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Abstract

Motivated by the observation that overexposure to unwanted
marketing activities leads to customer dissatisfaction, we con-
sider a setting where a platform offers a sequence of mes-
sages to its users and is penalized when users abandon the
platform due to marketing fatigue. We propose a novel se-
quential choice model to capture multiple interactions taking
place between the platform and its user: Upon receiving a
message, a user decides on one of the three actions: accept the
message, skip and receive the next message, or abandon the
platform. Based on user feedback, the platform dynamically
learns users’ abandonment distribution and their valuations of
messages to determine the length of the sequence and the or-
der of the messages, while maximizing the cumulative payoff
over a horizon of length T . We refer to this online learning
task as the sequential choice bandit problem. For the offline
combinatorial optimization problem, we show a polynomial-
time algorithm. For the online problem, we propose an algo-
rithm that balances exploration and exploitation, and charac-
terize its regret bound. Lastly, we demonstrate how to extend
the model with user contexts to incorporate personalization.

1 Introduction
Service providers and retailers routinely rely on emails and
app notifications to interact with their users. When it is done
well, these messages act as digital reminders that increase
customer engagement, raise brand awareness and conver-
sion. However, frequent messaging can easily backfire. Mar-
keting fatigue, which refers to an overexposure to unwanted
marketing messages, could aggravate users and prompt them
to forgo receipt of future messages by unsubscribing or
deleting the app.

Motivated by this dilemma, we consider a setting where a
platform needs to learn a policy which consists of a sequence
of messages for its users. It has to decide the order of the
messages as well as the length of the sequence from a pool of
available messages. The messages are presented to a user se-
quentially. Upon reviewing a message i, a user takes one of
the three actions: 1) accept the message and exit. In this case,
the platform earns a reward ri. If the user does not select the
current message, she can either 2) receive the next message
unless the sequence runs out, or 3) abandon the platform.
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When a user abandons, the platform incurs a penalty cost
c from losing that user. Based on users’ feedback, the plat-
form learns two pieces of information in order to determine
the optimal sequence, namely, users’ valuations of individ-
ual messages and users’ abandonment distribution. The ob-
jective of the platform is to maximize its expected payoff
which is the revenue after subtracting the penalty cost due to
abandonment. We refer to the online learning task which the
platform faces as the sequential choice bandit (SC-Bandit)
problem.

To draw a connection between this problem and the ear-
lier motivating example, messages can represent digital mar-
keting content such as an email or app notification regard-
ing a product or service that a marketer wishes to promote.
He1 earns revenue whenever a user interacts with the content
(e.g., click or purchase). The interaction is an indication that
the content is of interest to that user. When the user ignores
the content, there is a possibility that she will unsubscribe or
delete the app. We can think of the abandonment cost c as
the cost of user acquisition as the marketer replenishes his
customer base. Based on a survey2, the cost of customer ac-
quisition is estimated to be 5 to 25 times higher than keeping
an existing customer. Therefore, fatigue control is a critical
component of digital marketing content dissemination.

There are several challenges associated with analyzing the
SC-Bandit problem. Firstly, even in the offline setting where
users’ valuations and abandonment distribution are known,
the sequence optimization problem is combinatorial in na-
ture without an obvious efficient algorithm. Secondly, the
sequential behavior of users complicates the learning task:
while one can observe the response to the first offered mes-
sage, the feedback to subsequent messages is not guaranteed
due to abandonment. Thirdly, one needs to simultaneously
learn valuations and abandonment distribution from users’
feedback which depends on these two pieces of information
jointly. The contribution of our work is fourfold:

1. We propose a novel sequential choice model which cap-
tures multiple interactions including abandonment be-
tween users and a platform.

2. We prove that the offline combinatorial optimization

1We refer to a marketer as he, and a user as she.
2https://hbr.org/2014/10/the-value-of-keeping-the-right-

customers
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problem allows an efficient polynomial-time algorithm.
3. For the online problem where valuations and abandon-

ment distribution are unknown to the platform, we pro-
pose a learning algorithm and show that the regret is
bounded above by O(N

√
T log T ) where N is the num-

ber of available messages and T is the time duration.
4. We incorporate personalization by solving a contextual

SC-Bandit problem where valuations and abandonment
distribution can vary with user features.

2 Literature Review
Multi-armed bandit problem Our work is closely re-
lated to the multi-armed bandit (MAB) problem, which has
been well studied in the literature (e.g., Robbins 1985; Sut-
ton, Barto, and others 1998). Several popular extensions
include MAB with linear payoffs (Auer 2002; Agrawal
and Goyal 2013), ranked bandits (Radlinski, Kleinberg, and
Joachims 2008; Slivkins, Radlinski, and Gollapudi 2013),
and the combinatorial MAB problem (Chen, Wang, and
Yuan 2013). Our problem can be viewed as a combina-
torial bandit problem where a platform chooses a set of
messages to be displayed in a certain order. A naive ap-
proach is to treat each possible combination as an arm.
However, the number of arms increases exponentially with
the number of messages under this approach. Other com-
binatorial bandit work assuming linear reward (Auer 2002;
Rusmevichientong and Tsitsiklis 2010) or independent re-
wards (Chen, Wang, and Yuan 2013) cannot be directly ap-
plied to our model. Our setup also shares some similarities
with cascading bandits (Kveton et al. 2015). The task there
is to select m messages with the highest click probabilities,
where m is exogenous and the rewards are the same for all
messages. In contrast, our task is to determine both m (the
length of the sequence) and the order of the messages which
have different revenues.

Some recent work such as Schmit and Johari 2018 has
studied users’ abandonment. In their setting, a user has a
threshold drawn from an unknown distribution and she aban-
dons if the platform’s action x exceeds that threshold. The
platform needs to learn the distribution while optimizing x
to maximize its discounted reward. One of the key differen-
tiators and novelty of our work is how we model abandon-
ment in the presence of sequential behavior. The decision to
abandon is an interplay of user’s valuations which determine
whether a user will select the message, and the abandonment
distribution. The platform needs to learn both quantities and
solve an integer programming problem to obtain the optimal
policy.

Dynamic learning of assortment optimization problems
Assortment optimization refers to the problem of selecting
a set of products to offer to a group of customers so as to
maximize the revenue that is realized when customers make
purchases according to their preferences. It is a central topic
in the operations management research literature. We refer
the reader to Kök, Fisher, and Vaidyanathan 2008 for a com-
prehensive review. Talluri and Van Ryzin 2004 formulate
the assortment planning problem by using a discrete choice

model which is a multinomial logit model (Train 2009;
Luce 2012) to describe user behavior.

More recent literature (Caro and Gallien 2007; Rus-
mevichientong, Shen, and Shmoys 2010; Agrawal et al.
2017a; 2017b; Cheung and Simchi-Levi 2017) focus on the
dynamic assortment problem where the customer prefer-
ences are unknown a priori and need to be learnt. Our work
can be viewed as a dynamic assortment problem to deter-
mine a set of messages and a specific display order. Existing
dynamic assortment problems model a single interaction be-
tween the platform and a user, who can either choose an item
from the assortment or leave without a purchase. In contrast,
our model captures multiple interactions between the two
- the sequential nature of the decision-making process is a
key novelty of our work. The order of messages plays a cru-
cial role in the analysis as message rewards vary and users
could abandon the platform when unsatisfying messages are
received.

3 Model
In this section, we formally introduce our setting. Assume
there are N different messages for the platform to choose
from. Let X be the set of these N messages. Each message
i generates revenue ri when it is selected by a user. Cus-
tomers arrive at time t = 1, · · · , T . For a customer arriving
at time t, the platform determines a sequence of messages
St = St1 ⊕ St2 ⊕ · · · ⊕ Stm, where Sti consists of a single
message for any 1 ≤ i ≤ m and “⊕” denotes the operator
of union which also preserves the order. The platform’s de-
cision includes both the order of the messages as well as the
total length of the sequence m.

Messages are displayed sequentially to a user according
to the pre-specified order. Thus, messages at the front of the
sequence will be displayed first and are considered to have
higher priorities. If a user selects a message, she exits the
platform and no further messages will be shown to her. The
platform earns ri. On the other hand, when a message is not
selected, we consider its content unsatisfying, since they are
not of sufficient interest to the user. When that happens, the
user can either choose to abandon the platform, or see the
next message if the sequence runs out. Abandonment will
cause a penalty cost c to the platform.

Abandonment distribution under marketing fatigue
We assume the probability that a user abandons the platform
upon receiving each unsatisfying message is p. Each user
arriving at time t can be characterized by a random variable
W t, drawn from a distribution FW . W t is a proxy for user
patience, which measures the maximum number of unsatis-
fying messages that a user can tolerate before abandoning
the platform. Under this setup, it implies that FW is a geo-
metric distribution with parameter p. Let q = 1− p.

The probability of upon receiving the kth unsatisfying
message is P (W = k) = qk−1(1− q). The probability that
a user has not abandoned after k unsatisfying messages is
P (W > k) = qk, which is also the probability that a user’s
patience is larger than k.
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Sequential choice model For every message i, its proba-
bility of being selected is ui, where 0 ≤ ui < 1. This quan-
tity can be directly derived from users’ valuation of message
i which reflects users’ preferences. For the rest of the pa-
per, we will refer to ui as valuation to avoid confusion with
pi(S) which we will define next. When message i is part of a
sequence S = S1⊕S2⊕· · ·⊕Sm, the probability of being se-
lected which is denoted as pi(S), depends on its position in
the sequence as well as the content of other messages shown
earlier. Formally,

pi(S) =


ui, if i ∈ S1

P (W ≥ l)
l−1∏
k=1

(1− uI(k))ui, if i ∈ Sl, l ≥ 2

0, if i /∈ S,

where I(·) denote the index function, i.e., I(k) = i if and
only if Sk = {i}. With the exception being at S1 where it is
the first message in the sequence, the probability of select-
ing message I(l) at the subsequent levels is the joint prob-
ability that 1) the user has not yet abandoned at l − 1 level,
P (W > l − 1) = P (W ≥ l); 2) she has not selected any
earlier messages,

∏l−1
k=1(1 − uI(k)); 3) she selects message

I(l) when it is displayed, uI(l).
Given a sequence of messages S = S1 ⊕ S2 ⊕ · · · ⊕ Sm,

define pa(S) as the total abandonment probability over its
entire length, which can be expressed as

pa(S) =

m∑
k=1

P (W = k)

k∏
j=1

(1− uI(j)).

It sums over the joint probabilities of not selecting the first
k messages and abandoning at the kth level upon receiving
the kth unsatisfying message.

Payoff optimization problem Let U(S,u, q) denote the
total payoff that the platform receives from a given sequence
of messages S when the valuation is u and abandonment
follows the geometric distribution with parameter 1− q. For
simplicity of notation, we use U(S) to denote U(S,u, q).
The expected payoff which the platform is trying to optimize
is defined as

E[U(S)] =
∑
i∈X

pi(S)ri − cpa(S),

where c is the cost of losing a customer due to abandonment.
In contrast to the traditional assortment problems which only
focus on revenue maximization, the objective in our model
also includes a penalty of losing customer.

The platform’s optimization problem is defined as fol-
lows,

max
S

E[U(S)] (3.1)

s.t. Si ∩ Sj = ∅,∀i 6= j.

The constraint specifies that the sequence cannot contain
duplicated messages. It is included to avoid unrealistic so-
lutions where the optimal sequence consisting of identical

messages due to the memoryless property of geometric dis-
tribution. We denote the optimal sequence of messages as
S∗ = argmaxSE[U(S)].

4 Characterization of the Optimal Sequence
In this section, we describe an algorithm to solve the optimal
payoff optimization problem when the valuation u and aban-
donment distribution FW are both known to the platform. It
is an integer programming problem as the platform needs to
choose a subset from all available messages and also specify
the order. In addition, the choice probability of a particu-
lar message pi(S) depends on its valuation, as well as the
valuation of previous messages shown to the user. This de-
pendence makes the problem much more complicated. We
will show in the following result that under the assumption
of geometric abandonment distribution, there exists an effi-
cient algorithm for our problem.

Theorem 1. For message i ∈ {1, · · · , N}, define its score
as follows,

θi :=
riui − cp(1− ui)

1− q(1− ui)
.

Without loss of generality, assume messages are sorted in
decreasing order of their scores, i.e., θ1 ≥ θ2 ≥ · · · ≥ θN .
Then the optimal sequence of messages is S∗ = {1}⊕{2}⊕
· · · ⊕ {m}, where m = max{i : riui − cp(1− ui) > 0}.

Due to the space constraint, we only include proof
sketches for the key results in the paper. All detailed proofs
can be found in the supplementary material.

Proof sketch: We prove Theorem 1 by contradiction. If
the optimal sequence S∗ is not ordered by the decreasing
order of θ, then there exists S∗k = {i}, S∗k+1 = {j} such
that θi < θj . We compare the payoff generated under this
sequence with an alternative sequence whose order of i and j
is switched. We show that the alternative sequence generates
a higher payoff, which is a contradiction to the fact that S∗
is the optimal. �

The score θi can be interpreted as follows: riui is the ex-
pected revenue when displaying message i, while cp(1−ui)
is its expected abandonment cost. Thus, the numerator de-
notes the expected payoff of message i. The denominator
is the probability of two events: 1) choose message i; 2)
abandon the platform after viewing message i. Therefore,
the score θi is a normalized expected payoff, conditioned
on the probability conditional on the event that message i is
making an impact to the payoff.

Theorem 1 states that all messages with a positive ex-
pected payoff should be included in the optimal sequence
whose order is determined by their scores. Theorem 1 pro-
vides an efficient algorithm with complexity O(N logN)
(where the complexity comes from sortingN messages) and
shows that this problem is polynomial-time solvable.

A special case of Theorem 1 is when p = 0, i.e., users
never abandon the platform. The following result states that
under this scenario, the optimal sequence only depends on
the revenue of the messages.

Proposition 2. With the abandonment probability p = 0, the
optimal sequence is ordered by its revenue. That is, rI(1) ≥
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rI(2) ≥ · · · ≥ rI(N), where I is the index function of the
optimal sequence S∗.

With p = 0, a user will either select one of the messages
and generate revenue ri, or leave without any selection after
the entire sequence has been shown. Without the risk of user
abandonment, the platform can show all available messages
to a user. In addition, as messages are viewed sequentially,
those with higher revenue should have higher priorities and
be shown first.

In the next result, we show that we can compare the ex-
pected payoff generated under different abandonment dis-
tributions if they follow a stochastic order which is stated
below for completeness. We want to emphasize that Propo-
sition 4 holds under any general distribution for user aban-
donment, and is not restricted to the geometric distribution.
Definition 3 (Stochastic order). Real random variable W1

is stochastically larger than or equal to W2, denoted as
W1 &s.t. W2, if

P (W1 > x) ≥ P (W2 > x) for all x ∈ R.

Proposition 4. Assume S′ and S′′ are the optimal sequences
generated under abandonment distribution W1 and W2 re-
spectively. If W1 &s.t. W2, we have

E[U(S′,u, FW1)] ≥ E[U(S′′,u, FW2)],

where U(S,u, FW ) denotes the payoff under strategy S
when the valuation and abandonment distribution are u and
FW respectively.

The definition of W1 &s.t. W2 implies that users under
FW1

are more patient, as they are less likely to abandon
the platform upon receiving the same number of unsatisfy-
ing messages than their counterparts under FW2

. Thus, intu-
itively, Proposition 4 states that the expected payoff is higher
when users are more patient.

5 Online Learning
In the previous section, we assumed that both valuations
and the user abandonment distribution are known to the
platform. It is natural to ask what the platform should do
in the absence of such knowledge. In this section we will
present an exploration-exploitation algorithm for the SC-
Bandit problem and characterize its regret bound. We would
like to contrast our model with traditional bandit settings
(e.g., Auer 2002): 1) Due to the sequential user behavior
and the presence of abandonment, only partial feedback is
obtained for learning; 2) The algorithm has to tease out two
unknown quantities which jointly influence user feedback.
The aforementioned features of the SC-Bandit makes the
analysis of its regret bound much more challenging and in-
volved.

5.1 Algorithm
We will present a UCB-based algorithm for the SC-Bandit
problem to learn the users’ valuation ui for message i and as
well as the abandonment distribution parameter q. To char-
acterize the upper confidence bounds, we first identify the
unbiased estimators ûi(t) and q̂(t) respectively.

Define Ti(t) as the total number of users who observe
message i by time t and ci(t) as the total number of users
selecting message i. Note that a user does not necessarily
observe message i even if i is included in the offered se-
quence S if she abandons the platform before this message
is shown.

Let na(t) denote the number of users who abandon the
platform by time t. We use ne(t) to denote the number of
times that users refuse a message without abandonment by
time t. For example, suppose a user at t = 1 refuses the
first two messages and abandons upon receiving the third
message, then ne(1) = 2 and na(1) = 1. Let Nq(t) =
ne(t)+na(t), which denotes the total number of times users
turn down unsatisfying messages by time t.
Lemma 5 (Unbiased estimator). ûi(t) = ci(t)/Ti(t) is an
unbiased estimator for ui. Moreover, q̂(t) = ne(t)/Nq(t) is
an unbiased estimator for q.

With Lemma 5 which gives the unbiased estimators, de-
fine the upper confidence bound for valuation u and aban-
donment distribution parameter q as follows,

uUCBi,t = ûi(t) +
√

2 log t/Ti(t) (5.1)
and

qUCBt = q̂(t) +
√

2 log t/Nq(t). (5.2)

Algorithm 1 proposed below is an exploration-
exploitation algorithm for the SC-Bandit problem which
simultaneously learns valuations and abandonment distri-
bution. For a user arriving at time t, we use uUCBi,t−1 and
qUCBt−1 to calculate the current optimal sequence of messages
and offer them sequentially to the user. Let kt denote the
last message seen by user t, which occurs when one of
the following feedback is observed: 1) the user chooses a
message; 2) the user abandons the platform; 3) the sequence
runs out. We update the upper confidence bound to uUCBi,t

and qUCBt respectively when the last message kt is shown.

5.2 Regret Bound
The regret for a policy π is defined as follows,

Regπ(T ;u, q) = Eπ

[
T∑
t=1

U(S∗,u, q)− U(St,u, q)

]
,

where S∗ is the optimal sequence when u and q are known
to the platform, while St is the sequence offered to the user
arriving at time t. Eπ denotes the expectation under the pol-
icy π.

To analyze the regret, we first establish the following re-
sults. In Lemma 6, we provide the concentration analysis of
uUCBi,t and qUCBt using Hoeffding’s inequality.
Lemma 6 (Concentration bound). For any Ti(t) and Nq(t),
we have

P

(
uUCBi,t −

√
8

log t

Ti(t)
< ui < uUCBi,t

)
≥ 1− 2

t4

and

P

(
qUCBt −

√
8

log t

Nq(t)
< q < qUCBt

)
≥ 1− 2

t4
.
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Algorithm 1: An exploration-exploitation algorithm for
SC-Bandit under marketing fatigue

1 Initialization: Available messages X with known
revenues r; set uUCBi,0 = 1 for all i ∈ X and
qUCB0 = 1; ne(0) = 0; na(0) = 0 ; t = 1;

2 while t < T do
3 Compute St = argmaxS E[U(S,uUCBt−1 , qUCBt−1 )]

according to Theorem 1;
4 Offer sequence St, observe the user’s feedback

upon receiving the kt messages;
5 for i = 1 : kt do
6 update uUCBI(i),t according to Equation (5.1);
7 end
8 update ne(t), na(t);
9 update qUCBt according to Equation (5.2);

t = t+ 1;
10 end

Next, Lemma 7 shows that with the optimal sequence S∗

determined under u and q, its expected payoff is smaller than
or equal to the payoff under the same strategy S∗ when val-
uation u and the abandonment distribution parameter q are
higher. Note that this result only holds for S∗, and does not
generally hold for other sequence S.
Lemma 7. Assume S∗ is the optimal sequence of messages.
Under the condition that 0 ≤ u ≤ uUCB and 0 ≤ q ≤
qUCB , we have

E[U(S∗,uUCB , qUCB)] ≥ E[U(S∗,u, q)].

Proof sketch: Define E[U(Sj)] as the expected payoff
conditioned on a user is receiving the jth message in a
sequence. We show that this term can be expressed as
E[U(Sj)] = rI(j)uI(j) + (1 − uI(j)) (qE[U(Sj+1)]− pc),
which is a sum of the expected payoff generated if mes-
sage I(j) is selected and the future payoff if I(j) is not
selected. Note that the inequality rI(j) ≥ E[U(S∗j )] ≥
qE[U(S∗j+1)]−pcmust hold. Otherwise, removing message
I(j) will improve the expected payoff. Using this condi-
tion, we prove by induction that E[U(S∗j ,u

UCB , qUCB)] ≥
E[U(S∗j ,u, q)] for all j. By definition, E[U(S∗1)] =
E[U(S∗)], and this completes the proof. �

Putting everything together, we characterize a regret
bound of our online learning algorithm in Theorem 8.
Theorem 8 (Performance bounds for Algorithm 1). Given
valuation ui of message i, i ∈ X and parameter q, the regret
of policy π during time T is bounded by

Regretπ(T ;u, q) = O
(
N
√
T log T

)
where N is the total number of messages.

We want to highlight the difficulty of this regret analysis
due to the incomplete feedback we observe after a sequence
is offered. We are unable to estimate the parameter q if users
keep on selecting messages. Meanwhile, we are also unable

to estimate the valuation u for those messages which are
offered but are not seen by a user. The complete proof can
be found in the supplementary material.

Proof sketch: Define the “large” probability event
Dt :=

⋂N
i=1

(
uUCBi,t −

√
8 log t/Ti(t) < ui < uUCBi,t

)
∩(

qUCBt −
√

8 log t/Nq(t) < q < qUCBt

)
. To bound the re-

gret, we consider the quantity E[U(S∗,u, q)− U(S̃t,u, q)]
given Dt and given its complement Dc

t , respectively.
Define S̃t as the optimal sequence when the valuation is

uUCBt and the geometric parameter for the abandonment
distribution is 1 − qUCBt . By the definition of S̃t and
S∗, and with Lemma 7, we have Eπ[U(S̃t,u, q)] ≤
Eπ[U(S∗,u, q)] ≤ Eπ[U(S∗,uUCBt , qUCBt )] ≤
Eπ[U(S̃t,uUCBt , qUCBt )] on Dt. Thus, the differ-
ence Eπ

[∑T
t=1 U(S∗,u, q)− U(S̃t,u, q)

]
can be

bounded above by the expected difference between
U(S̃t,uUCBt , qUCBt ) and U(S̃t,u, q). This quantity can
be further expressed as the sum of two terms which can
be analyzed separately, namely, one term is related to the
estimated error qUCBt − q, while another is related to the
error (uUCBi,t − ui)1(i ∈ S̃t).

Next, using the coupling method, we bound the error term
on q. To analyze the regret term of u, we derive the re-
lation between the probability of exploring message i and
the expected regret caused by the error of uUCBi,t − ui. With
Lemma 6, the regret on Dc

t can be bounded. Combining the
regret on Dt and on Dc

t , we show that the total regret can be
bounded above by O(N

√
T log T ). �

6 Personalization with Contextual SC-Bandit
Thus far, we have considered a setting where the platform
determines an optimal sequence S∗ for all its users who
share the identical abandonment distribution and valuations.
In this section, we consider a more realistic setting where the
abandonment distribution and valuations could differ across
users based on some user context x. In other words, instead
of learning the homogeneous parameter q and ui, the plat-
form needs to learn q(x) and ui(x) which will be used to
determine personalized messaging sequences.

Contextual bandit is an active research area that has re-
ceived lots of attention in recent years (Chu et al. 2011;
Li et al. 2010; 2012; Cheung and Simchi-Levi 2017). A com-
mon assumption is a linear relationship between the reward
and the context. In our setting, since both q and u denote
probabilities, and the observed actions are either 0 or 1 (i.e.,
whether a user selects a message or abandons the platform),
we use the logit model to model q(x) and ui(x) respectively.
That is,

q(x) = eα
Tx/(1 + eα

Tx),

and

ui(x) = eβ
T
i x/(1 + eβ

T
i x),

where α ∈ Θ̃ and βi ∈ Θi are the unkown parameters to be
learnt. Then q(x) and ui(x) are formulated as generalized
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linear models (GLM), i.e., q(x) = µ(αTx) and ui(y) =
µ(βTi x), where µ(x) = exp(x)/(1 + exp(x)).

Next, we will propose an exploration-exploitation algo-
rithms for the contextual SC-Bandit problem. We adapt
the GLM-UCB algorithm proposed by (Filippi et al. 2010)
for our contextual SC-Bandit problem. The key difference
from the non-contextual version is that, during each up-
date, we calculate the maximum quasi-likelihood estimator
of the parameter β̂i, and then update uUCBi (x) with µ(β̂Ti x)
plus an “exploration bonus” term defined by ρ(t)‖x‖M−1

i,t
,

where ρ(t) is a slowly varying function which can be set
as ρ(t) =

√
2 log(t), ‖v‖M =

√
v′Mv denotes the matrix

norm induced by the positive semidefinite matrix M with
Mi,t = λI +

∑t−1
k=1 xkx

′
k1(user xk observed message i)

where 1(·) is the indicator function, and λ is a constant. The
update is similar for qUCBt (x), i.e., qUCBt (x) = µ(α̂Tt x) +

ρ(t)‖x‖M̃−1
t

where M̃t = λ′I+
∑t−1
k=1 xkx

′
knk, nk denotes

the number of messages that user k observes, and λ′ is a
constant.

To initialize the algorithm, for the first N users, we of-
fer the ith user message i. In each iteration, we first update
α̂t−1 and β̂i,t−1 based on prior user feedback. Next, we up-
date qUCBt−1 (x) and uUCBi,t−1(x) for the user t with feature x.
The optimal messaging sequence is obtained by solving the
optimization problem maxSE[U(S,uUCBt−1 (x), qUCBt−1 (x))].
For completeness, the GLM-UCB algorithm is given below.

Algorithm 2: GLM-UCB algorithm I for contextual SC-
Bandit under marketing fatigue

1 Initialization: Available messages X with known
revenues r. Offer each message 1, 2, · · · , N to user
1, 2, · · · , N , observe decision;

2 Update Mi,t, M̃t; t = N ;
3 while t < T do
4 Update α̂t and β̂i,t by quasi-MLE; t = t+ 1;
5 Observe user’s contextual information xt Compute

St = argmaxS E[U(S,uUCBt−1 (xt), q
UCB
t−1 (xt))]

according to Theorem 1 where qUCBt−1 (xt) and
uUCBt−1 (xt) are computed by

uUCBi,t−1(xt) = µ(β̂Ti,t−1xt) + ρ(t)‖xt‖M−1
i,t−1

,∀i

and

qUCBt−1 (xt) = µ(α̂Tt−1xt) + ρ(t)‖xt‖M̃−1
t−1
.

Offer personalized messaging sequence St,
observe the user’s decision;

6 Update Mi,t, M̃t ;
7 end

7 Numerical Experiments
In this section, we first investigate the robustness of Algo-
rithm 1 which is our proposed UCB-algorithm for the SC-
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Figure 1: Comparison of Algorithm 1 when u is uniformly
generated from [0,0.1], [0,0.2], [0.0.3], and [0.0.5], respec-
tively.

Bandit problem by comparing how the regret changes with
respect to different values of u. Next, we compare our Al-
gorithm 1 and 2 with two benchmarks in the non-contextual
and contextual settings respectively.

7.1 Robustness of the SC-Bandit Algorithm

Experiment setup We consider a setting with N = 30,
revenue ri is uniformly distributed between [0,1], aban-
donment distribution probability p = 0.1 and the cost of
abandonment c = 0.5. We present four scenarios, when the
valuation u is uniformly generated from [0,0.1], [0,0.2],
[0.0.3], and [0.0.5], respectively.

Result Figure 1 shows the results based on 15 independent
simulations for different scenarios of u. The average regrets
are 141.13, 121.91, 59.69, and 44.64, respectively. Figure 1
suggests that when uis are more spread out, it is easier for
the algorithm to learn them to a large degree. Meanwhile,
Figure 1 also reveals something more subtle. When u is gen-
erated uniformly from [0,0.1], Algorithm 1 is able to find
the optimal sequence before T = 25000 for a large fraction
of the simulations. On the other hand, when u is generated
uniformly from [0,0.3] or [0,0.5], the regret continues to in-
crease after the initial 100,000 iterations, indicating that the
algorithm has not found the optimal sequence yet. The intu-
ition is that with higher valuations, the length of the optimal
sequence could become longer. As a result, it is slower to
learn the values of u precisely (especially for those mes-
sages which are placed later in the sequence), despite learn-
ing their approximate values quickly.
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7.2 Comparison with Benchmark Algorithms
We analyze two benchmarks and compare their results
with our algorithm. The first benchmark is an explore-
then-exploit algorithm, while the second “enhances” the
first benchmark by exploiting the knowledge it has already
learned during its exploration phase.

Benchmark-1 With the explore-then-exploit approach,
there is an exploration phase where every message is learnt
for at least γ log(t) times during the time period [0, t], where
γ is a tuning parameter. After this phase, the algorithm
uses the estimated parameters to determine an optimal
sequence which is offered to all subsequent users. We want
to highlight that our setting differs from the traditional
multi-armed bandit problem where an arm will be pulled if
it is selected. In our setting, messages which are to appear
later in the sequence may not be viewed by a user. Thus,
in order to guarantee that message i is explored, we only
offer a single message in a sequence during the exploration
phase, i.e., St = {i}.

Benchmark-2 This algorithm is a variant of Benchmark-1.
During its exploration phase, suppose this benchmark aims
to learn the valuation of message i. It first solves the optimal
sequence problem based on the valuations of the messages
which it has already learned, and then appends message i to
the beginning of the sequence. Thus, Benchmark-2 learns
faster than Benchmark-1 as it offers more messages each
time. In addition, it can optimize the sub-sequence to earn
higher revenue than its counterpart, making it a competitive
baseline. The optimization problem one needs to solve here
is nearly identical to (3.1) with an additional constraint that
S1 = {i}. It can be proven that the optimal solution with
S1 = {i} as the first message orders the messages of the
remaining sequence according to θi as defined in Theorem 1.

Experiment setup for SC-Bandit without contexts We
consider a setting that N = 30, ri is uniformly distributed
between [0,1], p = 0.1, c = 0.5 and u is uniformly gener-
ated from [0,0.1].

Experiment setup for SC-Bandit with contexts We
consider a setting with N = 30, ri is uniformly distributed
between [0, 1]. The user feature x is uniformly generated
from [0, 1]3. The coefficient related to the abandonment
distribution is α = (0.25, 0.5, 1, 0.8) where α1 is the
intercept. The coefficient related to the valuation of message
i, βi, is uniformly generated from [−2.5, 0]2 × [0, 0.5]2

where βi,1 is the intercept.

Result Figure 2 and 3 shows the average regret of our algo-
rithm and the two benchmarks under the non-contextual and
contextual settings respectively. It is clear that our algorithm
outperforms both benchmarks. In particular, Benchmark-2
does better than Benchmark-1 as it incorporates learning
during its exploration phase.
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Figure 2: Comparison between Algorithm 1 and two bench-
mark algorithms in the non-contextual bandit setting.
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Figure 3: Comparison between Algorithm 2 and two bench-
mark algorithms in the contextual bandit setting.

8 Conclusion
In this work, we studied dynamic learning of a sequential
choice bandit problem when users could abandon the plat-
form due to marketing fatigue. We showed that there exists
an efficient algorithm to solve the offline optimization prob-
lem that determines an optimal sequence of messages to of-
fer to users. For the online learning problem, we proposed
an exploration-exploitation algorithm and showed that the
resulting regret is bounded by O

(
N
√
T log T

)
. Lastly, we

proposed a GLM-UCB algorithm to incorporate personal-
ization with user contexts.

There are several future directions of this work. Firstly, as
users’ preferences may vary over time, it is interesting to in-
corporate the temporal dimension into the setting. Secondly,
different user actions could reveal different levels of inter-
est (e.g., the amount of time a user spent on a message, a
user clicked on a message but did not complete a purchase
etc.). One question is how to construct and analyze a more
accurate user behavior model by utilizing such data. Thirdly,
Thompson Sampling would be another natural algorithm to
solve the problem we proposed, especially for the personal-
ized version. However, analyzing this setting and providing
theoretical results remain a challenging problem.
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