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Abstract

Lipreading has a lot of potential applications such as in the
domain of surveillance and video conferencing. Despite this,
most of the work in building lipreading systems has been
limited to classifying silent videos into classes representing
text phrases. However, there are multiple problems associated
with making lipreading a text-based classification task like
its dependence on a particular language and vocabulary map-
ping. Thus, in this paper we propose a multi-view lipread-
ing to audio system, namely Lipper, which models it as a
regression task. The model takes silent videos as input and
produces speech as the output. With multi-view silent videos,
we observe an improvement over single-view speech recon-
struction results. We show this by presenting an exhaustive set
of experiments for speaker-dependent, out-of-vocabulary and
speaker-independent settings. Further, we compare the delay
values of Lipper with other speechreading systems in order to
show the real-time nature of audio produced. We also perform
a user study for the audios produced in order to understand the
level of comprehensibility of audios produced using Lipper.

Introduction
Human speech is bimodal in nature, with the two modal-
ities coming from the auditory and optical senses. An ex-
ample in this regard comes from experiments by McGurk
and MacDonald in their appropriately titled paper, “Hear-
ing lips and seeing voices” (McGurk and MacDonald 1976),
where they show that subjects when shown mouth images
speaking /ga/ but with the sound of /ba/, perceived it as
/da/. However, the recent work in lipreading domain has de-
coupled the visual signals from the auditory ones. Instead,
most of the lipreading projects treat this problem as a clas-
sification task where they consider speech videos from a re-
stricted vocabulary of a particular language. Then, models
are trained to classify those videos into a fixed number of
classes made up of that limited vocabulary. However, scal-
ing that approach to multiple languages and a complete vo-
cabulary is a difficult task. In addition, humans do not al-
ways speak valid statements. Meaningless, gibberish or non-
language and vocabulary-conformant speech (for instance,
a human speaker making animal sounds) cannot be mod-
eled using a restrictive approach like a classification model.
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Thus, with this in mind, we present a model, namely Lip-
per, which given a silent video consisting of lip-movements
reconstructs the speech of the speaker. It does this by mod-
eling lipreading as a regression rather than a classification
task.

Distinction between Speech-reconstruction,
Speech-reading, and Speech-recognition systems
Lipper is a speech reconstruction model. People can eas-
ily get confused between speech reconstruction, reading and
recognition systems. The only commonality amongst all of
these systems, pertaining to our work, is that lipreading has
been shown to be effective in all the three tasks.

Taking the case of speech recognition systems, they per-
form the task of identifying the speaker of a speech, and
therefore, are not related to this work. However, lipreading
based speech-reading and reconstruction systems do share
some common features. Thus, with this in mind, in ex-
plaining this work, we focus on speech-reading and speech-
reconstruction systems only.

While on one hand, speech-reading systems involve iden-
tifying what a person says (using text as the identifica-
tion metric), on the other hand, the objective of speech-
reconstruction systems is to generate the speech of a per-
son (using audio as the output generated). However, gener-
ation of the speech using reconstruction systems may not
involve identifying what a person says. For instance, speech
can be generated even for illegible tokens (such as any ran-
dom permutation of characters), but due to the vocabulary
dependence of speech-reading models, it becomes difficult
to identify these illegible tokens. Consider another exam-
ple where this might be useful, multilingual people often
speak in code-switched languages (for e.g., in India, a code-
switched version of “I was in London the last month”, can
be, “Pichle mahine, I was in London”). For identifying that
kind of speech, a speechreading system has to consider all
the possible combinations of words in both the languages
and then identify them. This quickly becomes un-scalable
as the number of languages and the size of each vocabulary
increase.

The reason for the language and vocabulary independence
of speech reconstruction models like Lipper is that for the
generation of a sound, lip, nose, throat and other movements
are required, but not the vocabulary (or language) per se.
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Thus, following this reasoning, one may directly translate
and map lip movements to speech without referencing word
or sentence mappings. This is what Lipper does. Addition-
ally, unlike other models which have to wait for the com-
plete sentence to get over before they can start speechread-
ing, Lipper can begin to produce audio as soon as it detects
some lip-movements, thus becoming a near real-time sys-
tem. Since it is not contingent on any particular language or
vocabulary mapping, thus it is a language and vocabulary
independent model.

In this paper, we present an exhaustive set of experi-
ments on Lipper for speech-reconstruction. Lipper can take
multiple views into account and then lipread them to pro-
duce sound. First, in Section Speaker-Dependent Results,
we present thorough experiments for exploring the quality
of speech-reconstruction on all possible combinations of all
the views. Second, in Section Speaker-Independent Results,
using the best-view combination, we explore the results of
Lipper for speaker-independent settings. Third, in Section
Speaker Dependent OOV Results, we note the results of Lip-
per for out-of-vocabulary (OOV) phrases. Fourth, in Section
Comparison of Delays, we compare the delays for speech-
reconstruction and speech-reading systems thus demonstrat-
ing the difference of time taken between them. Fifth, in
Section User-Study, we do a user study for the speech-
comprehensibility of the sound generated. Sixth, in Section
Demonstration of Reconstructed Audios, we provide links
to some of the videos which show speaker-dependent and
speaker-independent results produced using Lipper. Sev-
enth, though the audios produced by Lipper might be noisy
in some cases, but they do capture and contain the content
of the speech of a speaker. Thus, in order to show that, we
present text-classification results in Section Text-Prediction
Model on the encoded audios produced. In the end, before
concluding the paper, we present the future research direc-
tions in lipreading domain.

Related Work
Despite much research in lipreading domain, it is still seen
as a classification task in which, given some silent videos, a
model has to classify those videos into a limited and fixed
size of lexicon (Lucey and Potamianos 2006; Ngiam et al.
2011; Lee, Lee, and Kim 2016; Zimmermann et al. 2016;
Assael et al. 2016; Chung et al. 2016; Petridis et al. 2017;
Chung and Zisserman 2017; Shah and Zimmermann 2017).
There have also been a few works on speech-reconstruction
as well (Cornu and Milner 2015; Ephrat and Peleg 2017;
Kumar et al. 2018a; 2018b). However, the problem of view
and pose-variation has been dealt by a very few lipreading
systems (Zhou et al. 2014).

Most of the authors have worked on frontal-view lipread-
ing only. Lipreading on just frontal view is a major problem
since a speaker cannot be expected to always face the cam-
era while speaking. In the speechreading domain, there have
been a few works which have worked on some views other
than the frontal view (Lucey and Potamianos 2006; Kumar,
Chen, and Stern 2007; Lan, Theobald, and Harvey 2012;
Lee, Lee, and Kim 2016; Saitoh et al. 2016) but dealing

with pose-variation is still a challenge. In addition, the prob-
lem is compounded by the absence of multi-view datasets. A
very limited number of datasets exist for fostering research
in multi-view lipreading. One of such datasets is Oulu-VS2
(Anina et al. 2015) which provides five different views of
speakers shot concurrently. On this dataset, combination of
multiple poses was tried for speechreading by (Petridis et al.
2017) and for speech-reconstruction by (Kumar et al. 2018a;
2018b). Given visual feeds from multiple cameras, the au-
thors showed that combining multiple views would result
in better accuracy in speechreading (Lucey and Potamianos
2006; Zimmermann et al. 2016; Lee, Lee, and Kim 2016;
Petridis et al. 2017) and better speech quality (Kumar et al.
2018a; 2018b) for speech-reconstruction.

Another task in lipreading domain is dealing with pose-
variation. Usually, different models are made for dealing
with different poses (Lucey and Potamianos 2006; Kumar,
Chen, and Stern 2007; Lan, Theobald, and Harvey 2012;
Lee, Lee, and Kim 2016; Saitoh et al. 2016). The other ap-
proach for dealing with pose-variation is to extract pose-
invariant features and then use them in speech-reading
(Lucey and Potamianos 2006; Lucey, Sridharan, and Dean
2008; Lan, Theobald, and Harvey 2012; Estellers and Thi-
ran 2011). However, the chief limitation of these systems is
their low accuracies which prevents their usage. There have
been very few works on speech reconstruction using single
view visual feed (Ephrat and Peleg 2017; Cornu and Milner
2015). However, as noted earlier, neither were the systems
tested on pose variation, nor speaker-independent settings or
on multiple views. We show Lipper’s performance on pose-
invariant multi-view speech-reconstruction.

Lipper: Design and Development
In this section, we describe the architecture of Lipper (as
shown in Figure 1). Primarily, Lipper is composed of a view
classifier followed by a STCNN+BiGRU (a combination of
Spatio-Temporal Convolutional Neural Network and Bidi-
rectional Gated Recurrent Units) network (as shown in Fig-
ure 2). As shown in the diagram, the view-classifier takes in-
put from multiple cameras, and then, maps the speaker view
(can be from frontal view, i.e., 0◦ to profile view, i.e., 90◦)
to the nearest pose from the pose-set {0◦, 30◦, 45◦, 60◦ and
90◦}. Once this has been mapped, based on the view map-
ping provided by the classifier, the decision logic decides on
two issues:

1. Which view combinations to utilize. This is based on
the experiments shown in Section Speaker-Dependent Re-
sults. The decision logic may or may not decide to utilize
all the available data.

2. Based on the above decision, it chooses the appropriate
speech-reconstruction model which takes the multi-view
visual input feed and generates speech.
The system generates two types of outputs: audio and as-

sociated text. The audio is generated after decoding the en-
coded audio produced using the neural network. The text is
generated by taking encoded audio as input in another neural
network which performs classification of the encoded audio
into predefined categories.
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Figure 1: End-to-end diagram for Lipper

True ◦ / Pred. ◦ 0◦ 30◦ 45◦ 60◦ 90◦
0◦ 1546 13 1 0 0
30◦ 76 1399 78 7 0
45◦ 3 19 1500 38 0
60◦ 0 0 20 1538 2
90◦ 0 0 0 2 1558

Table 1: Confusion matrix for the view classifier

Classifier Model
The classifier model uses transfer learning to classify lip-
poses. It consists of a VGG-16 model (Simonyan and Zis-
serman 2014) pretrained on ImageNet images followed by
one dense layer with 1024 units and then by one softmax
layer with five units. The VGG-16 model helps in extracting
the visual features from the lip region images. Since this is a
multi-class classification problem, we use the cross-entropy
loss to train the system. A visual representation of the clas-
sification model is given in Figure 3. For training the model,
we used lip-region images of size 224x224. While training,
we use the batch size as 100 and then we train the system for
30 epochs with Adam optimization. The confusion matrix of
the classifier is given in the Table 1. For training and testing,
we used a uniform class distribution with equal number of
samples from each of the classes. The overall accuracy as
calculated from Table 1 is 96.7%.

Speech-Reconstruction Model
STCNN+BiGRU network helps Lipper to deal with video
based data. STCNN layers extract the visual features while
BiGRU layers help it to take care of temporal nature of the
data. For the audio features, we use Linear Predictive Coding
(LPC) (Fant 2012) for representing audio. LPC order was
found out to be optimal at 24. Line Spectrum Pairs (LSPs)
(Itakura 1975) can represent LPC coefficients in a quantiza-
tion robust manner. The network takes input images of lip-
region of size 128x128 and produces the output as LPC+LSP

encoded audio. The network consists of 7 layers of STCNN
(of size 32, 32, 64, 64, 128 and 128 respectively) followed
by 2 layers of BiGRU (of size 64 and 32 respectively). This
is finally followed by the output layer of size 50 which pro-
duces the encoded audio.

We use 60 epochs for training and 20 epochs for fine-
tuning the network. We first sample audio at a sampling rate
of 20,000 and then encode it using LPC order of 24. This
is then fed to the network along with the image sequence in
timesteps of 5 during the training time.

For different experiments Lipper’s training happens in dif-
ferent formats:

1. For speaker dependent experiments, Lipper was trained
on all possible combination of views (5 views available in
total, thus

(
5
1

)
+
(
5
2

)
+
(
5
3

)
+
(
5
4

)
+
(
5
5

)
possible combinations)

for each individual speaker such that out of three phrases
for a given speaker in the database (Anina et al. 2015), it
was trained on two and one was kept for testing the sys-
tem. The results corresponding to that are given in Section
Speaker-Dependent Results.

2. For speaker independent settings, the best view combina-
tion as obtained from the experiments above was taken.
The model then was trained on all but two speakers for all
their phrases. Then, it was tested on the two speakers left
out for the speech generated. The results corresponding to
that are given in Section Speaker-Independent Results.

3. For out-of-vocabulary settings, Lipper was trained indi-
vidually for all the speakers. The training strategy fol-
lowed was such that it was trained ten times and in each
iteration, one of the ten phrases was left out of the train-
ing data, and was included in the test data. Thus, in each
iteration, Lipper was tested on a phrase which it had never
seen. The results corresponding to that are given in Sec-
tion Speaker-Dependent OOV Results.
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Figure 2: STCNN and BiGRU based architecture used for speech reading and reconstruction

Figure 3: View-classifier model for Lipper. It classifies lip
region images into five categories from the set {0◦, 30◦, 45◦,
60◦ and 90◦}

Text-Prediction Model
The text-prediction model takes encoded audio of the recon-
structed speech as input and classifies those encoded audios
into text classes. For collecting the input for this model, we
used a pre-trained speech-reconstruction STCNN+Bi-GRU
network and then obtained the output of all the silent videos
present in the database.

The network has four fully connected layers (with sizes
as 1000, 500, 100 and 10) with dropout (0.5) after the lay-
ers with sizes 500 and 100. The loss function used was
cross-entropy loss and the optimizer as Adam. The network
was trained with batch size as ten and number of epochs as
twenty.

For making a text predicting model, we tried two different
train-test data configurations:

1. In the first configuration, we randomly divided all the en-
coded audios of all the speakers into train, test and valida-
tion data with the ratio as (70, 10 and 20) respectively.

2. In the second configuration, we took all the encoded au-
dios of 70% of the speakers as the training data, and di-
vided the rest 30% speakers’ audios into 10% and 20% to
be used as validation data and test data respectively.

Config-1 Config-2 (Petridis et al. 2017)
Accuracy 97.0 78.5 95.6

Table 2: Accuracy of the two configurations of the text-
prediction model trained compared with the best results as
reported in (Petridis et al. 2017)

The results for both these configuration compared with
those of (Petridis et al. 2017) (which is the state-of-the-
art speachreading model on OuluVS2) are presented in Ta-
ble 2. We present the best accuracy reported in the paper
by (Petridis et al. 2017) for comparison. As shown in the ta-
ble, data configuration-1 performs much better than even the
best-performing model of (Petridis et al. 2017). We believe
this is due to the train-test configuration of Lipper itself.
Randomly classifying the video into one of the ten classes
present in the database would have led to 10% accuracy.
Thus, even considering the second configuration, the accu-
racy of the text-prediction model is non-trivial. This implies
that the audios produced by Lipper, although might be noisy
in some cases, capture the content of the speech of a speaker.

Evaluation
Database
For training and testing Lipper, we use all the speak-
ers of OuluVS2 database (Anina et al. 2015) for speech-
reconstruction purposes. OuluVS2 is a multi-view audio-
visual dataset with 53 speakers of various ethnicities like
European, Indian, Chinese and American. These 53 speakers
speak 10 phrases with five cameras recording them simulta-
neously from five different angles. The angles considered
are {0◦, 30◦, 45◦, 60◦ and 90◦}. The speakers speak at dif-
ferent pace and also stop in between while speaking. A list-
ing of all the phrases is given in Table 3. Thus, this dataset
serves well for the task at hand. This database has been used
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in other similar studies as well (Ong and Bowden 2011;
Zhou, Zhao, and Pietikäinen 2011; Pei, Kim, and Zha 2013;
Rekik, Ben-Hamadou, and Mahdi 2014; 2015; Petridis et al.
2017; Kumar et al. 2018a; 2018b).

Table 3: List of phrases uttered by speakers in OuluVS2

S.No. Phrases
1. Excuse me
2. Goodbye
3. Hello
4. How are you
5. Nice to meet you

S.No. Phrases
6. See you
7. I am sorry
8. Thank you
9. Have a good time
10. You are welcome

Evaluation Metric
We choose Perceptual Evaluation of Speech Quality (PESQ)
(Rix et al. 2001) as the evaluation metric to judge the quality
of the sound. This metric has been used by other speech-
reconstruction works as well (Ephrat and Peleg 2017;
Ephrat, Halperin, and Peleg 2017; Kumar et al. 2018a;
2018b). PESQ is a ITU-T recommended standard for eval-
uating speech quality of 3.2 kHz codecs (Recommendation
2001). For comparing two audios, PESQ first level aligns
them, then after passing them through filters time aligns
them. It then passes the audios through auditory transform
and finally extracts two distortion parameters which denote
the difference between the transform of the two signals. Fi-
nally, these signals are aggregated in frequency and time,
and are mapped to a MOS (mean opinion score). The range
of PESQ varies from -0.5 to 4.5, where speech quality in-
creases with increasing score.

Results
This section presents the results obtained for speaker-
dependent, speaker-independent, out-of-vocabulary settings
for Lipper. Additionally, it also reports the results for delay
measurements on Lipper.

Speaker-Dependent Results
Speaker Dependent Single-View Results The results for
Lipper when trained and tested on single-view visual feeds
are shown in Table 4. We have compared our results with
(Ephrat and Peleg 2017) which train a similar speech-
reconstruction network and tested it on single-view visual
feed. As can be seen from the table, our results are better
for all the views than (Ephrat and Peleg 2017) but the gen-
eral trend of PESQ scores is similar in both the systems. In
both the models, frontal view outperforms all other views
and obtains a PESQ score of 2.002 and 1.72 respectively.

Speaker Dependent Multi-View Results Table 5
presents the PESQ scores for all the possible two-view
combinations. As can be seen, the combination of 0◦
and 45◦ outperforms all the other possible combinations.
Closely following it is the combination of 0◦ and 30◦. It
should also be noted that the PESQ scores, in general, for all
the possible views have been benefited after a combination
with some other view. For instance, 30◦ in combination

with 0◦, experiences a gain in PESQ by over 6%. Thus with
respect to placement of two cameras, in regards to obtaining
best quality of audios, one should place the cameras at an
angle of 45◦ between them. This, as shown by the table,
would produce an audio which would carry the maximum
quality.

Table 6 presents the mean PESQ scores for all possible
three view combinations. The views combination 0◦, 45◦

and 60◦ outperforms all the combinations and presents the
best results obtained till now. This is a stupendous increase
of over 32% for both 45◦ and 60◦ when considering their
single view PESQ scores only. Moreover, even while con-
sidering the combination of 45◦ and 60◦, their association
with 0◦ leads to a non-trivial increase of more than 18%.
Although, it can be noted that not all possible 3 view com-
binations experience a gain over their 2 view counterparts.
This might be because of less training data available due to
which a larger network could not be trained appropriately.

Results for all possible 4-view combinations are shown
in Table 7. In most cases, there is not a major increase in
PESQ scores from the three-view combinations or in some
cases, even a decrease in the scores is observed. As has been
stated above, the reason for this decline in performance can
be due to non-availability of adequate data for training the
larger network. However, some view combinations have bet-
ter scores than their individual view counterparts.

Table 8 shows the result obtained on all-view combina-
tions. As can be seen, although the network at this stage out-
performs all of its single view counterparts but does not per-
form as good as the best possible three view combination of
0◦, 45◦ and 60◦. We have not compared 2-views, 3-views,
4-views and 5-views combinations with models by other au-
thors since as mentioned in the Section Related Work, there
were no models previously who have worked on combina-
tions of multiple views.

Speaker Dependent OOV Results
One of the major strong points for any speech reconstruc-
tion system is their ability to reconstruct speech on phrases
which were not present in the training set. For a system
which treats lipreading as a classification task, this is not
possible since essentially, these systems have to mark any
video with the limited classes that they consider. However,
human language (or, in general, sounds made by humans)
presents a very wide vocabulary and cannot be modeled eas-
ily with speechreading models.

In the Table 9, we present the PESQ scores using the over-
all best model (0◦, 45◦ and 60◦ combination), for each of the
phrases from the Table 3 considered as out-of-vocabulary
in different iterations. The OOV PESQ scores though lesser
than their speaker-dependent counterparts are not inconse-
quential.

Speaker Independent Results
This section presents the speaker independent results ob-
tained using Lipper. We do not evaluate the speaker inde-
pendent results on every combination of multiple views. We
choose those combinations which prove to be the best in
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Table 4: Mean readings for single-view PESQ scores for Lipper and (Ephrat and Peleg 2017)

Views 0 degree 30 degree 45 degree 60 degree 90 degree
Lipper 2.002 1.750 1.642 1.744 1.804
(Ephrat and Peleg 2017) 1.72 1.57 1.48 1.46 1.52

Table 5: Mean readings for double-view PESQ scores

View Union PESQ
0◦+30◦ 2.125
0◦+45◦ 2.130
0◦+60◦ 1.952
0◦+90◦ 1.982
30◦+45◦ 1.991

View Union PESQ
30◦+60◦ 1.842
30◦+90◦ 2.021
45◦+60◦ 1.960
45◦+90◦ 1.930
60◦+90◦ 1.920

Table 6: Mean readings for triple-view PESQ scores

View Union PESQ
0◦+30◦+45◦ 1.975
0◦+30◦+60◦ 2.112
0◦+30◦+90◦ 2.005
0◦+45◦+60◦ 2.315
0◦+45◦+90◦ 1.814

View Union PESQ
0◦+60◦+90◦ 1.987
30◦+45◦+60◦ 1.931
30◦+45◦+90◦ 1.903
30◦+60◦+90◦ 1.965
45◦+60◦+90◦ 1.838

Table 7: Mean readings for quadruple-view PESQ scores

View Union PESQ
0◦+30◦+45◦+60◦ 2.11
0◦+30◦+45◦+90◦ 1.916
0◦+45◦+60◦+90◦ 2.147
0◦+30◦+60◦+90◦ 2.071
30◦+45◦+60◦+90◦ 1.948

Table 8: Mean reading for all-view PESQ scores

Combination of views Mean PESQ scores
0◦+30◦+45◦+60◦+90◦ 2.086

Table 9: Mean readings for single view PESQ on the
OuluVS2 database for out of vocabulary (OOV) phrases

Phrases Mean PESQ scores
Excuse Me 1.79
Goodbye 1.66
Hello 1.82
How are you 1.84
Nice to meet you 1.57
See you 1.64
I am sorry 1.68
Thank you 1.55
Have a good time 1.46
You are welcome 1.60

Table 10: Readings on the best-view combination PESQ
scores for speaker-independent settings

View Union Male Female
0◦ 1.90 1.76
0◦+45◦ 2.03 1.85
0◦+45◦ + 60◦ 1.94 1.86
0◦+45◦ + 60◦ + 90◦ 1.91 1.82
0◦+30◦+ 45◦ + 60◦ + 90◦ 1.91 1.83

speaker dependent settings. The results for the male and fe-
male speakers (Speakers 38 and 39, respectively), are pre-
sented in the Table 10. It can be observed that the results for
speaker dependent models are significantly better than the
speaker independent one. We believe this is so since Lipper
does not only depend on lip movements of individual speak-
ers but also their voices. The lip-movements of the speakers
although are different, but carry the commonality of move-
ment while speaking the same words. However, since Lip-
per depends not only on lip-movements but also voices of
the speakers and since the voice of each speaker is different,
thus the model does not perform well on the PESQ score
evaluation for unknown speakers. Thus, in speaker indepen-
dent settings, Lipper is not able to learn the person-specific
voice features which are crucial for getting high scores using
PESQ as the evaluation metric. This can explain the notice-
able difference between the speaker dependent and indepen-
dent results obtained using Lipper. Additionally, it can also
be noted that results for male speaker are better than the fe-
male one, we believe this is so since the number of male
speakers in the dataset are in a majority thus forming a bias
for Lipper in favour of male voice generation.

Comparison of Delays
One of the major advantages of Lipper is it being a near
real-time system. In this section, we compare the end-to-
end delay in getting speech from Lipper and a similar work
of that of speechreading by (Petridis et al. 2017) thus con-
firming the validity of Lipper being a small delay speech-
reconstruction system. The comparison of delay values is
reported in Table 11. It is to be noted that the delay values
for speechreading work of (Petridis et al. 2017) depend on
the phrase spoken, longer the phrase higher is the delay.

User-Study
Although PESQ is a standard numeric measure which can
give an idea of the virtue of a speech and can give a refer-
ence metric for comparison but from our experiments, it was
observed that the measurements produced by PESQ were
not always perfect. Even for some noisy audios, the PESQ
scores were high and the vice-versa was also found out to
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Table 11: Mean readings for Delay values (in secs) on Lipper
and (Petridis et al. 2017)

Video Lipper(s) Petridis et al.(s)
Excuse Me 0.169 1.26
Goodbye 0.169 0.94
Hello 0.169 0.98
How are you 0.169 1.24
Nice to meet you 0.169 1.4
See you 0.169 1.34
I am sorry 0.169 1.44
Thank you 0.169 1.09
Have a good time 0.169 1.61
You are welcome 0.169 1.95

Table 12: User studies for the reconstructed audios

Study Accuracy Variance
Audio-only 80.25 2.72
Audio-visual 81.25 1.97

be true. Due to these observations, a user study was done to
understand the intelligibilty of the audios. Two types of user
studies were done for doing this analysis:

1. In the first study, we gave reconstructed speech of 25
speakers to 10 different annotators who were given 4 op-
tions consisting of 1 true and 3 random options (amongst
the 10 classes). Each annotator was asked to listen to the
audios produced by the model as many times as he likes
and then choose the best option amongst the 4 classes
given.

2. In the second study, in accordance with a real video-
conference environment, we showed the speaker’s videos
to the annotators with the reconstructed audio playing
along with the video. Then, the annotators were asked to
choose among 10 phrase classes for the audio-video se-
quence that they just listened to.

The results for both the user studies are given in Table 12.
In the audio-only study, a dice throw could get 25% of the
annotations right but the annotation accuracy turned out to
be 80.25 with annotator accuracy variance value as 2.72%.
In the audio-visual study, although a dice-throw would have
led 10% annotations correct, Lipper achieved an annotation
accuracy of 81.25 with inter-annotator accuracy variance as
1.97%.

Demonstration of Reconstructed Audios
Just numeric results cannot do justice to reconstructed
speech output. Thus, we have made a video listing con-
sisting of all the reconstructed speech outputs as part of
a Youtube channel. The readers are encouraged to view
the video playlist at https://www.youtube.com/playlist?list=
PL9rvax0EIUA4LNaXSeVX5Kt6gu2IBBnsg. This playlist
contains videos consisting of speech reconstructed using
speaker dependent model, speaker independent model, OOV
phrases and videos of some non-dataset speakers who speak

multiple languages (Hindi, English and Chinese). The non-
dataset speakers and the languages they speak show the lan-
guage and vocabulary independence of the model. For them,
we train speaker-dependent models, and first carefully get
their lip-region videos and then reconstruct the speech us-
ing the model generated. Please use headphones to be able
to listen to the reconstructed speech better. It is worth noting
that in the demonstration1, the audio is in complete sync with
the video. In addition, the speaker’s voice is comprehensible
and can be understood.

Conclusion and Future Work
Future Research Directions

As explained in this paper, not much research has happened
in speech reconstruction domain. Thus, there are a lot of ar-
eas where speech-reconstruction system can be improved.

As shown in the Section Demonstration of Reconstructed
Audios, the audios are robotic in nature. One of the main rea-
sons for this is that voice is generated not just using mouth,
but also using nose, throat and tongue. Since Lipper takes
only lip-region into account, thus the voice generated cannot
have emotion, prosody or modulation. Therefore, speech re-
construction systems have to work to make the audios more
real-life.

Currently, the system only works in controlled environ-
ment where speakers are not moving much and are looking
into the camera at a stable angle. However, in the real world
scenario, this cannot be the case. The speakers will turn and
twist and their poses would vary dramatically, thus, going
forward speech-reconstruction has to take that into account.

In this paper, although speaker-independent settings were
explored, but as was seen, the system does not work very
well on them. This is a major problem for the deployment of
speech-reconstruction systems in their use-case scenarios.

Conclusion

In this paper, the authors proposed a real-time, language
and vocabulary independent, multi-view accounting and
speaker-independent speech reconstruction system, namely
Lipper, which utilizes multi-view visual feeds to generate
the speech of a speaker. Lipper extracts features directly
from the pixels of the multi-view videos. It then learns those
spatial features jointly along with temporal features to fi-
nally reconstruct speech of a user. The proposed system
showed significant intelligibility for the audios constructed.
The best combination of views was found to be the com-
bination of 0◦, 45◦ and 60◦. This combination produced a
significant gain over other possible views and their combina-
tions. We also showed the experiments of out-of-vocabulary
phrases for speech reconstruction and the delay between
getting speech for speachreading and speech-reconstruction
systems.

1We obtain the reconstructed videos with the best 3-view (0◦,
45◦ and 60◦ combination). The audios are played three times so
that readers can easily understand them.

2594



Acknowledgement
This research was supported in part by the National Natural
Science Foundation of China under Grant no. 61472266 and
by the National University of Singapore (Suzhou) Research
Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiang
Su, People’s Republic of China, 215123.

MIDAS lab gratefully acknowledges the support of
NVIDIA Corporation with the donation of a Titan Xp GPU
used for this research.

References
Anina, I.; Zhou, Z.; Zhao, G.; and Pietikäinen, M. 2015. Ouluvs2:
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