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Abstract

Reinforcement learning methods have been used for learn-
ing dialogue policies. However, learning an effective dia-
logue policy frequently requires prohibitively many conver-
sations. This is partly because of the sparse rewards in dia-
logues, and the very few successful dialogues in early learn-
ing phase. Hindsight experience replay (HER) enables learn-
ing from failures, but the vanilla HER is inapplicable to dia-
logue learning due to the implicit goals. In this work, we de-
velop two complex HER methods providing different trade-
offs between complexity and performance, and, for the first
time, enabled HER-based dialogue policy learning. Exper-
iments using a realistic user simulator show that our HER
methods perform better than existing experience replay meth-
ods (as applied to deep Q-networks) in learning rate.

Introduction
Goal-oriented dialogue systems aim at assisting users to ac-
complish specific goals using natural language, and have
been used in a variety of applications (Zhang and Stone
2015; Su et al. 2016b; Li et al. 2017). Goal-oriented dia-
logue systems usually aim at concise conversations.1 Such
dialogue systems typically include a language understand-
ing component for recognizing and parsing the language in-
puts into inner representations, a belief state tracking com-
ponent for predicting user intent and updating the dialogue
history, and a dialogue management component that gener-
ates dialogue actions. The dialogue actions can be converted
into spoken or text-based language using a language gener-
ator. Goal-oriented dialogue managers are frequently mod-
eled as a sequential decision-making problem (Young et al.
2013), where reinforcement learning (RL) (Sutton and Barto
1998) can be used for learning an optimal dialogue policy
from user experiences. While a variety of RL methods have
been developed for learning dialogue policies (Williams and
Zweig 2016; Cuayáhuitl 2017), the methods typically re-
quire a large amount of dialogue experience until one can
learn a good-quality dialogue policy. In particular, success-
ful dialogues are rare in early learning phase, making it a
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1In comparison, the Chatbots that want to maximize social en-
gagement, such as Microsoft XiaoIce, frequently result in extended
conversations.

challenge for many dialogue systems to learn much at the
beginning and producing poor user experiences. This paper
focuses on runtime dialogue data augmentation (DDA) for
speeding up the process of learning goal-oriented dialogue
policies.

The idea of data augmentation for RL tasks is not new.
Existing research on hindsight experience replay (HER) has
shown that, in robotic manipulation tasks, an RL agent’s
learning rate can be improved by changing goals to gener-
ate “successful” instances (Andrychowicz et al. 2017). How-
ever, their HER approach is not directly applicable to di-
alogue domains, because a dialogue agent has to interact
with people to identify the desired goal state (whereas the
goal state is explicit in manipulation tasks). We develop two
complex HER methods for runtime DDA problems. The first
method is called Trimming-based HER (T-HER), where
failed dialogues are trimmed to generate successful dialogue
instances. While T-HER enables the agent to significantly
augment the training data, the generated instances are rela-
tively short. The other method is Stitching-based HER (S-
HER) that enables an agent to analyze the similarity be-
tween dialogue belief states, and stitch together dialogue
segments to form relatively long, successful dialogues.

Figure is an overview of our DDA framework, illustrat-
ing the role of our HER methods. Like standard experience
replay, we add user dialogues to the experience pool. Unlike
existing methods, when incoming dialogues are unsuccess-
ful, we use our HER methods to generate new, successful
dialogues, enabling our agent to learn from failures.

We have applied our DDA framework, including T-HER
and S-HER, to Deep Q-Networks (DQNs) (Mnih et al. 2015)
for learning dialogue policies. Results collected using a real-
istic user simulator (Li et al. 2016) suggest that our methods
perform better than competitive experience replay baselines,
including prioritized experience replay (Schaul et al. 2015).
Finally, our two HER methods can be combined to further
improve the performance. To the best of our knowledge, this
is the first work on HER-based dialogue policy learning.

Related Work
This work is closely related to research areas that aim at
efficient (deep) RL methods, including, experience replay,
reward shaping, exploration in RL, and supervised pre-
training for RL.
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Figure 1: Overview of our dialogue data augmentation (DDA) framework, and our two complex hindsight experience replay
(HER) methods.

Deep Q-Network (DQN) has enabled an agent to achieve
human-level performance on playing Atari games (Mnih et
al. 2015). RL algorithms, such as DQN, are generally data
intensive and frequently require huge numbers of interac-
tions with the environments. To better use the interaction
experience, experience replay (ER), that suggests storing
and reusing samples at training time, has been widely used
for speeding up the RL agent’s training process (Nair et al.
2015; Wang et al. 2016). Prioritized ER (PER) further accel-
erates training by assigning a weight based on temporal dif-
ference error (TD-error) to each sample (Schaul et al. 2015),
so as to increase the likelihood of selecting samples with
a high TD-error. While PER enables more effective sample
selections (Han and Sung 2017), the applicability of PER is
limited when very few successful samples are available. We
develop HER methods that generate artificial “successful”
samples to improve the learning rate of dialogue agents.

Reward shaping has been used for speeding up the learn-
ing of dialogue policies by adding a new dense reward func-
tion (Ferreira and Lefevre 2015). It has been proved that a
well designed (dense) reward function does not alter the op-
timal policy (Ng, Harada, and Russell 1999). Recently, Su
et al. applied Recurrent Neural Networks (RNNs) to pre-
dict the intermediate rewards for dialogues to reduce training
time, and developed an on-line learning framework where
dialogue policy and reward function were jointly trained via
active learning (Su et al. 2016b). However, generating such
complex reward functions require either considerable human
effort or large datasets.

Another line of research focuses on developing effec-
tive exploration strategies for RL algorithms, enabling more
sample-efficient dialogue learning. For instance, Pietquin
et al. integrated Least-Squares Policy Iteration (Lagoudakis
and Parr 2003) and Fitted-Q (Chandramohan, Geist, and
Pietquin 2010) for dialogue policy optimization (Pietquin et
al. 2011). Other examples include Gaussian Process (GP)-
based sample-efficient dialogue learning (Gašić and Young
2014), the Bayes-by-Backprop Q-network (BBQN) (Lip-
ton et al. 2017), and trust-region and gradient-based algo-
rithms (Su et al. 2017). Our HER methods have the potential
to be combined with the above sample-efficient RL methods

to produce a more efficient learning process.
Pre-training has been used in dialogue learning for com-

puting an initial policy from a corpus using supervised learn-
ing (SL) (Su et al. 2016a; Peng et al. 2017). After that, a dia-
logue agent can further improve the policy via learning from
interactions with users. In line with past research on dia-
logue systems (as listed above), we use pre-training in this
work (unless stated otherwise) to give our dialogue agent a
“warm start”.

Work closest to this research is the original HER
method (Andrychowicz et al. 2017) that manipulates goals
based on resulting states. But that method is only applicable
to domains where goals are explicit to the agents, e.g., target
positions in manipulation tasks. In dialogue domains, goals
are not fully observable and must be identified via language
actions, which motivates the development of complex HER
methods in this work.

Background
In this section, we briefly introduce the two building blocks
of this work, namely Markov decision process (MDP)-based
dialogue management, and Deep Q-Network (DQN).

MDP-based Dialogue Management
Dialogue control is modeled using MDPs in this work. An
MDP-based dialogue manager (Lipton et al. 2017) can be
described as a tuple 〈S,A, T, s0,R〉. S is the state set, where
s∈S represents the agent’s current dialogue state including
the agent’s last action, the user’s current action, the distribu-
tion of each slot, and other domain variables as needed.A is
the action set, where a∈A represents the agent’s response.
T is the stationary, probabilistic transition function with con-
ditional density p(st+1|st, at) that satisfies the (first-order)
Markov property. s0∈S is the initial state.R: S×A → R is
the reward function, where the agent receives a big bonus in
successful dialogues, and has a small cost in each turn.

Solving an MDP-based dialogue management problem
produces π, a dialogue policy. A dialogue policy maps a
dialogue state to an action, π: S → A, toward maximiz-
ing the discounted, accumulative reward in dialogues, i.e.,
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Rt =
∑∞

i=t γ
i−tri, where γ∈ [0, 1] is a discount factor that

specifies how much the agent favors future rewards.

Deep Q-Network
Deep Q-Network (DQN) (Mnih et al. 2015) is a model-free
RL algorithm for discrete action space. DQN uses a neu-
ral network as an approximation of the optimal Q-function,
Q∗ = Q(s, a; θ), where a is an action executed at state s,
and θ is a set of parameters. Its policy is defined either in
a greedy way: πQ(s) = arg maxa∈AQ(s, a; θ) or being
ε−greedy, i.e., the agent takes a random action in proba-
bility ε and action πQ(s) otherwise. The loss function for
minimization in DQN is usually defined using TD-error:

L = Es,a,r,s′ [(Q(s, a; θ)− y)2], (1)

where y = r + γmaxa′∈AQ(s′, a′; θ).
Naive DQNs often suffer from overestimation and insta-

bility, and two techniques are widely used to alleviate the is-
sues. One is called target network (Mnih et al. 2015) whose
parameters are updated by θ once every many iterations in
the training phase. The other technique is experience re-
play (Lin 1993; Mnih et al. 2015), where an experience pool
E stores samples, each in the form of (st, at, rt, st+1). In
training the DQN, a mini-batch is uniformly sampled from
E . Experience replay desensitizes DQN to the correlation
among the samples, and increases the data efficiency via
reusing the (potentially expensive) samples. Both techniques
improve the performance of DQN and are used in this paper.

Dialogue Segmentation
In this section, we introduce the concept of dialogue sub-
goal, and present a segmentation algorithm that efficiently
outputs valid dialogue segments, which are later used in our
complex HER methods.

Definition of Dialogue Subgoal
Goal-oriented dialogue systems help users accomplish their
goals via dialogue, where a goal G includes a set of con-
straints C and a set of requests R (Schatzmann and Young
2009): G = (C,R).

Consider a movie booking domain. A user may ask about
the name and time of a movie starring Jackie Chan, of genre
action, and running today, where the goal is in the form of:

Goal =

(
C =

actor = Jackie Chan
genre = action
date = today

 ,

R =

[
movie name =
start time =

])

Definition 1 Subgoal2 Given G = (C,R) and G′ =
(C ′, R′), we sayG′ is a subgoal ofG, orG′ @ G, if C ′ ⊂ C
and R′ ⊂ R, where G′ 6= ∅ .

2Our definition of subgoal is different from that in the dialogue
learning literature on hierarchical reinforcement learning (Tang et
al. 2018) and state space factorization (Thomson 2013).

Subgoal 1 =

(
C =

[
actor = Jackie Chan

genre = action

]
, R = ∅

)
.

Subgoal 2 =

(
C = ∅, R =

[
movie name =
start time =

])
.

Subgoal 3 =

(
C =

[
actor = Jackie Chan

date = today

]
,

R =

[
movie name =
start time =

])
.

Figure 2: Example subgoals in the movie booking do-
main. For instance, Subgoal 3 corresponds to the request
of “Please tell me the name and start time of the movie that
is playing today and stars Jackie Chan. ”

In successful dialogues, the agent must correctly identify
all constraints and requests in G, so as to correctly provide
the requested information via querying a database. Figure 2
shows three example subgoals (out of many) in the movie
booking example.

It should be noted that some subgoals do not make sense
to humans, but can be useful for dialogue learning. For in-
stance, Subgoal 2 corresponds to a query about movie name
and start time without any constraints. Real users do not
have such goals, but an agent can still learn from the ex-
perience of achieving such subgoals.

Continuing the “Jackie Chan” example, if the agent
misidentifies genre, start time, or both, the dialogues will be
deemed unsuccessful, meaning that the agent cannot learn
much from it, even though the agent has correctly identified
the other entries of movie name, actor, etc. In this work, we
make use of such unsuccessful dialogues in the training pro-
cess, leveraging the fact that the agent has achieved subgoals
(not all) in these dialogues.

Dialogue Segment Validation
Given dialogues D′ and D, we say D′ is a segment of D, if
D′ includes a consecutive sequence of turns of D. We intro-
duce an assessment function3, success(G,D), that outputs
true or false representing whether dialogue D accomplishes
goal (or subgoal) G or not. Using the assessment function,
we define the validity of dialogue segments.

Definition 2 Validity of dialogue segments: Given dialogue
D, goal G, and dialogue segment D′ (of D), we say D′ is a
valid dialogue segment of D, iff there exists a subgoal G′ @
G, and success(G′,D′) is true.

Using Definitions 1 and 2, one can assess the validity
of dialogue segment D′, using the entire dialogue D, the
goal of this dialogue G, and the provided subgoal G′. How-
ever, there exist many subgoals of the ultimate goal (com-
binatorial explosion), and it soon becomes infeasible to as-
sess the validity of a dialogue segment. Formally, given

3Such assessment functions are provided by dialogue simula-
tors, e.g., TC-Bot (https://github.com/MiuLab/TC-Bot).
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Algorithm 1 Dialogue Segmentation
Input:

Goal G that includes constraint set C and request set R;
Assessment function success(·, ·);

Output:
A collection of pairs of a valid (head) dialogue segment and a
corresponding subgoal, Ω;

1: Initialize Ω = ∅
2: Initialize P = ∅ and Q = C ∪R
3: while Dialogue D is not ended do
4: Outcome flag segment outcome = False
5: for q ∈ Q do
6: Construct a subgoal G′ = P ∪ q
7: if success(G′,D) then
8: segment outcome = True
9: P← P ∪ q and Q← Q \ q

10: end if
11: end for
12: if segment outcome == True then
13: Ω← Ω∪ <D,P>
14: end if
15: end while

goal G = (C,R), the number of subgoals is
∑|C|

i=0

(
i
|C|
)
·∑|R|

j=0

(
j
|R|
)
− 2, where we subtract the two extreme cases

of the subgoal being ∅ and G. If |C| = 5 and |R| = 5, the
number of subgoals is 1598.

Dialogue Segmentation Algorithm
Instead of assessing the validity of a dialogue segment using
all subgoals, we aim at using only the ones with the so-far-
highest “cardinality”. The intuition comes from the follow-
ing two observations. In line with previous research on di-
alogue policy learning, e.g., (Schatzmann et al. 2007) , we
assume users are cooperative and consistent in dialogues.

1. During a dialogue, the number of constraints and requests
that have been identified is monotonically increasing; and

2. When a subgoal is accomplished, all its “subsubgoals” are
automatically accomplished.
Leveraging the above two observations, we develop a di-

alogue segmentation algorithm to efficiently identify valid
dialogue segments. First, we initialize two collections P and
Q. P stores the constraints and requests that have been iden-
tified during the dialogues, and Q stores the ones that have
not been identified. Therefore, at the very beginning of di-
alogues, P is an empty set, and Q stores all constraints and
requests. After each dialogue turn, we generate a subgoal set
G where all subgoals share the same (so far highest) cardi-
nality. Formally, G = {G′|G′ = P ∪ q,∀q ∈ Q}. If G′ ∈ G
is accomplished by the current dialogue segment, the corre-
sponding q is removed from Q and added into P, which is
used to generate the subgoal set for the next dialogue seg-
ment. So at each dialogue turn, only a small set of subgoals
(i.e., G) is used to assess a dialogue segment. More detailed
procedure is shown in Algorithm 1. Compared to exhaustive
subgoal identification that suffers from combinatorial explo-
sion, our dialogue segmentation algorithm has O(|C|+ |R|)
time complexity.

Building on our dialogue segmentation algorithm, we next
introduce our runtime data augmentation methods for effi-
cient dialogue policy learning.

Our Complex HER Methods for Dialogue
Data Augmentation

In this section, we introduce two complex hindsight expe-
rience replay (HER) methods for dialogue data augmenta-
tion (DDA). The original HER method (Andrychowicz et al.
2017) is not applicable to dialogue domains, because goals
in dialogues are not explicitly given (c.f., path planning for
robot arms) and must be identified in dialogue turns. We
say our HER methods are “complex”, because our methods
manipulate dialogue experiences based on the resulting dia-
logue states (which is more difficult than goal manipulation).
The HER methods generate successful, artificial dialogues
using dialogues from users (successful or not), and are par-
ticularly useful in early learning phase, where successful di-
alogues are rare.

Trimming-based HER (T-HER)
The idea of T-HER is simple: we pair valid dialogue seg-
ments (from Algorithm 1) and their corresponding subgoals
to generate successful dialogue instances for training.

It requires care in rewarding the success of the generated
dialogues (c.f., the ones from users). We want to encourage
the agent to accomplish subgoals (particularly the challeng-
ing ones) using positive rewards, while avoiding the agent
sticking to accomplishing only the subgoals. Given Rmax

and Rmin being the reward and penalty to successful and
unsuccessful dialogues with users, we design the following
(simple) reward function for the successful, artificial dia-
logues from T-HER.

R(D) = α · |G′|, ensuring α · |G′| < Rmax (2)

where α is a weight, G′ is a subgoal, D is a dialogue seg-
ment, and |G′| is the number of entries of G′ that must be
identified. The agent receives a small penalty (-1 in our case)
at each turn to encourage short dialogues.

T-HER enables a dialogue agent to learn from the expe-
rience of completing imaginary, relatively easy tasks, and
is useful while accomplishing ultimate goals is challenging
(e.g., in early learning phase). However, as a relatively sim-
ple strategy for DDA, T-HER cannot generate dialogues that
are more complex that those from users.

Stitching-based HER (S-HER)
S-HER is relatively more complex than T-HER, while both
need valid dialogue segments from Algorithm 1. T-HER
uses the segments as successful dialogues that accomplish
subgoals, whereas S-HER uses them as parts to construct
new, successful dialogues. The key questions to S-HER are
what dialogue segments are suitable for stitching, and how
they are stitched together. Next, we define stitchability of
dialogue segments using KL Divergence:

DKL(s0 ||s1 ) =

n∑
i=0

s0 (i) · log
s0 (i)

s1 (i)
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Algorithm 2 Stitching-based HER
Input:

Dialogue D, and its goal G
A collection of pairs of a valid (tail) dialogue segment and a
corresponding subgoal, Γ
KL-divergence threshold, ε
Assessment function, success(·, ·)

Output:
A set of newly generated dialogues, M

1: Initialize M← ∅
2: Assess input dialogue: success flag = success(G,D)
3: Call Algorithm 1 to compute Ω, usingD, G, and success(·, ·),

where Ω is a collection of pairs of a valid (head) dialogue seg-
ment and a corresponding subgoal

4: for <D′, G′>∈ Ω do
5: if success flag is True then
6: Γ← Γ∪ <D	D′, G′>, where	 is a dialogue subtrac-

tion operator
7: else
8: for <D′′, G′′>∈ Γ do
9: if G′ is G′′ andDKL(D′||D′′) ≤ ε then

10: Dstitched = concatenate(D′,D′′)
11: M← M ∪ Dstitched

12: Break
13: end if
14: end for
15: end if
16: end for
17: Return M

where s0 and s1 are two probability distributions.

Definition 3 Stitchability: Consider two dialogue segments

D = (s0, a0, s1), (s1, a1, s2), · · · , (sM−1, aM−1, sM ),

D′ = (s′0, a
′
0, s
′
1), (s′1, a

′
1, s
′
2), · · · , (s′N−1, a′N−1, s′N ),

where M and N are turn numbers (dialogue segment
lengths) of D and D′, and each turn includes initial state,
dialogue action, and resulting state.

If the dialogues’ corresponding (sub)goals are G and G′,
we say D and D′ are stitchable, if and only if G = G′, and

DKL(sM || s′0) ≤ ε,
where ε∈R is a stitchability threshold.

We use head (tail) dialogue segment to refer to the seg-
ment that includes the early (late) turns in the resulting dia-
logue. In Definition 3, D and D are head and tail segments
respectively.

The key idea of S-HER is to use unsuccessful user dia-
logues to generate valid head dialogue segments (stored in
set Ω), use successful user dialogues to generate valid tail
dialogue segments (stored in set Γ), and stitch dialogue seg-
ments from the two sets (one from each set) to form new
successful artificial dialogues, only if their connecting dia-
logue states are similar enough.

Algorithm 2 presents S-HER. Given a new user dialogue
D, S-HER first calls Algorithm 1 to generate all valid di-
alogue segments that start from the beginning of D, and
stores them in set Ω. After that, S-HER assesses D’s suc-
cessfulness using its associated goal, and stores the result in

success flag. If successful, S-HER subtracts segments in Ω
from D to generate the tail segments that eventually lead to
successful dialogues. The tail segments are used to augment
Γ.	 in Line 6 is a dialogue subtraction operator, i.e.,D	D′
produces a dialogue segment by removing D′ from D, and
this operation is valid, only if D′ is a segment of D. If the
new user dialogue is unsuccessful, S-HER concatenates one
head segment from Ω to one tail segment from Γ to form
a new, successful dialogue Dstitched, and add it into set M,
which is used for storing the algorithm output.

Remarks: S-HER uses KL divergence (Line 9 in Algo-
rithm 2) to measure the similarity between dialogue states.
If their divergence is lower than a threshold, S-HER stitches
the corresponding two dialogue segments together to gener-
ates a new dialogue. S-HER is more effective than T-HER,
when there are very few successful dialogues in the expe-
rience replay pool. This is because S-HER is able to gen-
erate many successful dialogues, even if there is only one
successful dialogue from user, which significantly augments
the dialogue data for accelerating the training process.

Experiment
Experiments have been conducted to evaluate the key hy-
pothesis of T-HER and S-HER being able to improve the
learning rate of DQN-based dialogue policies. We have
combined the two methods with prioritized experience re-
play (Schaul et al. 2015) to produce better results, and com-
pared T-HER and S-HER under different conditions.

Dialogue Environment
Our complex HER methods were evaluated using a dialogue
simulation environment, where a dialogue agent communi-
cates with simulated users on movie-booking tasks (Li et
al. 2016; 2017). This movie-booking domain consists of
29 slots of two types, where one type is on search con-
straints (e.g., number of people, and date), and the other is
on system-informable properties that are needed for database
queries (e.g., critic rating, and start time).

A dialogue state consists of five components: 1) one-hot
representations of the current user action act and mentioned
slots; 2) one-hot representations of last system action act
and mentioned slots; 3) the belief distribution of possible
values for each slot; 4) both a scalar and one-hot representa-
tion of the current turn number; and 5) a scalar representa-
tion indicating the number of results which can be found in
a database according to current search constraints.

The system (dialogue agent) has 11 dialogue actions rep-
resenting the system intent. These actions can be mapped
into a natural language response according to the dialogue
belief states and heuristic rules. Once a dialogue reaches the
end, the system receives a big bonus 80, if it successfully
helps users book tickets. Otherwise, it receives−40. In each
turn, the system receives a fixed reward −1 to encourage
shorter dialogues. The maximum number of turns allowed
is 40. Our previous work has studied how such rewards af-
fect dialogue behaviors, e.g., higher success bonus and/or
lower failure penalty encourage more risk-seeking behaviors
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                    Failure                     Success

T0-U Can I get tickets for zootopia? Can I get tickets for zootopia? T0-U

T1-S night is available. What movie are you interested in? T1-S

T2-U Could you help me to book  The tickets? I want to watch zootopia. T2-U

T3-S What time would you like to see it? What time would you like to see it? T3-S

T4-U I want to watch at 9:10 pm. I want to watch at 9:10 pm. T4-U

T5-S Which city would you like? Which city would you like? T5-S

T6-U I want to watch at seattle. I want to watch at seattle. T6-U

T7-S What movie are you interested in? What date would you like to watch it? T7-S

T8-U I want to watch zootopia. I want to set it up tomorrow T8-U

T9-S What movie are you interested in? Which theater would you like? T9-S

T10-U I want to watch zootopia. I want to watch at regal meridian 16. T10-U

T11-S What movie are you interested in? How many tickets do you need? T11-S

T12-U I want to watch zootopia. I want 2 tickets please! T12-U

T13-S What movie are you interested in?

T13-ST14-U I want to watch zootopia.

T15-S What movie are you interested in?

T16-U I want to watch zootopia. Thank you T14-U

T17-S What movie are you interested in? Thank you T15-S

T18-U I want to watch zootopia.

T19-S What movie are you interested in?

...

I was able to purchase 2 tickets 
for you to see Zootopia tomorrow 
at regal Meridian 16 theater in seattle 
At 9:10 pm.

Figure 3: Examples of an unsuccessful dialogue and a suc-
cessful dialogue, where we use “U” and “S” to indicate user
and system turns respectively.

and higher QA costs result in less accurate, shorter conver-
sations (Zhang and Stone 2015).

The DQN architecture used in this paper is a single-layer
neural network of size 80. Its output layer has 11 units cor-
responding to the 11 dialogue actions. The techniques of tar-
get network and experience replay are applied (see Section ).
The size of experience pool is 100k, and experience replay
strategy is uniform sampling. The value of α in Equation 2
is 1.0, and ε−greedy policy is used, where ε is initialized
with 0.3, and decayed to 0.01 during training.

Each experiment includes 1000 epochs. Each epoch in-
cludes 100 dialogue episodes. By the end of each epoch,
we update the weights of target network using the current
behavior network, and this update operation executes once
every epoch. Every data point in the figures is an average of
500 dialogues from 5 runs (100 dialogues in each run). For
instance, a data point of 0.6 success rate at episode 70 means
that 60% of the 70th dialogue episodes (500 in total) were
successful. In line with previous research (Su et al. 2016a;
Peng et al. 2017), we use supervised learning to give our dia-
logue agent a “warm start” in each set of experiments, unless
specified otherwise.

Case Illustration
Before presenting statistical results, we use two example di-
alogues to illustrate how T-HER and S-HER augment dia-
logue data, as shown in Figure 3. The goal of the unsuccess-
ful dialogue (Left) includes three constraints of start time,
city, and movie name, and one request of ticket. The goal of
successful dialogue (Right) includes six constraints of start
time, city, movie name, theater, date, and number of people,
and one request of ticket. Next, we demonstrate how T-HER
and S-HER use the two dialogues to generate artificial, suc-
cessful dialogues.

T-HER selects valid dialogue segments according to
achieved subgoals. On the left, the dialogue segment in blue

Figure 4: Learning to dialogue to accomplish tasks of book-
ing movie tickets. Our two complex HER strategies improve
the learning rate, c.f., naive DQN with standard experience
reply (ER).

color achieves the subgoal that includes three constraints
(start time, city, and movie name), and also its “subsub-
goals”. Accordingly, T-HER can generate three valid dia-
logue segments (new, successful dialogues), including the
ones from T0 to T4, from T0 to T5, and from T0 to T8. Turns
after T8 are not considered, because our assessment function
does not allow the agent asking useless questions.

S-HER generates new successful dialogues by stitching
head and tail dialogue segments. In this example, the two di-
alogue segments in blue color achieved the same subgoal, al-
though the two dialogue segments have very different flows.
S-HER enables our agent to generate a new successful dia-
logue by stitching the dialogue segment in blue color on the
left, and the dialogue segment in green color on the right.
The newly generated, successful dialogue achieves the goal
that is originally from the dialogue on the right.

Experimental Results
Experiments have been extensively conducted to evaluate
the following hypotheses. I) Our HER methods perform
better than standard experience reply; II) Our HER meth-
ods can be combined with prioritized ER for better perfor-
mance; III) Our HER methods perform better than existing
ER methods in cold start; and IV) T-HER and S-HER can be
combined to produce the best performance.

DQN with our HER strategies Since the original HER
method (Andrychowicz et al. 2017) is not applicable to di-
alogue systems, we compare our complex HER methods
with a standard DQN-based reinforcement learner. Figure 4
shows that both T-HER and S-HER significantly accelerate
the training process, which supports our key hypothesis. The
KL divergence threshold of S-HER is 0.2 in this experiment.
Next, we study the effect this parameter to the performance
of S-HER.

KL divergence level of S-HER Stitching is allowed in S-
HER, only if the KL divergence between two connecting
states is below a “stitchability” threshold (details in Algo-
rithm 2). Intuitively, if the threshold is too small, there will
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Figure 5: Stitchability in S-HER: KL divergence threshold ε
in [0.2, 0.5] performs the best.

Figure 6: Incorporating prioritized experience replay to im-
prove the performances of T-HER and S-HER.

be very few dialogue segments being stitched (though the
newly generated dialogues are of very good quality). If the
threshold is too big, many dialogue segments are stitched,
but the quality of generated, artificial dialogues will be poor,
producing negative effects to the learning process.

Figure 5 depicts the influences of different thresholds. As
expected, when the threshold is too high (e.g., ε = 2.0),
the RL agent failed to converge to a good policy; when the
threshold is too small (e.g., <= 0.1), the improvement to
the learning rate is not as good as using a threshold within
the range of [0.2, 0.5]. Results here can serve as a reference
to S-HER practitioners.

Integration with PER The first two sets of experiments
used uniform sampling in experience replay. We further
evaluate the performance of integrating our complex HER
methods with prioritized experience replay (PER) that pri-
oritizes selecting the potentially-valuable samples (in terms
of TD-error) (Schaul et al. 2015). Figure 6 shows the re-
sults. We can see T-HER and S-HER perform better than
PER-only, and that incorporating PER into T-HER and S-
HER further improved the performances. It should be noted
that all five learning strategies converge to policies that are
of similar qualities.

Figure 7: In extreme situations (cold start and small expe-
rience pool), S-HER performs better than T-HER, and their
combination performs the best.

Learning with a cold start T-HER and S-HER produced
similar results in previous experiments. In this set of exper-
iments, we removed the warm-start policy (from supervised
learning) that has been widely used in the literature (Li et al.
2017; Lipton et al. 2017), and reduced the experience replay
pool from 100k to 1k, resulting in an extremely challenging
task to the dialogue learners.

Figure 7 shows the results. We can see that uniform expe-
rience replay (ER) (Mnih et al. 2015), and PER (Schaul et
al. 2015) could not accomplish any task. Under such chal-
lenging settings, our complex HER methods achieved > 0.5
success rates. In particular, S-HER outperforms T-HER, by
generating significantly more successful dialogues. Finally,
combining T-HER and S-HER produced the best perfor-
mance.

Conclusions and Future Work

In this work, we developed two complex hindsight experi-
ence replay (HER) methods, namely Trimming-based HER
and Stitching-based HER, for dialogue data augmentation
(DDA). Our two HER methods use human-agent dialogues
to generate successful, artificial dialogues that are particu-
larly useful for learning when successful dialogues are rare
(e.g., in early learning phase). We used a realistic dialogue
simulator for experiments. Results suggest that our methods
significantly increased the learning rate of a DQN-based re-
inforcement learner, and incorporating other experience re-
play methods further improved their performance.

This is the first work that applies the HER idea to the prob-
lem of dialogue policy learning. In the future, we plan to
evaluate our complex HER strategies using other dialogue
simulation platform, e.g., PyDial (Ultes et al. 2017), and
other testing environments. Another direction is to evaluate
the robustness of T-HER and S-HER by replacing DQN with
other RL algorithms, such as Actor Critic (Su et al. 2017).
Finally, we will improve this line of research by further con-
sidering the noise from language understanding.
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