. Taking the final step
to a full dichotomy of the possible winner problem in pure
scoring rules. Inf. Process. Lett. 112(5):186-190.
Baumeister, D.; Roos, M.; and Rothe, J. 2011. Compu-
tational complexity of two variants of the possible winner
problem. In AAMAS, 853-860.

Betzler, N., and Dorn, B. 2010. Towards a dichotomy for
the possible winner problem in elections based on scoring
rules. J. Comput. Syst. Sci. 76(8):812-836.

Black, D. 1958. The Theory of Committees and Elections.
Cambridge: Cambridge University Press.

Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds. 2016. Handbook of Computational Social
Choice. Cambridge University Press.

Brightwell, G., and Winkler, P. 1991. Counting linear ex-
tensions. Order 8(3):225-242.

Bubley, R., and Dyer, M. 1999. Faster random generation
of linear extensions. Discrete Mathematics 201(1):81 — 88.
Dey, P., and Misra, N. 2017. On the exact amount of missing
information that makes finding possible winners hard. In
MFCS, 57:1-57:14.

Doignon, J.-P.; Pekec, A.; and Regenwetter, M. 2004. The
repeated insertion model for rankings: Missing link between
two subset choice models. Psychometrika 69(1):33-54.

2068

Fligner, M. A., and Verducci, J. S. 1986. Distance based
ranking models. Journal of the Royal Statistical Society.
Series B (Methodological) 48(3):359-369.

Fligner, M. A., and Verducci, J. S. 1988. Multistage rank-
ing models. Journal of the American Statistical Association
83(403):892-901.

Hazon, N.; Aumann, Y.; Kraus, S.; and Wooldridge, M.
2012. On the evaluation of election outcomes under uncer-
tainty. Artificial Intelligence 189:1 — 18.

Hemaspaandra, E., and Hemaspaandra, L. A. 2007. Di-
chotomy for voting systems. Journal of Computer and Sys-
tem Sciences 73(1):73 — 83.

Huber, M. 2006. Fast perfect sampling from linear exten-
sions. Discrete Mathematics 306(4):420-428.

Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-carlo
approximation algorithms for enumeration problems. J. Al-
gorithms 10(3):429-448.

Karzanov, A., and Khachiyan, L. 1991. On the conductance
of order markov chains. Order 8(1):7-15.

Kendall, M. G. 1938. A new measure of rank correlation.
Biometrika 30(1/2):81-93.

Kimelfeld, B.; Kolaitis, P. G.; and Stoyanovich, J. 2018.
Computational social choice meets databases. In IJCAIL,
317-323. ijcai.org.

Konczak, K., and Lang, J. 2005. Voting procedures with
incomplete preferences. In in Proc. IJCAI-05 Multidisci-
plinary Workshop on Advances in Preference Handling.

Mallows, C. L. 1957.
Biometrika 44(1-2):114-130.

Sinclair, A., and Jerrum, M. 1989. Approximate counting,
uniform generation and rapidly mixing markov chains. Inf.
Comput. 82(1):93-133.

Talvitie, T.; Kangas, K.; Niiniméki, T. M.; and Koivisto, M.
2018a. Counting linear extensions in practice: MCMC ver-
sus exponential monte carlo. In AAAL

Talvitie, T.; Kangas, K.; Niiniméki, T. M.; and Koivisto, M.
2018b. A scalable scheme for counting linear extensions. In
IJCAI 5119-5125.

Talvitie, T.; Niiniméki, T.; and Koivisto, M. 2017. The mix-
ing of markov chains on linear extensions in practice. In
IJCAI, 524-530. AAAI Press.

Xia, L., and Conitzer, V. 2011. Determining possible and

necessary winners given partial orders. J. Artif. Intell. Res.
41:25-67.

Non-null ranking models. i.

