
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

AI-Sketcher : A Deep Generative Model for Producing High-Quality Sketches

Nan Cao, Xin Yan, Yang Shi, Chaoran Chen
Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China

{nancao, xinyan, yangshi, crchen}.idvx@gmail.com

Abstract

Sketch drawings play an important role in assisting humans in
communication and creative design since ancient period. This
situation has motivated the development of artificial intelli-
gence (AI) techniques for automatically generating sketches
based on user input. Sketch-RNN, a sequence-to-sequence
variational autoencoder (VAE) model, was developed for this
purpose and known as a state-of-the-art technique. However,
it suffers from limitations, including the generation of low-
quality results and its incapability to support multi-class gen-
erations. To address these issues, we introduced AI-Sketcher,
a deep generative model for generating high-quality multi-
class sketches. Our model improves drawing quality by em-
ploying a CNN-based autoencoder to capture the positional
information of each stroke at the pixel level. It also intro-
duces an influence layer to more precisely guide the gener-
ation of each stroke by directly referring to the training data.
To support multi-class sketch generation, we provided a con-
ditional vector that can help differentiate sketches under var-
ious classes. The proposed technique was evaluated based on
two large-scale sketch datasets, and results demonstrated its
power in generating high-quality sketches.

Introduction
Deep generative models are considered one of the great-
est inventions in the field of AI. It has many applications,
such as auto-programming (Mou et al. 2015), visual arts (El-
gammal et al. 2017), and content development (Giacomello,
Lanzi, and Loiacono 2018). In the past few years, vari-
ous impressive results have been generated by two major
types of deep generative models, i.e., the generative ad-
versarial networks (GAN) (Goodfellow et al. 2014) and
the variational autoencoder (VAE) (Kingma and Welling
2013). However, most existing studies have been designed
to generate raster images (Goodfellow et al. 2014; Mirza
and Osindero 2014; Radford, Metz, and Chintala 2015;
Arjovsky, Chintala, and Bottou 2017) but seldom used to
produce sketches in sequences of strokes. Sketch drawings
play an important role in both communication and design.
Drawing a sketch is considered one of human’s natural be-
havior: in ancient times, our ancestors carved strokes on
rocks to record events; at present, we draw blueprints and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

design drafts as sketches. These applications have motivated
the need to generate sketches via AI techniques.

Previous studies in this topic have mostly focused on
sketch extraction (Yu et al. 2015; Yesilbek and Sezgin 2017;
Yu et al. 2017) and fine-grained sketch-based image re-
trieval (Yu et al. 2016; Sarvadevabhatla et al. 2017; Song et
al. 2017; Chen et al. 2017). Sketch-RNN (Ha and Eck 2017)
was introduced as the first AI technique that enables a com-
puter to automatically generate simple and cursive sketch
drawings based on human input. Although it is a remarkable
concept, Sketch-RNN suffers from key limitations that con-
siderably affect its application: (1) it only captures sequen-
tial orders of strokes, but fails to precisely preserve the rel-
ative position between strokes. Therefore, it typically gen-
erates low-quality results when a sketch consists of multi-
ple parts. (2) Sketch-RNN is also incapable of dealing with
multi-class situations and frequently generates incoherent
sketches that integrate features from other sketch categories.

To address the aforementioned issues, in this paper, we in-
troduce AI-Sketcher, a hybrid deep learning model that au-
tomatically generates high-quality sketch drawings by learn-
ing the sequences of strokes. It exhibits three significant im-
provements over the Sketch-RNN model that help overcome
the aforementioned limitations: (1) To support multi-class
generation, we imposed additional conditional information
on both encoding and decoding processes to help differ-
entiate sketches under various classes. (2) To capture the
relative positions of strokes, we introduced an autoencoder
based on a convolutional neural network (CNN) to extract
spatial features from the training sketches. (3) To improve
drawing quality, we provided an influence layer to enforce
the effect of the encoded training data on the decoding pro-
cess by considering all the previous hidden node values in
the RNN encoder, thereby better guiding the generation of
each stroke. We verified the performance of the proposed
technique by comparing it with Sketch-RNN based on the
QuickDraw dataset 1 and the FaceX dataset 2, a collection
of high-quality sketches of cartoon facial expressions. Our
evaluation showed that AI-Sketcher outperformed the base-
line models in generating coherent sketches on both datasets.

1https://quickdraw.withgoogle.com/
2https://facex.idvxlab.com

2564

Related Work

Among various deep generative models (Oussidi and Elhas-
souny 2018), variational autoencoder (Kingma and Welling
2013), i.e., VAE, is one of the most widely used techniques
that is originally designed for reconstructing images. This
model uses an encoder to capture the features of training
data via a latent representation Z (e.g., the feature distribu-
tion of training data) and applies a decoder to reconstruct
data via a sampled vector z from Z. Given that it has a
simple structure and easy training process, VAE has been
successfully applied to many domains, such as image recon-
struction (Gulrajani et al. 2016), dialogue generation (Zhao,
Zhao, and Eskenazi 2017), and molecular synthesis (Lim et
al. 2018).

Sketch-RNN, a sequence-to-sequence VAE, has been re-
cently introduced for generating sketch drawings (Ha and
Eck 2017), which is highly relevant to our work. The model
captures the drawing sequences of strokes within training
sketches in a latent vector z via a bidirectional RNN (Schus-
ter and Paliwal 1997) implemented based on long short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997)
and reconstructs a stroke sequence using an autoregres-
sive RNN (Reed et al. 2017). Since its invention, several
models have been developed based on Sketch-RNN. Song
et al. (Song et al. 2018) introduced a stroke-level photo-
to-sketch synthesis model based on Sketch-RNN to extract
sketches from images. Zhang et al. (Zhang et al. 2018) ex-
tended the technique to sketch classification.

The aforementioned work not only extends the applica-
tion scope of Sketch-RNN, but also demonstrates its key
limitations, such as insufficient quality of the generated
sketches and incapability to generate sketches from mul-
tiple categories. AI-Sketcher addresses these limitations. It
introduces an influence layer to enforce the effect of the en-
coded training data on the decoding process to better guide
the generation of each stroke. It uses a CNN-based au-
toencoder to capture the relative positions of strokes within
sketches, which considerably improves drawing quality. AI-
Sketcher also conditions both the encoder and decoder of the
model via a conditional vector to enable the model to sup-
port multi-class sketch generation. Notably, another model,
called Sketch-pix2seq (Chen et al. 2017), was also designed
to improve the quality of generated multi-class sketches
by replacing the RNN-based encoder in Sketch-RNN with
a CNN-based encoder. Compared with this model, AI-
Sketcher is more controllable because the category of the
generated results can be easily controlled by the conditional
vector. Our experiments showed that AI-Sketcher can gen-
erate better results.

Proposed Method

In this section, we introduce the technical details of AI-
Sketcher. We start with a brief review of Sketch-RNN, fol-
lowed by an overview of the proposed AI-Sketcher model
and its detailed design and implementation.

Sketch-RNN
Sketch-RNN is a sequence-to-sequence variational autoen-
coder (VAE) for generating sketches in a stroke-by-stroke
manner. Similar to other VAE models, Sketch-RNN con-
sists of two parts: the VAE encoder and the VAE decoder,
as shown in Figure 1 (a).

During the training stage, the model first takes a set of
sketches Xs in vector format as input. A bidirectional recur-
rent neural network (Schuster and Paliwal 1997) is used as
the VAE encoder. It compresses Xs into a hidden node vec-
tor h (i.e., the value of the last hidden node in the RNN
encoder), which can be further decomposed into two pa-
rameters, µs and σs, to formulate a normal distribution,
Z = N(µs,σs). A latent vector z is randomly sampled
from Z and used by the VAE decoder to generate the next
stroke. The VAE decoder is an autoregressive RNN (Reed et
al. 2017). It uses z and the last stroke si as inputs and pro-
duces Y = [w,µx,µy,σx,σy,ρxy,p], i.e., the parameters
of a Gaussian mixture model with m normal distributions
(denoted as GM). Finally, si+1 is sampled from GM as the
next generated stroke. The entire training process optimizes
the following loss function:

L(θ,φ;Xs) = Eqφ(z|Xs)[logpθ(X ′
s|z)]

−DKL(qφ(z|Xs)||pθ(z)) (1)

where q(·) denotes the encoder, and p(·) denotes the de-
coder. φ and θ are the parameters to be trained in the en-
coder and decoder, respectively. The first term,Eqφ(z|Xs)(·),
is the reconstruction loss that ensures the similarity between
the generated strokes and the strokes within the sketches in
the training set. The second term, DKL(·), is the KL loss
that ensures the distribution of the generated strokes is sim-
ilar to that of the training set.

AI-Sketcher
The design of the AI-Sketcher model extends Sketch-RNN,
thereby improving drawing quality via three additional com-
ponents, as shown in Figure 1(b).

First, in contrast with Sketch-RNN, which generates the
next stroke si+1 by considering only the stroke features cap-
tured by the RNN encoder’s last hidden node value h, AI-
Sketcher estimates the features of all the previous strokes
captured by all the hidden node values (h0, ..., ht) in the en-
coder, as shown in Figure 1(b-1). A fully-connected layer is
introduced to estimate how the previous strokes will influ-
ence si+1 in accordance with the VAE framework, based on
which a latent influence vector ad is randomly sampled and
used to guide the generation of si+1.

Second, motivated by conditional GAN (Mirza and Osin-
dero 2014), a conditional vector is used in AI-Sketcher to
ensure high-quality generated sketches from multiple cate-
gories. As shown in Figure. 1(b-2), we concatenated the last
hidden node value h, i.e., the output of the VAE encoder,
with a k-dimensional one-hot conditional vector c (denoted
as hc) to encode the categorical information of the input
sketch data (Figure 1(b-1)). Here, k indicates the number
of classes in the training set.

2565

Figure 1: Schematic diagrams of (a) Sketch-RNN, (b) AI-Sketcher, and (c) the CNN-based autoencoder.

Third, a CNN-based autoencoder (Li, Qiao, and Zhang
2018) is also used in AI-Sketcher (Figure 1(b-3)). It pro-
duces a latent vector zr that captures the spatial information
of a training setXr (the raster images transformed fromXs)
at the pixel level. The latent vector zr is particularly useful
for generating sketches with multiple parts, such as a human
face with nose, mouth, and eyes.

Finally, the aforementioned conditional vector c, image
feature vector zr, stroke feature vector zs, and influence
vector ad are concatenated into a single vector z and used as
the input of the VAE decoder for the subsequent calculation.

Conditional Sequence-to-sequence VAE As shown in
Figure 1(b), we introduced a conditional sequence-to-
sequence VAE to AI-Sketcher, through which the other com-
ponents of the proposed model are aligned. This VAE adopts
sequences of strokes, i.e., Xs as input. Similar to Sketch-
RNN, a bidirectional RNN is used as the VAE encoder,
which encodes Xs as a hidden vector henc (i.e., output of
the RNN’s last hidden node value):

henc = encode(Xs) (2)

To support multi-class generation, we introduced hc =
[henc; c], where c is a k-dimensional one-hot conditional
vector. k indicates the number of conditions (Figure 1(b-
2)). hc is further transformed into two vectors, µs and σs,
which are the parameters (i.e., mean values and standard de-
viations) of a set of normal distributions used to capture the
distributions of training strokes:

µs = Wµhc + bµ

σs = exp(
Wσhc + bσ

2
) (3)

A latent vector zs is randomly sampled from the distribu-
tions to generate the next stroke:

zs = µs + σs · λ (4)

where λ is a random vector sampled from the distribution
N(0, I) that ensures that zs is nondeterministic.

In the next step, zs is concatenated with the image feature
vector zr, the latent influence vector ad, the conditional vec-
tor c, and the last stroke vector si into z = [zs; zr;ad; c; si]
for decoding:

hdec = decode(z) (5)

where hdec captures the features of the previous strokes,
which is further transformed into Y , the parameters of a
Gaussian mixture model (GMM) used to predict the next
stroke. Formally, Y is calculated as follows:

Y = Wyh
dec + by (6)

which can be decomposed in form of

Y = [(w1, q1), ..., (wm, qm),p] (7)

where wi is the weight of each normal distribu-
tion in the Gaussian mixture model, and qi =
[µx,i, µy,i, σ̃x,i, σ̃y,i, ρ̃xy,i] are the parameters of the 2-
dimensional normal distribution of the potential x,y posi-
tions of the next point for drawing a stroke on canvas;

2566

p = [p1, p2, p3] is a one-hot state vector with three fields
that indicate the status of (1) continuous drawing from the
last point, (2) end of drawing a stroke, and (3) end of draw-
ing a sketch. wi and pi ∈ p are calculated based on a soft-
max layer in the model. Finally, on the basis of the preceding
information, we predict the probability of the relative posi-
tion p(∆xi+1,∆yi+1) of the next drawing point with regard
to the last drawing with the status qi as follows:

p(∆xi+1,∆yi+1) =

m∑
i=1

wiN(∆xi+1,∆yi+1|qi) (8)

where N is the GMM determined by Yi.
In our implementation, LSTM (Hochreiter and Schmid-

huber 1997) with layer normalization (Ba, Kiros, and Hinton
2016) is used as both the encoder and decoder, which respec-
tively consist of 512 and 2048 hidden nodes. The amount of
GMM, which is denoted as m, is equal to 20. Our model is
trained by the Adam optimizer (Kingma and Ba 2014). The
learning rate of the optimizer is 0.001 and the gradient clip-
ping is 1.0, which is used to avoid the exploding gradient
problem. The batch size of the input data for each training
step is set as 100.

Influence Layer We introduce a fully-connected layer,
namely, the influence layer, to better guide the generation
of each stroke. This layer is similar to the attention mech-
anism that is frequently used in RNN, but it generates the
output from a latent distribution instead of directly calcu-
lating the weighted average of all the previous hidden node
values. The influence layer is applied to enhance the influ-
ence of the input training data on the decoding process by
considering all the previous hidden node values (h0, ...,ht)
until the latest drawing step in the RNN encoder. As shown
in Figure 1(b-1), in accordance with the VAE framework,
the information of each previous stroke is captured in hi
and transformed into a normal distribution parameterized by
the mean µi ∈ µa and standard deviation σi ∈ σa. The in-
fluence vector ad is a latent vector whose fields are sampled
from the aforementioned normal distributions:

ad = µa + σa · λa (9)

where λa is a random vector sampled from the distribution
N(0, I), which ensures that the sampled vector is nondeter-
ministic. µa and σa are computed as follows:

µa =

j∑
i=1

αijh
enc
i

σa = exp(
tanh(µa)

2
)

(10)

where henci denotes the ith hidden node values in the RNN
encoder. In each decoding step j, αij indicates the weight
of the ith hidden node values, which is learned during the
training procedure and calculated as follows:

αij =
exp(α̂ij)∑j
i=1 exp(α̂ij)

, α̂ij = hdecj Whenci (11)

where henci and hdecj respectively indicate the hidden node
values in the encoder and decoder, and W is the weight ma-
trix trained on the basis of a fully-connected layer.

CNN-based Autoencoder A CNN-based autoencoder, as
shown in Figure 1 (b-3,c), is used to extract the latent vec-
tor zr from the input raster image matrix Xr to capture the
pixel arrangements (i.e., positional information) of the in-
put sketches. In particular, a series of convolutional neural
networks (encoder) first project an image matrix Xr onto a
latent vector zr, which is later used to reconstruct Xr via
a series of deconvolutional neural networks (decoder). The
model minimizes the total Euclidean distance between the
input image Xr and the reconstructed image X

′

r to obtain
the best zr.

In our implementation, the encoder includes three con-
volutional layers with the stride size as 2 and three other
layers with the stride size as 1. The width and height of
all the convolutional and deconvolutional kernels are set as
2. The depth of the kernels in each convolutional layers is
(4, 4, 8, 8, 8, 8). The last layer in the encoder is a fully-
connected neural network to produce the latent feature vec-
tor zr with 128 dimensions, which captures the spatial in-
formation of the input data. Meanwhile, the decoder con-
sists of three deconvolutional layers with the stride size as 2
and three other layers with the stride size as 1. The depth of
the kernels in the deconvolutional layers is (8, 8, 8, 8, 4, 4).
ReLU (Krizhevsky, Sutskever, and Hinton 2012) is used as
the activation function in the convolutional and deconvolu-
tional layers, and tanh is used as the activation function of
the fully-connected neural network.

Loss Function AI-Sketcher is trained by minimizing the
following loss function based on a set of sketches in vector
format (i.e., Xs):

Loss = lr + α ·max(lkl, ε) (12)

The first term, lr, in the above equation is the reconstruc-
tion loss that estimates the differences between the gener-
ated strokes and the training samples. The second term es-
timates the distribution differences between the generated
strokes and the strokes in the training set. In particular, lr is
formally defined as follows:

lc = − 1

nmax

ns∑
i=1

log(

m∑
j=1

wijN(∆xi,∆yi|qi))

ls = − 1

nmax

nmax∑
i=1

3∑
k=1

pencki log(pdecki)

lr = lc + ls

(13)

where ns is the total number of generated strokes, and nmax
is the longest stroke length in our training set. lc estimates
the likelihood of the predicted startcoordinates of each gen-
erated stroke (i.e., (∆xi,∆yi)) under a normal distribution
N(·) parameterized by qi = [µxi

, µyi , σ̃xi
, σ̃yi , ρ̃xyi] based

on GMM. (∆xi,∆yi) is the position of the next predicted

2567

drawing point in a stroke that is under generation. This po-
sition is relevant relative to the previous drawing point in
the same stroke. ls calculates the cross entropy between the
stroke state penc of an input stroke from the training set and
the stroke state pdec of a generated stroke, which estimates
the difference between penc and pdec.

The second term, lkl, in Equation (12) estimates the diver-
gence between the distributions of the generated strokes and
the training data modeled byN(0, I) based on the Kullback-
Leibler divergence (Kullback and Leibler 1951). In particu-
lar, lkl is defined as:

lz = − 1

2nz

nz∑
i=1

(1 + σsi − exp(σsi)− µ2
si)

la = − 1

2na

na∑
j=1

(1 + σaj − exp(σaj)− µ2
aj)

lkl = lz + βla

(14)

where lz / la is the KL divergence between the distributions
of the latent vector zs / ad (i.e., N(µs,σs) / N(µa,σa))
and the strokes in the training data (i.e., N(0, I)). nz and
na indicate the dimensions of zs and ad, respectively. β
is a hyperparameter that balances the two terms (see Fig-
ure 1(b) for the notations). In our implementation, we set
nz = 256, na = 512, and β = 0.1.

To simultaneously minimize lr and lkl, additional param-
eters and settings are added and made in Equation (12). In
particular, to avoid gradient vanishing, an annealing weight
α is introduced to balance between lr and lkl, which will
be gradually increased during the training process to ensure
that lr will be trained at the first moment. In addition, a lower
bound of the lkl loss, denoted as ε, is also introduced to guar-
antee that training will provide sufficient attention to opti-
mizing lr when lkl is adequately small. In our implementa-
tion, we set ε = 0.20 and the upper bound of α as 1.00.

AI-Sketcher was trained based on a Nvidia Tesla K80
graphic card. Each training step takes approximately 7.8 sec-
onds on average. Once trained, the model supports sketch
generation in real time. It takes approximately 0.013 sec-
onds on average on an iMac machine (3.3 GHz Intel Core
i5, 8 GB RAM) to produce each stroke.

Evaluation
We compared AI Sketcher with other relevant models based
on two datasets: QuickDraw and FaceX. The QuickDraw
dataset contains over 50 million sketches under 75 object
categories, such as birds, dogs, and cars, and was originally
used to train Sketch-RNN. The FaceX dataset consists of 5
million sketches of male and female facial expressions that
show seven types of emotions, including anger, disgust, fear,
happiness, sadness, surprise, and neutral. Compared with
QuickDraw data, FaceX sketches were drawn by a group of
professional designers, following strict drawing guidelines
to ensure data quality.

Both datasets are in SVG format and converted into raster
images saved as PNG files. Each stroke in a sketch is further

transformed into a quintuple (∆x,∆y, p1, p2, p3), which
was first introduced in (Graves 2013). Here, ∆x and ∆y
indicate the deviation from the last drawing point, whereas
p1,2,3 are three binary status flags that respectively indicate
the continuous drawing from the last point, the end of draw-
ing a stroke, and the end of drawing a sketch. The raster
images were reshaped into 128px × 128px and each pixel
was binarized to facilitate training.

Experiments
We performed three experiments based on the above datasets
to validate AI-Sketcher’s drawing quality, its capability to
generate multi-class sketches, and generation diversity.

Drawing Quality In this experiment, we trained three
baseline models, including a Conditional Sketch-RNN, and
two alternative models by respectively removing the influ-
ence layer and the CNN-based autoencoder from the stan-
dard AI-Sketcher. The experiment was performed on the
FaceX dataset to eliminate the potential negative influence
of low-quality training data. During the experiment, an ini-
tial face (either female or male) was used as the input, based
on which seven different facial expressions were respec-
tively generated by AI-Sketcher and three baseline models.
Figure 2 illustrates the experiment results, which suggest
that AI-Sketcher produced sketches with the best quality,
whereas, Sketch-RNN produced the worst, i.e., the most dis-
torted, facial sketches. The influence layer and autoencoder
helped overcome the distortion.

A within-subject user study with 20 participants (10 fe-
males) was also performed to allow users to rate the qual-
ity of 140 sketches generated with the AI-Sketcher and the
baseline models using the same set of inputs. The 5-Likert
scale was used, with 1 indicating “very poor” quality and 5
indicating “very good” quality. The repeated measures one
way ANOVA analysis of the rating results showed that the
generation quality of AI-Sketcher had an average rating of
3.9 and was significantly better than those of the baseline
models (with all p < .01).

We also applied the t-SNE (Maaten and Hinton 2008)
to verify the coherence of the latent vectors (Figure 3). For
each model, 30 latent vectors of each category (shown by
color) were randomly sampled and visualized. The results
indicated that the latent vectors of different expressions sam-
pled from the AI-Sketcher were more coherent, i.e., better
clustered in t-SNE, compared with those of the other mod-
els. In addition, AI-Sketcher also obtained minimum overall
loss and reconstruction loss. Its KL loss was also smaller
than that of Sketch-RNN.

Multi-Class Generation The second experiments evalu-
ated AI-Sketcher’s performance in terms of generating dif-
ferent types of sketches. We trained Sketch-RNN, Sketch-
pix2seq (Chen et al. 2017), and AI-Sketcher on the subsets
of the QuickDraw dataset with different numbers of data
categories for comparison. As shown in Figure 4 (a), AI-
Sketcher generated higher-quality results, particularly when
the number of classes was large. The comparison of total
loss also showed that AI-Sketcher exhibited the best perfor-
mance (Figure 4 (b)).

2568

Figure 2: Generating the emotional facial expressions based on the Conditional Sketch-RNN , AI-Sketcher (Influence Layer
Only), AI-Sketcher (Autoencoder Only), and AI-Sketcher (the complete version).

Figure 3: Comparison of (a) the distribution of latent vectors Z and (b) the overall loss (top), reconstruction loss (middle), and
KL loss (bottom) among Sketch-RNN, AI-Sketcher (Influence Layer Only), AI-Sketcher (Autoencoder Only), and AI-Sketcher
(full version) trained based on the facial expression dataset.

2569

Figure 4: Multi-Class Sketch Generation. Comparison of Sketch-RNN, Sketch-pix2seq, and AI-Sketcher trained on a subset of
the QuickDraw data respectively with 5, 10, 15, and 20 classes.

Figure 5: Comparison of generation diversity.

Generation Diversity We also compared the generation
diversity of AI-Sketcher and Sketch-RNN based on the
QuickDraw dataset. In particular, we generated a set of 50
sketches in each of the five preselected categories respec-
tively based on AI-Sketcher and Sketch-RNN. In each set,

the pairwise distances between sketches were calculated
based on the perceptual hash (Zauner 2010). A larger av-
erage distance indicates higher generation diversity. The un-
paired t-test showed that AI-Sketcher and Sketch-RNN ex-
hibited no significant difference, as shown in Figure 5.

Conclusion
This paper presents AI-Sketcher, a deep generative model
for generating high quality multi-class sketches. The pro-
posed model learns sequential and spatial information from
a set of training sketches to automatically produce multi-
class sketch drawings with higher quality. We evaluated
our technique by comparing it with state-of-the-art models,
including Sketch-RNN and Sketch-pix2seq, on two large-
scale sketch datasets. The results showed that AI-Sketcher
produced better results, particularly for complex sketches
with multiple parts. Further work includes conducting more
experiments and using the model in various applications.

2570

Acknowledgments
We would like to thank all the users who participated in our
study, all the designers who created the FaceX dataset for the
project, and all the reviewers for their valuable comments.

References
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. arXiv preprint arXiv:1701.07875.
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450.
Chen, Y.; Tu, S.; Yi, Y.; and Xu, L. 2017. Sketch-pix2seq:
a model to generate sketches of multiple categories. arXiv
preprint arXiv:1709.04121.
Elgammal, A.; Liu, B.; Elhoseiny, M.; and Mazzone, M.
2017. Can: Creative adversarial networks, generating” art”
by learning about styles and deviating from style norms.
arXiv preprint arXiv:1706.07068.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018.
Doom level generation using generative adversarial net-
works. arXiv preprint arXiv:1804.09154.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. arXiv preprint arXiv:1308.0850.
Gulrajani, I.; Kumar, K.; Ahmed, F.; Taiga, A. A.; Visin,
F.; Vazquez, D.; and Courville, A. 2016. Pixelvae: A
latent variable model for natural images. arXiv preprint
arXiv:1611.05013.
Ha, D., and Eck, D. 2017. A neural representation of sketch
drawings. arXiv preprint arXiv:1704.03477.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. CoRR abs/1312.6114.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Kullback, S., and Leibler, R. A. 1951. On information and
sufficiency. The annals of mathematical statistics 22(1):79–
86.
Li, F.; Qiao, H.; and Zhang, B. 2018. Discriminatively
boosted image clustering with fully convolutional auto-
encoders. Pattern Recognition 83:161–173.
Lim, J.; Ryu, S.; Kim, J. W.; and Kim, W. Y. 2018. Molec-
ular generative model based on conditional variational au-
toencoder for de novo molecular design. arXiv preprint
arXiv:1806.05805.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data using
t-sne. Journal of machine learning research 9(Nov):2579–
2605.

Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Mou, L.; Men, R.; Li, G.; Zhang, L.; and Jin, Z. 2015. On
end-to-end program generation from user intention by deep
neural networks. arXiv preprint arXiv:1510.07211.
Oussidi, A., and Elhassouny, A. 2018. Deep generative mod-
els: Survey. In International Conference on Intelligent Sys-
tems and Computer Vision (ISCV), 1–8.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Reed, S.; Oord, A. v. d.; Kalchbrenner, N.; Colmenarejo,
S. G.; Wang, Z.; Belov, D.; and de Freitas, N. 2017. Parallel
multiscale autoregressive density estimation. arXiv preprint
arXiv:1703.03664.
Sarvadevabhatla, R. K.; Dwivedi, I.; Biswas, A.; Manocha,
S.; et al. 2017. Sketchparse: Towards rich descriptions
for poorly drawn sketches using multi-task hierarchical deep
networks. In Proceedings of the 2017 ACM on Multimedia
Conference, 10–18.
Schuster, M., and Paliwal, K. K. 1997. Bidirectional recur-
rent neural networks. IEEE Transactions on Signal Process-
ing 45(11):2673–2681.
Song, J.; Yu, Q.; Song, Y.-Z.; Xiang, T.; and Hospedales,
T. M. 2017. Deep spatial-semantic attention for fine-grained
sketch-based image retrieval. In IEEE International Confer-
ence on Computer Vision, 5552–5561.
Song, J.; Pang, K.; Song, Y.-Z.; Xiang, T.; and Hospedales,
T. M. 2018. Learning to sketch with shortcut cycle consis-
tency. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 801–810.
Yesilbek, K. T., and Sezgin, T. M. 2017. Sketch recognition
with few examples. Computers & Graphics 69:80–91.
Yu, Q.; Yang, Y.; Song, Y.-Z.; Xiang, T.; and Hospedales,
T. 2015. Sketch-a-net that beats humans. arXiv preprint
arXiv:1501.07873.
Yu, Q.; Liu, F.; Song, Y.-Z.; Xiang, T.; Hospedales, T. M.;
and Loy, C.-C. 2016. Sketch me that shoe. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 799–807.
Yu, Q.; Yang, Y.; Liu, F.; Song, Y.-Z.; Xiang, T.; and
Hospedales, T. M. 2017. Sketch-a-net: A deep neural net-
work that beats humans. International journal of computer
vision 122(3):411–425.
Zauner, C. 2010. Implementation and benchmarking of per-
ceptual image hash functions.
Zhang, J.; Chen, Y.; Li, L.; Fu, H.; and Tai, C.-L. 2018.
Context-based sketch classification. In Proceedings of the
Joint Symposium on Computational Aesthetics and Sketch-
Based Interfaces and Modeling and Non-Photorealistic An-
imation and Rendering, 3.
Zhao, T.; Zhao, R.; and Eskenazi, M. 2017. Learn-
ing discourse-level diversity for neural dialog models us-
ing conditional variational autoencoders. arXiv preprint
arXiv:1703.10960.

2571

