
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficiently Combining Human Demonstrations and
Interventions for Safe Training of Autonomous Systems in Real-Time

Vinicius G. Goecks,1,2 Gregory M. Gremillion,1 Vernon J. Lawhern,1
John Valasek,2 Nicholas R. Waytowich1,3

1US Army Research Laboratory, 2Texas A&M University, 3Columbia University
vinicius.goecks@tamu.edu, {gregory.m.gremillion, vernon.j.lawhern}.civ@mail.mil,

valasek@tamu.edu, nicholas.r.waytowich.civ@mail.mil

Abstract

This paper investigates how to utilize different forms of hu-
man interaction to safely train autonomous systems in real-
time by learning from both human demonstrations and in-
terventions. We implement two components of the Cycle-of-
Learning for Autonomous Systems, which is our framework
for combining multiple modalities of human interaction. The
current effort employs human demonstrations to teach a de-
sired behavior via imitation learning, then leverages inter-
vention data to correct for undesired behaviors produced by
the imitation learner to teach novel tasks to an autonomous
agent safely, after only minutes of training. We demonstrate
this method in an autonomous perching task using a quadro-
tor with continuous roll, pitch, yaw, and throttle commands
and imagery captured from a downward-facing camera in a
high-fidelity simulated environment. Our method improves
task completion performance for the same amount of hu-
man interaction when compared to learning from demonstra-
tions alone, while also requiring on average 32% less data to
achieve that performance. This provides evidence that com-
bining multiple modes of human interaction can increase both
the training speed and overall performance of policies for au-
tonomous systems.

Introduction
The primary goal of learning methodologies is to imbue in-
telligent agents with the capability to autonomously and suc-
cessfully perform complex tasks, when a priori design of the
necessary behaviors is intractable. Most tasks of interest, es-
pecially those with real-world applicability, quickly exceed
the capability of designers to handcraft optimal or even suc-
cessful policies. It can even be infeasible to construct appro-
priate objective or reward functions in many cases. Instead,
learning techniques can be used to empirically discover the
underlying objective function for the task and the policy re-
quired to satisfy it, typically utilizing state, action, or re-
ward data. Several classes of these techniques have yielded
promising results, including learning from demonstration,
learning from evaluation, and reinforcement learning.

Reinforcement learning has been proven to work on sce-
narios with well-designed reward functions and easily avail-
able interactions with the environment (Mnih et al. 2015).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, in real-world robotic applications, explicit reward
functions are non-existent, and interactions with the hard-
ware are expensive and susceptible to catastrophic failures.
This motivates leveraging human interaction to supply this
reward function and task knowledge, to reduce the amount
of high-risk interactions with the environment, and to safely
shape the behavior of robotic agents.

Learning from evaluation is one such way to leverage hu-
man domain knowledge and intent to shape agent behavior
through sparse interactions in the form of evaluative feed-
back, possibly allowing for the approximation of a reward
function (Knox and Stone 2009; MacGlashan et al. 2017;
Warnell et al. 2018). This technique has the advantage of
minimally tasking the human evaluator and can be used
when training behaviors they themselves cannot perform.
However, it can be slow to converge as the agent can only
identify desired or even stable behaviors through more ran-
dom exploration or indirect guidance from human nega-
tive reinforcement of unwanted actions, rather than through
more explicit examples of desired behaviors.

In such a case, learning from demonstration can be used
to provide a more directed path to these intended behav-
iors by utilizing examples of the humans performing the
task. This technique has the advantage of quickly converg-
ing to more stable behaviors. However, given that it is typi-
cally performed offline, it does not provide a mechanism for
corrective or preventative inputs when the learned behavior
results in undesirable or catastrophic outcomes, potentially
due to unseen states. Learning from demonstration also in-
herently requires the maximal burden on the human, requir-
ing them to perform the task many times until the state space
has been sufficiently explored, so as to generate a robust pol-
icy. Also, it necessarily fails when the human is incapable of
performing the task successfully at all.

Learning from interventions, where a human acts as an
overseer while an agent is performing a task and periodi-
cally takes over control or intervenes when necessary, can
provide a method to improve the agent policy while pre-
venting or mitigating catastrophic behaviors (Saunders et
al. 2017). This technique can also reduce the amount of di-
rect interactions with the agent, when compared to learn-
ing from demonstration. Similar to learning from evalua-
tion, this technique suffers from the disadvantage that de-
sired behaviors must be discovered through more variable

2462

exploration, resulting in slower convergence and less stable
behavior.

Most of these human interaction methods have been
studied separately, and there is very little work combin-
ing multiple modalities to leverage strengths and mitigate
weaknesses. In this paper, we work towards our concep-
tual framework that combines multiple human-agent inter-
action modalities into a single framework, called the Cycle-
of-Learning for Autonomous Systems from Human Inter-
action (Waytowich, Goecks, and Lawhern 2018). Our goal
is to unify different human-in-the-loop learning techniques
in a single framework to overcome the drawbacks of train-
ing from different human interaction modalities in isolation,
while also maintaining data-efficiency and safety.

In this paper, we present our initial work towards this goal
with a method for combining learning from demonstrations
and learning from interventions for safe and efficient train-
ing of autonomous systems. We seek to develop a real-time
learning technique that combines demonstrations as well as
interventions provided from a human to outperform tradi-
tional imitation learning techniques while maintaining agent
safety and requiring less data. We validate our method with
an aerial robotic perching task in a high-fidelity simulator
using a quadrotor that has continuous roll, pitch, yaw and
throttle commands and a downward facing camera. In par-
ticular, the contributions of our work are twofold:

(1) We propose a method for efficiently and safely learn-
ing from human demonstrations and interventions in
real-time.

(2) We empirically investigate both the task performance
and data efficiency associated with combining human
demonstrations and interventions.

We show that policies trained with human demonstra-
tions and human interventions together outperform policies
trained with just human demonstrations while simultane-
ously using less data. To the best of our knowledge this is
the first result showing that training a policy with a specific
sequence of human interactions (demonstrations, then in-
terventions) outperforms training a policy with just human
demonstrations (controlling for the total amount of human
interactions), and that one can obtain this performance with
significantly reduced data requirements, providing initial ev-
idence that the role of the human should adapt during the
training of safe autonomous systems.

Background and Related Work
Learning from Demonstrations
Here we provide a brief summary of Learning from Demon-
strations (LfD); a more comprehensive review can be found
in (Argall et al. 2009). Learning from Demonstrations,
sometimes referred to as Imitation Learning, is defined by
training a policy π in order to generalize over a subset D of
states and actions visited during a task demonstration over
T time steps:

D = {a0, s0, a1, s1, ..., aT , sT } .

Figure 1: Cycle-of-Learning for Autonomous Systems from
Human Interaction: a concept for combining multiple forms
of human interaction with reinforcement learning. As the
policy develops, the autonomy independence increases and
the human interaction level decreases. This work focuses on
the first two components of the cycle (dashed box): Learning
from Demonstration and Learning from Intervention.

This demonstration can be performed by a human supervi-
sor, optimal controller, or virtually any other pre-trained pol-
icy.

In the case of human demonstrations, the human is im-
plicitly trying to maximize what may be represented as an
internal reward function for a given task (Equation 1), where
π∗(a∗t |st) represents the optimal policy that is not necessar-
ily known, in which the optimal action a∗ is taken at state s
for every time step t.

max
a0,...,aT

T∑
t=0

rt(st, at) =
T∑
t=0

log p(π∗(a∗t |st)) (1)

Defining the policy of the supervisor as πsup and its es-
timate as π̂sup, imitation learning can be achieved through
standard supervised learning, where the parameters θ of a
policy πθ are trained in order to minimize a loss function,
such as mean squared error, as shown in Equation 2.

π̂sup = argmin
πθ

T∑
t=0

||πθ(st)− at||2 (2)

There are many empirical successes of using imitation
learning to train autonomous systems. For self-driving cars,
Bojarski et al. successfully used human demonstrations to
train a policy that mapped from front-facing camera im-
ages to steering wheel commands using around one hundred
hours of human driving data (Bojarski et al. 2016). Simi-
lar approaches have been taken to train small unmanned air
system (sUAS) to navigate through cluttered environments
while avoiding obstacles, where demonstration data was col-
lected by human oracles in simulated (Goecks et al. 2018)
and real-world environments (Giusti et al. 2015).

Learning from Interventions
In Learning from Interventions (LfI) the human takes the
role of a supervisor and watches the agent performing the

2463

task and intervenes (i.e. overriding agent actions with hu-
man actions) when necessary, in order to avoid unsafe be-
haviors that may lead to catastrophic states. Recently, this
learning from human intervention concept was used for safe
reinforcement learning (RL) that could train model-free RL
agents without a single catastrophe (Saunders et al. 2017).
Similar work has proposed using human interaction to train
a classifier to detect unsafe states, which would then trigger
the intervention by a safe policy previously trained based
on human demonstration of the task (Hilleli and El-Yaniv
2018). This off-policy data generated by the safe policy
is aggregated to the replay buffer of a value-based rein-
forcement learning algorithm (Double Deep Q-Network, or
DDQN (van Hasselt, Guez, and Silver 2015)). The main ad-
vantage of this method is being able to combine the off-
policy data generated by the interventions to update the cur-
rent policy.

Related Work
Several existing works have studied, in isolation, the use
of different human interaction modalities to train policies
for autonomous systems, either in the form of demonstra-
tions (Akgun et al. 2012a), (Argall et al. 2009), interventions
(Akgun et al. 2012b), (Saunders et al. 2017) or evaluations
(Knox and Stone 2009). However, there has been relatively
little work on how to effectively combine multiple human in-
teraction modalities into a single learning framework. Sev-
eral cases include the combination of demonstrations and
mixed initiative control for training robot polices (Grollman
and Jenkins 2007) as well as the recent work by Hilleli and
El-Yaniv where imitation learning was combined with in-
teractive reward shaping in a simulated racing game (Hilleli
and El-Yaniv 2018) and the recent work (Peng et al. 2018)
where deviation from the expert demonstration is added to
a reward function to be optimized with reinforcement learn-
ing.

Another example of work that attempts to augment learn-
ing from demonstrations with additional human interaction
is the Dataset Aggregation (DAgger) algorithm (Ross, Gor-
don, and Bagnell 2011). DAgger is an iterative algorithm
that consists of two policies, a primary agent policy that is
used for direct control of a system, and a reference policy
that is used to generate additional labels to fine-tune the pri-
mary policy towards optimal behavior. Importantly, the ref-
erence policy’s actions are not taken, but are instead aggre-
gated and used as additional labels to re-train the primary
policy for the next iteration. In (Ross et al. 2013) DAgger
was used to train a collision avoidance policy for an au-
tonomous quadrotor using imitation learning on a set of hu-
man demonstrations to learn the primary policy and using
the human observer as a reference policy. There are some
drawbacks to this approach that are worth discussing. As
noted in (Ross et al. 2013), because the human observer
is never in direct control of the policy, safety is not guar-
anteed, since the agent has the potential to visit previously
unseen states, which could cause catastrophic failures. Addi-
tionally, the subsequent labeling by the human can be subop-
timal both in the amount of data recorded (perhaps record-
ing more data in suboptimal states than is needed to learn

an optimal policy) as well as in capturing the intended re-
sult of the human observer’s action (as in distinguishing a
minor course correction from a sharp turn, or the appropri-
ate combination of actions to perform a behavior). Another
limitation of DAgger is that the human feedback was pro-
vided offline after each run while viewing a slower replay of
the video stream to improve the resulting label quality. This
prevents the application to tasks where real-time interaction
between humans and agents are required.

Proposed Methodology: Cycle-of-Learning
This work demonstrates a technique for efficiently training
an autonomous system safely and in real-time by combin-
ing learning from demonstrations and interventions. It is the
first part of the Cycle-of-Learning concept (Figure 1) which
aims to combine multiple forms of human-agent interaction
for learning a policy that mimics the human trainer in a safe
and efficient manner. Although this paper focuses on the first
two parts of the Cycle-of-Learning, for brevity, we will re-
fer to the algorithm presented here as the Cycle-of-Learning
(CoL).

The CoL starts by training an initial policy π0 from a set
of task demonstrations provided by the human trainer us-
ing a standard supervised learning technique (regression in
this case since the action-space for our task is continuous).
Next, the agent is given control and executes π0 while the
human takes the role of overseer and supervises the agent’s
actions. Using a joystick controller, the human intervenes
whenever the agent exhibits unwanted behavior that diverges
from the policy of the human trainer, and provides correc-
tive actions to drive the agent back on course, and then re-
leases control back to the agent. The agent then learns from
this intervention by augmenting the original training dataset
with the states and actions from the intervention, and then
fine-tuning π0. The agent then executes the new policy πn
while the human continues to oversee and provides interven-
tions as necessary. In practice, the human trainer can easily
switch between providing demonstrations and interventions
by switching control between the human and the agent as
shown in Figure 2. Combining demonstration and interven-
tion data in this way should not only improve the policy over
what learning from demonstration can do alone but also re-
quire less training data to do so. The intuition is that the
agent will inevitably end up in states previously unexplored
with the original demonstration data which will cause it’s
policy to fail and that intervening from those failure states
allows the agent to quickly learn from those deficiencies or
”blind spots” in its own policy in a more targeted fashion
than from demonstration data alone (Ramakrishnan et al.
2018). In this way, we learn only from the critical states,
which is more data efficient, instead of using all states for
training as is done in DAgger (Ross, Gordon, and Bagnell
2011).

Data Efficiency
A demonstration is defined as a human-produced trajectory
of state-action pairs for the entire episode, while an interven-
tion is defined as a trajectory of state-action pairs for only

2464

the subset of the episode where corrective action is deemed
necessary by the human. Thus, the amount of data pro-
vided via intervention is nearly always less than the amount
provided via demonstration. Training routines that incor-
porate more episodes utilizing learning from intervention
rather than learning from demonstration will in general be
more data sparse, assuming comparable task performance.
Therefore, by utilizing components of the CoL to learn from
both demonstration and intervention, we can train with less
data than if demonstrations had been used in isolation for
an equivalent number of episodes, resulting in a more ef-
ficient training framework. This concept generalizes to the
full CoL, as the agent naturally requires less input from the
human as its policy develops, its task proficiency increases,
and it becomes more autonomous (indicated in Figure 1).

Safe Learning
The notion of safe learning here refers to the ability of a hu-
man oracle to intervene in cases where catastrophic failure
may be imminent. Thus, the agent is able to explore higher
risk regions of the state space with a greater degree of safety.
This approach leverages human domain knowledge and abil-
ity to forecast such boundary states, which the agent cannot
do early in the training process when the state space is less
explored. By allowing the policy to explore less seen regions
and then provide training data of how to correct from those
states, human interventions provide a richer dataset that im-
proves the policy in those regimes. This is contrasted to a
method based solely on demonstration, which may only see
states and observations along a nominal trajectory and have
a policy poorly fit to data outside that envelope. The result is
a policy that is more robust, through greater data diversity,
while not risking damage to the agent that is typical with
methods that rely on random exploration of the state space.
This provides a method to safely train an autonomous sys-
tem.

Real-Time Interaction
The utility of the demonstrated approach is partially linked
to the ability of the agent to consume data as it is provided by
the human oracle and update its policy online. The current
system accomplishes this by storing all subject state-action
pairs in the training dataset, which is queried in real-time
to update the policy, and then fine-tuning that policy when-
ever new samples are added to the dataset. During interven-
tion, this allows for interaction with an agent using a policy
trained on the most recent corrective actions provided by the
human. The short time between novel human intervention
data and behavioral roll-outs from the agent policy prevents
significant delay in this feedback loop that might result from
more infrequent, batch learning. As in closed loop systems,
large temporal delays between feedback inputs and their re-
sultant output behaviors can lead to instability. In this con-
text, that would manifest as unstable training as the human
oracle would need to correct for undesired actions for sig-
nificantly longer before seeing any effect on the agent be-
havior. This shortcoming was exhibited in DAgger, where
policy correction was a delayed, offline process.

Figure 2: Flow diagram illustrating the learning from
demonstration and intervention stages in the CoL for the
quadrotor perching task.

Implementation
The next sections address the experimental methodology
used to evaluate the proposed approach and the implemen-
tation of the learning algorithm (shown in Figures 2 and Al-
gorithm 1).

AirSim Environment
We tested our CoL approach (Figure 2) in an autonomous
quadrotor perching task using a high-fidelity drone simu-
lator based on the Unreal Engine called AirSim developed
by Microsoft (Shah et al. 2017). AirSim provides realistic
emulation of quad-rotor vehicle dynamics while the Unreal
Engine allows for the development of photo-realistic envi-
ronments. In this paper, we are concerned with training a
quadrotor to autonomously land on a small landing platform
placed on top of a ground vehicle (see Figure 3).

The current observation-space consists of vehicle iner-
tial and angular positions, linear and angular velocities, and
pixel position and radius of the landing pad extracted using a
hand-crafted computer vision module (15 dimensional con-
tinuous observation-space). The vehicle is equipped with a
downward-facing RGB camera that captures 320x240 pixel
resolution images. The camera framerate and agent action
frequency is 10.5 Hz, while the human observer views the

2465

Figure 3: Screenshot of AirSim environment and landing
task. Inset image in lower right corner: downward-facing
camera view used for extracting the position and radius of
the landing pad which is part of the observation-space that
the agent learns from.

video stream at approximately 35 Hz. The action-space com-
prises the four continuous joystick commands (roll, pitch,
yaw, and throttle), which are translated to reference velocity
commands (lateral, longitudinal, heading rate, and heave) by
the vehicle autopilot.

For the perching task, the goal is to land the quadrotor as
close to the center of the landing pad as possible. We define
a landing a success if the quadrotor lands within 0.5m radius
of the center of the platform and a failure otherwise. At the
beginning of each episode, the quadrotor starts in a random
x,y location at a fixed height above the landing pad and the
episode ends when either the quadrotor reaches the ground
(or landing pad) or after 500 time-steps have elapsed.

Cycle-of-Learning Algorithm
As shown in Algorithm 1 the main procedure starts by ini-
tializing the agent’s policy π, the human dataset DH , the
Update Policy subroutine, and task performance threshold.
The main loop consists of either executing actions provided
by the agent or actions provided by the human. The agent
reads an observation from the environment and an action is
sampled based on the current policy. At any moment the hu-
man supervisor is able to override the agent’s action by hold-
ing a joystick trigger. When this trigger is held, the actions
performed by the human ah are sent to the vehicle to be ex-
ecuted and are added to the human dataset DH to update the
policy according to the Update Policy subroutine.

The agent’s policy π is a fully-connected, three hidden-
layer, neural network with 130, 72, and 40 neurons, re-
spectively. The network is randomly initialized with weights
sampled from a normal distribution. The policy is optimized
by minimizing the mean squared error loss using the Root
Mean Square Propagation (RMSProp) optimizer with learn-
ing rate of 1e-4. Unless defined otherwise, the human dataset
DH is initialized as an empty comma-separated value (CSV)
file. Its main goal is to store the observations and actions
performed by the human. The procedure to update the pol-
icy in real-time spawns a separate CPU thread to perform

Algorithm 1 Combining Human Demonstrations and Inter-
ventions (Cycle-of-Learning)

1: procedure MAIN
2: Initialize agent’s policy π
3: Initialize human dataset DH
4: Initialize Update Policy procedure
5: Define performance threshold α
6: while task performance < α do
7: Read observation o
8: Sample action aπ ∼ π
9: if Human Interaction (aH) then:

10: Perform human action aH
11: Add o and aH to DH
12: else
13: Perform aπ
14: if End of Episode then
15: Evaluate task performance
16: procedure UPDATE POLICY
17: Spawn separate thread
18: Initialize loss threshold lossTH
19: while Main procedure running do
20: Load human dataset DH
21: if New Samples then:
22: while loss > lossTH or n < nmax do
23: Sample N samples o, a from DH
24: Sample â ∼ π
25: Compute loss = 1

N

∑N
i (âi − ai)2

26: Perform gradient descent update on π

policy updates in real-time while the human either demon-
strates the task or intervenes. This separate thread contin-
uously checks for new demonstration or intervention data
based on the size of the human dataset. If new samples are
found, this thread samples a minibatch of 64 samples of ob-
servations and actions from the human dataset and is used to
perform policy updates based on the mean squared error loss
until it reaches the loss threshold of 0.005 or maximum num-
ber of epochs (in this case, 2000 epochs). This iterative up-
date routine continues until the task performance threshold
α is achieved, which can vary from task to task depending
on the desired performance. For this work, we set α to 1 and
only stop training after a pre-specified number of episodes
defined in our experimentation methodology to empirically
evaluate our method over a controlled number of human in-
teractions, here defined as either human demonstrations or
human interventions.

Experimental Methodology
Using the AirSim landing task, we tested our proposed
CoL framework against several baseline conditions where
we compared against using only a single human interaction
modality (i.e. only demonstrations or only interventions) us-
ing equal amounts of human interaction time for each condi-
tion. By controlling for the human interaction time, we can
assess if our method of utilizing multiple forms of human
interaction provides an improvement over a single form of
interaction given the same amount of human effort.

2466

Each human participant (n=4) followed the same exper-
imental protocol: given an RGB video stream from the
downward-facing camera, the participant controlled the con-
tinuous roll, pitch, yaw, and throttle of the vehicle using
an Xbox One joystick to perform 4, 8, 12 and 20 complete
episodes of the perching task for three experimental condi-
tions: demonstrations only, interventions only, and demon-
strations plus interventions with the CoL method, with each
condition starting from a randomly initialized policy. For
the CoL condition, participants performed an equal num-
ber of demonstrations and interventions to match the total
number of episodes for that condition. For example, given
4 episodes of training, our CoL approach would train with
learning from demonstrations in the first 2 episodes and then
switch to learning from interventions for the last 2 episodes.
We compared this to learning from demonstration for all
4 episodes as well as learning from interventions for all 4
episodes. This was repeated for 8, 12 and 20 episodes to
study the effect of varying amounts of human interaction on
task performance. Following the diagram in Figure 2 and
Update Policy procedure on Algorithm 1, the agent’s policy
is trained on a separate thread in real-time, and a model is
saved for each complete episode together with the human-
observed states and the actions they performed. These saved
models are later evaluated to assess task performance ac-
cording to our evaluation procedure described in the next
section.

We also compared our approach to a random agent as well
as an agent trained using a state-of-the-art reinforcement
learning approach. The reinforcement learning agent used
a publicly available implementation of Proximal Policy Op-
timization (PPO) (Schulman et al. 2017) with a four degree-
of-freedom action space (pitch, roll, throttle, yaw) and was
trained for 1000 episodes, using only task completion as
a binary sparse reward signal. To investigate the effect of
action-space complexity on task performance, we also im-
plemented the PPO where only two actions (pitch and roll)
and three actions (pitch, roll and throttle) were available; for
both cases, all other actions were held to a constant value.
For the two actions condition (pitch and roll), the agent was
given constant throttle and descended in altitude at a con-
stant velocity. For both conditions yaw was set to 0. Training
time of the reinforcement learning agent was limited to the
simulated environment running in real-time.

Results
We evaluated our method in terms of task completion per-
centage, defined as the number of times the drone success-
fully landed on the landing pad over 100 evaluation runs, for
each training method as well as for different amounts of hu-
man training data. Additionally, We compared the number
of human data samples, i.e. observation-action pairs, used
during training for each condition.

Figure 4 compares the performance of the models trained
using only interventions (Int), the models trained using only
demonstrations (Demo), and the models trained using the
Cycle-of-Learning approach (CoL). We show results for
only these conditions as the random policy condition and the

Figure 4: Performance comparison in terms of task comple-
tion with Interventions (Int), Demonstrations (Demo) and
the Cycle-of-Learning (CoL) framework for (A) 4 human
interactions, (B) 8 human interactions, (C) 12 human inter-
actions and (D) 20 human interactions, respectively. Here, an
interaction equates to a single demonstration or intervention
and roughly corresponds to the number of episodes. Error
bars denote 1 standard error of the mean. We see that CoL
outperforms Int and Demo across nearly all human interac-
tion levels.

RL condition trained using PPO with the full four degree-
of-freedom action space were not successful given the small
amount of training episodes, as explained later in this sec-
tion. Barplots show the task completion performance from
each condition averaged over all participants with error bars
representing 1 standard error. Subpanels show the perfor-
mance for varying amounts of human interaction: 4, 8, 12
and 20 episodes. For the 4 human interaction condition (Fig-
ure 4A), all methods show similar task completion condi-
tions. However, for the 8, 12 and 20 human interaction con-
ditions, we see that the CoL approach achieves higher task
completion percentages compared to the demonstration-
only and intervention-only conditions, with the intervention
condition performing the worst.

For the final condition of 20 episodes our proposed ap-
proach achieves 90.25% (± 5.63% std. error) task com-
pletion as compared to 76.25% (± 2.72% std. error) task
completion using only demonstrations. In comparison, for
the 8 episodes condition, our proposed approach achieves
74.75% (± 9.38% std. error) task completion in contrast to
54.00% (± 8.95% std. error) task completion when using
only demonstrations.

Figure 5 compares the number of human data samples
used to train the models for the same conditions and datasets
as in Figure 4. For the final condition of 20 episodes our pro-
posed approach used on average 1574.50 (± 54.22 std. error)
human-provided samples, which is 37.79% fewer data sam-
ples when compared to using only demonstrations. Note that
the policies generated from this sparser dataset were able to
increase task completion by 14.00%. These results yield a

2467

Figure 5: Comparison of the number of human samples used
for training with Interventions (Int), Demonstrations (Demo)
and the Cycle-of-Learning (CoL) framework for (A) 4 hu-
man interactions, (B) 8 human interactions, (C) 12 human
interactions and (D) 20 human interactions, respectively. Er-
ror bars denote 1 standard error of the mean. We see that
CoL uses less data than the demonstration-only condition
and only slightly more data than the intervention-only con-
dition.

CoL agent that has 1.90 times the rate of task completion
performance per sample when compared to learning from
demonstrations alone. This value is computed by comparing
the ratios of task completion rate to data samples utilized
between the CoL agent and the demonstration-only agent,
respectively. Averaging the results over all presented condi-
tions and datasets, the task completion increased by 12.81%
(± 3.61% std. error) using 32.05% (± 3.25% std. error) less
human samples, which results in a CoL agent that overall
has a task completion rate per sample 1.84 times higher than
its counterparts.

Figure 6 shows a comparison between the performance
of the CoL method as well as the PPO baseline compar-
isons using a 2, 3 and 4 degree-of-freedom action space. For
PPO with two actions, the agent was able to achieve 100%
task completion after 500 episodes, on average. However,
when the action space complexity increases to three actions,
the PPO agent performance was significantly reduced, now
completing the task less than 5% of the time after training for
1000 episodes. As expected, the PPO agent with the full four
degree-of-freedom action space fails to complete the task af-
ter training for 1000 episodes. In contrast, the CoL method,
with the same four degree-of-freedom action space, achieves
about 90% task completion in only 20 episodes, representing
significant gains in sample efficiency compared to PPO.

Discussion and Conclusions
Learning from demonstrations in combination with learning
from interventions yields a more proficient policy based on
less data, when compared to either approach in isolation. It
is likely that the superior performance of the CoL is due to

Figure 6: Performance comparison between the Cycle-of-
Learning (CoL) with four continuous actions and the Deep
Reinforcement Learning algorithm Proximal Policy Opti-
mization (PPO) trained for three different task complexities
using 2, 3, and 4 continuous actions.

combining the two methods in sequence so as to leverage
their strengths while attenuating their deficiencies.

Having been initialized to a random policy, learning from
interventions alone produced more random behaviors, mak-
ing convergence to a baseline behavior much slower. Over-
all performance is thus slower to develop, resulting in lower
percent completion for the same number of interaction
episodes. Conversely, learning from demonstrations alone
was quicker to converge to stable behavior, but it was consis-
tently outperformed by the CoL across varying numbers of
interactions, while having more training data to utilize. This
seems initially counter-intuitive as more training data should
result in a more accurate and presumably more proficient
policy. However, as the demonstrations typically follow sta-
ble trajectories, the agent is less likely to encounter regions
of the state space outside these trajectories. When enacting
the policy at test time, any deviations from these previously
observed states is not captured well in the policy, resulting
in poor generalization performance. By allowing the agent
to act under its current policy, in conjunction with adaptively
updating the policy with corrective human-provided actions
needed to recover from potentially catastrophic states, the
dataset and subsequent policy is improved. Thus, the CoL al-
lows for both rapid convergence to baseline stable behavior
and then safe exploration of state space to make the policy
more refined and robust.

The results shown in Figure 5 confirm the expectation
that the combination of learning from demonstrations and
interventions requires less data than the condition of learn-
ing from demonstrations alone, for the same number of
episodes. This supports the notion that the CoL is a more
data efficient approach to training via human inputs. When
additionally considering the superior performance exhibited
in Figure 4, the data efficiency provided by this technique
is even more significant. This result further supports the no-

2468

tion that a combinatorial learning strategy inherently sam-
ples more data rich inputs from the human observer.

It should be emphasized here that rather than providing
an incremental improvement to a specific demonstration or
intervention learning strategy, this work proposes an algo-
rithmically agnostic methodology for combining modes of
human-based learning. The primary assertion of this work is
that learning is made more robust, data efficient, and safe
through a fluid and complementary cycling of these two
modes, and would similarly be improved with the addition
of the later stages of the CoL (i.e. learning from human eval-
uation and reinforcement learning).

As seen in Figure 6, the PPO baseline comparison method
was tested across varying complexity with different num-
bers of action dimensions. A striking result that can be seen
is the significant drop-off in performance when going from
two-actions, in which the drone had a constant downward
throttle and only controlled roll and pitch, to three and four
actions, in which the drone also had to control its own throt-
tle. An obvious characteristic of a successful policy for the
perching task is that the drone needs to descend in a stable
and smooth manner, which is already provided in the two-
action condition, as the downward throttle was set apriori.
This makes the task of solving for an optimal policy much
simpler. In the three and four action condition, however, this
behavior must be learned from a sparse reward signal (suc-
cess or failure to land), which is very difficult given limited
episodes.

When implementing the CoL in real world environments,
catastrophic failures may be seriously damaging to the au-
tonomous agent, and thus unacceptable. Having a human
observer capable of intervening provides a mechanism to
prevent this inadmissible outcome. Further, techniques that
might be applied to enforce a similar level of safety au-
tomatically might limit the exploration of the state space,
yielding a less robust or less capable policy. Analogously
to the shift of policy design from roboticists or domain ex-
perts to human users and laypersons, which is yielded by
human-in-the-loop learning, the technique of learning from
interventions shifts the implementation of system fail safes
away from developers toward users. This shift leverages hu-
man abilities to predict outcomes, adapt to dynamic circum-
stances, and synthesize contextual information in decision
making.

Current Limitations and Future Directions
Our current implementation is limited to the first two stages
of the CoL: learning from demonstrations and interven-
tions. Our planned future work will include adding in more
components of the CoL; for example, learning from hu-
man evaluative feedback as done in (Knox and Stone 2009;
MacGlashan et al. 2017; Warnell et al. 2018). Additionally,
we aim to incorporate reinforcement learning techniques
to further fine-tune the learning performance after learning
from human demonstrations, interventions and evaluations
using an actor-critic style RL architecture (Sutton and Barto
1998).

A second limitation of the current implementation is that
it requires the human to supervise the actions taken by the

agent at all times. Future work aims to incorporate confi-
dence metrics in our learning models so that the autonomous
system can potentially halt its own actions when it deter-
mines it has low confidence and query the human directly for
feedback in a mixed-initiative style framework (Grollman
and Jenkins 2007), similar to active learning techniques.
Furthermore, our results clearly indicate that a two-stage
process - with a primary stage with a large proportion of
human-provided actions followed by a secondary stage with
a smaller proportion of those actions - outperforms pro-
cesses with uniformly large or small amounts of human data
throughout. This suggests there is perhaps an optimal point
in the learning process at which to vary in the amount of
human input from full demonstrations to interventions. Fig-
ure 4 illustrates this notion across the varying number of in-
teractions shown in the subfigures, i.e. through the change
in relative performance between the three conditions. In fu-
ture work we will examine if such an optimal mixture or
sequencing of demonstrations and interventions exists, such
that learning speed and stability are maximized, and if so,
whether it is operator dependent. Rather than having a pre-
determined staging of the demonstrations and interventions
that is potentially suboptimal, a mixed initiative framework
could determine this optimal transition point. This could fur-
ther reduce the burden on the human observer, allow for
faster training, and even provide a mechanism to generate
more robust policies through guided exploration of the state
space.

This work demonstrates the first two stages of the CoL in
a simulation environment with the goal of eventually tran-
sitioning to physical systems, such as an sUAS. The CoL
framework was implicitly designed for use in real world sys-
tems, where interactions are limited, and catastrophic ac-
tions are unacceptable. As can be seen in Figure 6, our
method learns to perform the perching task in several orders
of magnitude less time than traditional RL approaches, po-
tentially allowing for feasible on-the-fly training of real sys-
tems. Therefore, we expect that the application of the CoL
to sUAS platforms, or other physical systems, should oper-
ate in effectively the same manner as demonstrated in this
work. Future efforts will focus on transitioning this frame-
work onto such physical platforms to study its efficacy in
real world settings. One critical hurdle that must be over-
come, is the implementation of the learning architecture on
embedded hardware, constrained by the limited payload of
an sUAS.

Additionally, given that we are utilizing a relatively high
fidelity simulation environment, i.e. AirSim, it may be ben-
eficial to bootstrap a real world system with a policy learned
in simulation. Although there are numerous challenges in
transferring a policy learned in simulation into the real
world, the CoL itself should allow for significantly smoother
transfer due to its cyclic nature in which the user can revert
to more direct and user intensive inputs at any point dur-
ing the learning to allow for adaptation to previously unob-
served states. This capability inherently provides a method
of transfer learning in the case of disparities between simu-
lated and real world properties of the vehicle, sensors, and
environment. For example, if the perching behavior learned

2469

in simulation was transferred to an actual sUAS, the vehicle
dynamics may have unmodeled non-linearities, the imagery
may have dynamic range limitations, or the environment
may present exogenous gust disturbances. In such cases, the
baseline policy would be monitored and corrected via learn-
ing from intervention, if these discrepancies yielded unde-
sirable or possibly catastrophic behaviors.

Acknowledgments
Research was sponsored by the U.S. Army Research Labo-
ratory and was accomplished under Cooperative Agreement
Number W911NF-18-2-0134 . The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Labora-
tory or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

References
Akgun, B.; Cakmak, M.; Jiang, K.; and Thomaz, A. L.
2012a. Keyframe-based Learning from Demonstration. In-
ternational Journal of Social Robotics 4(4):343–355.
Akgun, B.; Cakmak, M.; Yoo, J. W.; and Thomaz, A. L.
2012b. Trajectories and keyframes for kinesthetic teaching.
Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction - HRI ’12 391.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; Zhang, X.; Zhao, J.; and Zieba, K. 2016. End to
End Learning for Self-Driving Cars. 1–9.
Giusti, A.; Guzzi, J.; Cire, D. C.; He, F.-l.; Rodrı́guez, J. P.;
Fontana, F.; Faessler, M.; Forster, C.; Schmidhuber, J.; Caro,
G. D.; Scaramuzza, D.; and Gambardella, L. M. 2015. A
Machine Learning Approach to Visual Perception of Forest
Trails for Mobile Robots. 3766(c):1–7.
Goecks, V. G.; Gremillion, G. M.; Lehman, H. C.; and Noth-
wang, W. D. 2018. Cyber-human approach for learning
human intention and shape robotic behavior based on task
demonstration. In 2018 International Joint Conference on
Neural Networks (IJCNN), 1–7.
Grollman, D. H., and Jenkins, O. C. 2007. Dogged learning
for robots. In Proceedings 2007 IEEE International Confer-
ence on Robotics and Automation, 2483–2488.
Hilleli, B., and El-Yaniv, R. 2018. Toward deep reinforce-
ment learning without a simulator: An autonomous steering
example. AAAI Conference on Artificial Intelligence 1471–
1478.
Knox, W. B., and Stone, P. 2009. Interactively Shap-
ing Agents via Human Reinforcement: The TAMER Frame-
work. In International Conference on Knowledge Capture.
MacGlashan, J.; Ho, M. K.; Loftin, R. T.; Peng, B.; Roberts,
D. L.; Taylor, M. E.; and Littman, M. L. 2017. Interac-

tive learning from policy-dependent human feedback. CoRR
abs/1701.06049.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. a.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Peng, X. B.; Abbeel, P.; Levine, S.; and van de Panne, M.
2018. DeepMimic: Example-Guided Deep Reinforcement
Learning of Physics-Based Character Skills. 37(4).
Ramakrishnan, R.; Kamar, E.; Dey, D.; Shah, J. A.; and
Horvitz, E. 2018. Discovering blind spots in reinforcement
learning. CoRR abs/1805.08966.
Ross, S.; Melik-Barkhudarov, N.; Shankar, K. S.; Wendel,
A.; Dey, D.; Bagnell, J. A.; and Hebert, M. 2013. Learning
monocular reactive uav control in cluttered natural environ-
ments. In 2013 IEEE International Conference on Robotics
and Automation, 1765–1772.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Gordon, G.; Dunson, D.; and Dudı́k, M.,
eds., Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, 627–635. Fort
Lauderdale, FL, USA: PMLR.
Saunders, W.; Sastry, G.; Stuhlmüller, A.; and Evans, O.
2017. Trial without error: Towards safe reinforcement learn-
ing via human intervention. CoRR abs/1707.05173.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
CoRR abs/1707.06347.
Shah, S.; Dey, D.; Lovett, C.; and Kapoor, A. 2017. Airsim:
High-fidelity visual and physical simulation for autonomous
vehicles. In Field and Service Robotics.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An
Introduction. MIT Press.
van Hasselt, H.; Guez, A.; and Silver, D. 2015. Deep
reinforcement learning with double q-learning. CoRR
abs/1509.06461.
Warnell, G.; Waytowich, N.; Lawhern, V.; and Stone, P.
2018. Deep tamer: Interactive agent shaping in high-
dimensional state spaces. AAAI Conference on Artificial In-
telligence 1545–1553.
Waytowich, N. R.; Goecks, V. G.; and Lawhern, V. J. 2018.
Cycle-of-learning for autonomous systems from human in-
teraction. CoRR abs/1808.09572v1.

2470

