
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Bayesian Posterior Approximation via Greedy Particle Optimization∗

Futoshi Futami,1,2 Zhenghang Cui,1,2 Issei Sato,1,2 Masashi Sugiyama2,1
1The Univiersity of Tokyo 2RIKEN

futami@ms.k.u-tokyo.ac.jp, cui@ms.k.u-tokyo.ac.jp, sato@k.u-tokyo.ac.jp, sugi@k.u-tokyo.ac.jp

Abstract

In Bayesian inference, the posterior distributions are difficult to
obtain analytically for complexmodels such as neural networks.
Variational inference usually uses a parametric distribution
for approximation, from which we can easily draw samples.
Recently discrete approximation by particles has attracted
attention because of its high expression ability. An example is
Stein variational gradient descent (SVGD), which iteratively
optimizes particles. Although SVGD has been shown to be
computationally efficient empirically, its theoretical properties
have not been clarified yet and no finite sample bound of the
convergence rate is known. Another example is the Stein points
(SP) method, which minimizes kernelized Stein discrepancy
directly. Although a finite sample bound is assured theoretically,
SP is computationally inefficient empirically, especially in
high-dimensional problems. In this paper, we propose a novel
method named maximum mean discrepancy minimization
by the Frank-Wolfe algorithm (MMD-FW), which minimizes
MMD in a greedy way by the FW algorithm. Our method
is computationally efficient empirically and we show that its
finite sample convergence bound is in a linear order in finite
dimensions.

Introduction
In Bayesian inference, approximating the posterior distribu-
tion p(x) over parameter x is the most important task in
general. When we express the prior distribution as p0(x)
and the likelihood as L(D|x) where D denotes observations,
the posterior distribution can be obtained up to a constant
factor as p(x) ∝ L(D|x)p0(x). In many cases, analytical
expression of the normalizing constant cannot be obtained;
thus, we need an approximated posterior p̂(x), which can be
used, e.g., for calculating the predictive distribution (Bishop
2006):

ZL,p̂ =

∫
L(y|x)p̂(x)dx, (1)

where L(y|x) is the likelihood function of a new observation
y given parameter x. Variational inference (VI) is widely used
as an approximation method for the posterior distribution

∗A longer version including Appendix is available at
https://arxiv.org/abs/1805.07912
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Blei, Kucukelbir, and McAuliffe 2017). VI approximates the
target distribution with a parametric distribution, from which
we can easily draw samples. In VI, we often consider the mean
field assumption and use parametric models in the exponential
family (Blei, Kucukelbir, and McAuliffe 2017). Although
these assumptions are used to make optimization computa-
tionally tractable, they are often too restrictive to approximate
the target distribution well. Therefore, the approximate distri-
bution never converges to the target distribution in general,
which means that the approximation of Eq.(1) is biased, and
no theoretical guarantee is assured.

An alternative way is a discrete approximation of the target
distribution by using a set of particles (Bishop 2006), p̂(x) =∑N
n=1 δ(x, xn)/N , where N is the number of particles and

δ is the Dirac delta function. Particle approximation is free of
VI assumptions and thus is more expressive. The Monte Carlo
(MC) method is typically used to draw particles randomly
and independently (Bishop 2006). However, the drawbacks
of MC are that vast computational resources are required to
sample from multi-modal and high-dimensional distributions,
and it is hard to estimate when to stop the algorithm.

Recently, methods that optimize particles through iterative
updates have been explored. A representative example is
Stein variational gradient descent (SVGD) (Liu and Wang
2016), which iteratively updates all particles in the direction
that is characterized by kernelized Stein discrepancy (KSD).
The update is actually implemented by gradient descent and
SVGD empirically works well in high-dimensional problems.
However, theoretical properties of SVGD have not been
clarified and no finite sample bound of the convergence rate
is known (Liu 2017). Another example is the Stein points
(SP) method (Chen et al. 2018), which directly minimizes
KSD. Although this method is assured by a finite sample
convergence bound, it is not practically feasible in high-
dimensional problems due to the curse of dimensionality,
because gradient descent is not available and sampling or
grid search needs to be used for optimization. Moreover, the
number of evaluations of the gradient of the log probability,
which usually requires vast computation costs, is four times
that of SVGD.
We aim to develop a discrete approximation method that

is computationally efficient, works well in high-dimensional
problems, and also has a theoretical guarantee for the conver-
gence rate. In this paper, we propose maximum mean discrep-

3606

ancy minimization by the Frank-Wolfe algorithm (MMD-FW)
in a greedy way. Our convex formulation of discrete approx-
imation enables us to use the Frank-Wolfe (FW) algorithm
(Jaggi 2013) and to derive a finite sample bound of the
convergence rate.

Our contributions in this paper are three-fold:
1. We formulate a discrete approximation method in terms of
convex optimization of MMD in a reproducing kernel Hilbert
space (RKHS), and solve it with the FW algorithm.
2. Our algorithm is computationally efficient and empirically
works well in high-dimensional problems. It has a guaranteed
finite sample bound of the convergence rate.
3. We show empirically that our method compares favorably
with existing particle optimization methods.

Preliminary
In this section, we review two existing particle optimization
methods, SVGD and SP. After that, we introduceMMDwhich
is our objective function. We assume that x ∈ Rd and let
k : X ×X → R be the reproducing kernel of an RKHS H
of functions X → R with the inner product 〈·, ·〉 and ‖ · ‖H
is the assosiated norm, where X ⊆ Rd denotes the input
domain.

Stein variational gradient descent (SVGD)
We first prepare initial particles p̂0(x) =

∑N
n=1 δ(x, xn)/N

and iteratively update them by a transformation, T (x) =
x+ εφ(x), where φ(x) is a perturbation direction. When the
current empirical distribution is p̂(x) =

∑N
n=1 δ(x, xn)/N ,

then φ(x) is chosen to maximally decrease the Kullback-
Leibler (KL) divergence between the empirical distribu-
tion p̂ formed by the particles and the target distribution
p, φ∗(x) = arg max

φ∈F

{
− d
dεKL(p̂[T]‖p)|ε=0

}
, where F de-

notes a set of candidate functions from which we choose
map φ, and p̂[T](z) = p̂(T−1(z)) · | det(∇zT−1(z))|. Liu
et al. (Liu and Wang 2016) proved that this problem is
characterized by the Stein operator, − d

dεKL(p̂[εφ]‖p)|ε=0 =
Ex∼p̂[Spφ(x)], where Sp denotes the Stein operator
Spφ(x) = ∇ ln p(x)φ(x)> + ∇ · φ(x) which acts on
a d × 1 vector function φ and returns a scalar value
function. Thus, the optimization problem is S(p̂‖p) :=
maxφ∈F {Ex∼p̂[Spφ(x)]}. The problem is how to choose
an appropriate F . Liu et al. (Liu and Wang 2016) showed that
whenF is the unit ball in an RKHS with kernel k, the optimal
map can be expressed in the following way. Let H0 be an
RKHS defined by a kernel k(x, x′) andH = H0 × · · · ×H0

be the d× 1 vector-valued RKHS. We define Sp ⊗ k(x, ·) :=
∇ ln p(x)k(x, ·) +∇xk(x, ·), then, the optimal direction is
given by φ∗p̂,p(·) = Ex∼p̂[∇x ln p(x)k(x, ·) + ∇xk(x, ·)].
We iteratively update particles following the above direc-
tion and obtain the empirical approximation with {xn}Nn=1.
Theoretical analysis has been conducted in terms of the gra-
dient flow and has shown convergence to the true target
distribution asymptotically (Liu 2017). However, no finite
sample bound has been established. The norm of the op-
timal direction, S(p̂‖p) = ‖φ∗p̂,p‖H =

√
Ex,y∼p̂ks(x, y)

where ks(x, y) = ∇x∇yk(x, y) + ∇xk(x, y)∇y ln p(y) +

∇yk(x, y)∇x ln p(x) + k(x, y)∇x ln p(x)∇y ln p(y), is
called kernelized stein discrepancy (KSD)(Liu, Lee, and
Jordan 2016).

Stein points (SP)
SP (Chen et al. 2018)minimizes the aboveKSDdirectly.When
q is given by a discrete approximation p̂ =

∑N
n=1 δ(x, xn)/N ,

KSD can be written as S(p̂‖p) =
√∑N

i,j=1 ks(xi, xj). In SP,

to obtain the n-th particle, we solve arg min
x

n−1∑
i=1

ks(xi, x) or

arg min
x

n−1∑
i=1

ks(xi, x)+ks(x, x)/2. To solve these problems,

the authors of the paper (Chen et al. 2018) proposed using
sampling methods or grid search. However, those methods
are not applicable to high-dimensional problems due to the
curse of dimensionality. Although an alternative way is to
use gradient descent, this is computationally difficult in high-
dimensional problems since this method needs to calculate
the Hessian at each iteration. Moreover, the computation cost
for evaluating the derivative of the log probability is 4 times
compared to SVGD. An advantage of this method is that a
finite sample convergence bound is assured theoretically.

Maximum mean discrepancy
SVGD and SP use KSD as the direction of the update and the
objective function. In our proposed method, we use MMD as
the objective function. MMD is a kind of the worst-case error
between expectations. For a given test function f , we express
the integral with respect to the true posterior distribution p
as Zf,p =

∫
f(x)p(x)dx. We denote an approximation of

Zf,p as Zf,p̂, where p is approximated by p̂ in the same way
as Eq. (1). From here, we consider the weighted empirical
distribution p̂(x) =

∑N
n=1 wnδ(x, xn), where wn are the

weights of each particle. Then MMD (Gretton et al. 2012) is
defined as

MMD({wi, xi}Ni=1)
2 :=

1

2
sup

f∈H:‖f‖H=1

∣∣∣∣∣Zf,p −
N∑
i=1

wif(xi)

∣∣∣∣∣
2

=
1

2
‖µp − µp̂‖2H

=
1

2

∣∣∣∣∣
∣∣∣∣∣µp −

N∑
i=1

wik(xi, ·)

∣∣∣∣∣
∣∣∣∣∣
2

H

, (2)

where µp =
∫
k(·, x)p(x)dx ∈ H and we introduce the

coefficient 1
2 for convenience in later calculation. We also

express MMD({wi, xi}Ni=1)
2 asMMD(µp̂)

2 for simplicity.

Proposed methods
In this section, we formally develop our MMD-FW. We
will introduce the FW algorithm in an RKHS, propose our
MMD-FW, and give a finite sample convergence bound of
our method.

MMD minimization by the FW algorithm
(MMD-FW)
On the basis of the existing methods reviewed in Section 2,
we would like to obtain a method to approximate the posterior

3607

Algorithm 1: Frank-Wolfe (FW) Algorithm
1: Let x0 ∈ D
2: for n = 0, . . . , N do
3: Compute s = argmins∈D〈s,∇f(xn)〉
4: Constant step: λn = 1

n+1
5: [Instead of constant step, use line search:

λn = argminλ∈[0,1]f((1− λ)xn + λs)]
6: Update xn+1 = (1− λn)xn + λns
7: end for

by discrete particles, which has high computational efficiency
and theoretical guarantee. The key idea is to perform discrete
approximation by minimizing MMD, instead of KSD since
it causes computational problems as we mentioned in the
previous section. WeminimizeMMD(µp̂)

2 = 1
2‖µp−µp̂‖

2
H,

introduced by Eq. (2), in a greedy way. Since this is a convex
function in an RKHS, we can use the FW algorithm.

The FW algorithm, also known as the conditional gradient
method (Jaggi 2013), is a convex optimization method. It
focuses on the problem min

x∈D
f(x), where f is a convex and

continuous differentiable function and D is the domain of the
problem, which is also convex. As the procedure is shown in
Alg. 1, the FW algorithm optimizes the objective in a greedy
way. In each step, we solve the linearization of the original f
at the current state xn as shown in Line 3 of Alg. 1. This step
is often called the linear minimization oracle (LMO). The
new state xn+1 is obtained by a convex combination of the
previous state xn and the solution of the LMO, s, in Line 6
of Alg. 1. The common choice of the coefficient of the convex
combination is the constant step or the line search.

Bach et al. (Bach, Lacoste-Julien, and Obozinski 2012) and
Briol et al. (Briol et al. 2015) clarified the equivalence between
kernel herding (Chen, Welling, and Smola 2010) and the FW
algorithm for MMD. In our situation, we minimize MMD on
the marginal polytopeM of the RKHSH, which is defined
as the closure of the convex hull of k(·, x). We also assume
that all sample points xi are uniformly bounded in the RKHS,
i.e., for any sample point xi, ∃r > 0 : ‖k(·, x)‖H ≤ r.

By applying the FW algorithm, we want to obtain µp̂ which
minimizes the objective MMD(µp̂)

2 = 1
2‖µp − µp̂‖

2
H. We

express the solution after n-steps FW algorithm as µnp̂ =∑n
i=1 w

n
i k(x, xi), where {xi}ni=1 are the particles and wni

denote the weights of the i-th particle at the n-th iteration.
We can obtain {xi}ni=1 in a greedy way by the FW algorithm.
The method of deriving the weights are discussed later.

The LMO calculation in each step is argming∈M〈µnp̂ −
µp, g〉. It is known that the minimizer of a linear function in a
convex set is one of the extreme points of the domain (Bach,
Lacoste-Julien, and Obozinski 2012), and thus we derive
arg min

g∈M
〈µn

p̂ − µp, g〉 = arg min
x
〈µn

p̂ − µp, k(·, x)〉

= arg min
x

n∑
i=1

wn
i k(xi, x)− µp(x). (3)

We solve this LMO by gradient descent. We initialize each
x to prepare g = k(·, x) in LMO by sampling it from the

prior distribution. Since the objective of LMO is non-convex,
we cannot obtain the global optimum by gradient descent in
general. Fortunately, even if we solve LMO approximately,
FW enables us to establish a finite sample convergence bound
(Locatello et al. 2017a; Jaggi 2013; Lacoste-Julien et al. 2013;
Lacoste-Julien and Jaggi 2015; Locatello et al. 2017b). In
such an approximate LMO, we set the accuracy parameter
δ ∈ (0, 1] and consider the following approximate problem
which returns approximate minimizer g̃ of Eq.(3) instead of
the original strict LMO:

〈µ(n)
p̂ − µp, g̃〉 = δming∈M〈µ(n)

p̂ − µp, g〉

= δminx

n∑
i=1

wni k(xi, x)− µp(x). (4)

This kind of relaxation of the LMO has been widely used
and shown to be reliable (Locatello et al. 2017a; Jaggi 2013;
Lacoste-Julien et al. 2013; Lacoste-Julien and Jaggi 2015;
Locatello et al. 2017b), which is much easier to solve than
the original strict LMO. We call this step Approx-LMO, and
we will use gradient descent to solve Approx-LMO. The
derivative with respect to x when we use the symmetric
kernel k can be written as follows:

∇x〈µ(n)
p̂ − µp, g〉

≈ 1

n

n∑
i=1

w
(n)
i (∇xk(xi, x) + k(x, xi)∇xi ln p(xi)) . (5)

The derivation of Eq.(5) is given in Appendix. Using this
gradient, we solve Eq.(4). As repeatedly pointed out (Locatello
et al. 2017a; Jaggi 2013; Lacoste-Julien et al. 2013; Lacoste-
Julien and Jaggi 2015; Locatello et al. 2017b), an approximate
solution of the LMO is enough to assure the convergence
which we describe later. For this reason, we will use gradient
descent in our algorithm and also a rough estimate of the
gradient is enough in our situation. A similar technique has
also been discussed in (Locatello et al. 2017a).

For the FW algorithm, we have to specify the initial particle
x1 and the step size choice of the algorithm. We found that
the initial particle x1 by the MAP estimation or approximate
MAP estimation shows good performance empirically and it
is recommended to prepare x1 as a near MAP point (we will
discuss other choices later). In this approach, the constant
step size and line search are not recommended because those
methods uniformly reduce the weights of all the particles
which has already been obtained. When we use x1 as a near
MAP point, it is located near the highest probability mass
regions, and thus we should not reduce its weight uniformly.
Based on this observation, we set the step size in the same way
as the fully corrective Frank-Wolfe algorithm (Lacoste-Julien
and Jaggi 2015), this method calculates all the weights at
each iteration, and we can circumvent the above problem. For
full correction, we use the Bayesian quadrature (BQ) weight
(Huszár and Duvenaud 2012), wi =

∑
m zmK

−1
im , where

K is the Gram matrix, zm =
∫
k(x, xm)p(x)dx, and we

approximately compute the integral with particles. Since we
use the empirical approximation, this makes the convergence
rate slower. We will analyze the effect of this inexact step size
later.

3608

Algorithm 2: Approx-LMO
1: Input: µ(n)

p̂

2: Output: k(·, xL+1)
3: Prepare g0 = k(·, x0) where x is initialized by

randomly or sample from prior
4: for l = 0 . . . L do
5: Compute∇x〈µ(n)

p̂ − µp, g
l〉 by Eq.(5)

6: Update x(l+1) ← x(l) + ε(l) · ∇x〈µ(n)
p̂ − µp, g

i〉
7: end for

Algorithm 3: MMD minimization by Frank-Wolfe
algorithm (MMD-FW)
1: Input: A target density p(x)
2: Output: A set of particles ({wi, xi}Ni=1)

3: Calculate approximate MAP estimation for µ(1)
p̂

4: for n = 2 . . . N do
5: k(·, xn) =Approx-LMO(µ(n−1)

p̂)
6: Empirical BQ weight:

ŵn
i =

∑n
m=1 ẑmK

−1
im , ẑm =

∑n
l=1 k(xl, xm)/n

7: Update µ(n+1)
p̂ =

∑n
i=1 ŵ

n
i k(x, xi)

8: end for

To summarize, our proposed algorithms are given in Alg. 2
and Alg. 3, which greedily increase the number of particles
whithin the FW framework to minimize MMD.

Theoretical guarantee
First, we describe the condition to limit the deviation of em-
pirically approximated BQ weights from the true ones so that
the condition described below are satisfied. This is necessary
for the theoretical guarantee of particle approximation.
Theorem 1 (Approximate step size) In Alg. 3 at the n-
th iteration, let βni be the ratio between ẑni and zni , i.e.,
βni = ẑni /z

n
i . WhenH is finite dimensional, if∫

k(x, y)p(x)p(y)dxdy −
n∑

i,j=1

βni β
n
j z

n
i K
−1
ij z

n
j > 0 (6)

holds, then Theorems 2 and 3 hold. When H is infinite
dimensional, no condition about the deviation of the weight
is needed for Theorems 2 and 3 to hold.
In Eq.(6), since

∫
k(x, y)p(x)p(y)dxdy is fixed and∫

k(x, y)p(x)p(y)dxdy−
∑n
i,j=1 z

n
i K
−1
ij z

n
j > 0, βni should

be in some moderate range to satisfy the condition of Eq.(6).
More intuitively, this condition states that if the deviation of
the empirical estimate of BQ weights from the true ones is
below a certain criterion, then convergence guarantee of the
algorithm still holds even if the step size is inexact. The proof
is given in Appendix. We also analyzed the effect of inexact
step size in line search; see Appendix for details.
Next, we state the theoretical guarantee of our algo-

rithm. We obtain p̂(x) =
∑N
n=1 wnδ(x, xn) by Alg. 3

which approximates the true posterior p(x). Let f be the
test function, then we can bound the error |Zf,p − Zf,p̂| =
|
∫
f(x)p(x)dx−

∑N
i=1 wif(xi)| as follows:

Theorem 2 (Consistency) Under the condition of Theorem
1, the error |Zf,p−Zf,p̂| of Alg. 3 is bounded at the following
rate:

|Zf,p − Zf,p̂|
≤ MMD({(wn, xn)}Nn=1)

≤


√
2re−δBQ

R2δ2N
2r2 ifH is finite dimensional,√

(δBQδ+1)22r2

δ(NδBQδ+2) ifH is infinite dimensional,
(7)

where r is the diameter of the marginal polytopeM, δ is
the accuracy parameter of the LMO, and R is the radius of
the smallest ball centered at µp includedM (R is strictly
above 0 only when the dimension ofH is finite). δBQ denote
the error caused by the empirical approximation of the BQ
weights; for details, please see Appendix.

A proof of Theorem 2 can be found in Appendix. Moreover,
on the basis of the Bayesian quadrature, we can regard Zf,p̂ as
the posterior distribution of the Gaussian process (Huszár and
Duvenaud 2012) (see Appendix for details) and assure the
posterior contraction rate (Briol et al. 2015). Intuitively, the
posterior contraction rate indicates how fast the probability
of the estimated parameter residing outside a specified region
(which includes the true parameter) decreases when the size
of the region is increased.
Theorem 3 (Contraction) Let S ⊆ R be an open neigh-
borhood of the true integral Zf,p and let γ = infr′∈Sc |r′ −
Zf,p| > 0. Then the posterior probability on Sc = R \ S
vanishes at the following rate:

prob(Sc)

≤



2r√
πγ
e−δBQ

R2δ2N
2r2

− γ2

4r2
e
δBQ

R2δ2N
r2

ifH is finite dimensional,√
2
π

√
(δBQδ+1)22r2

δ(NδBQδ+2) e
− γ

2

2

δ(NδBQδ+2)

(δBQ+δ)r2r2

ifH is infinite dimensional,

(8)

where r is the diameter of the marginal polytopeM, δ is
the accuracy parameter, and R is the radius of the smallest
ball centered at µp that includesM. δBQ denotes the error
caused by the empirical approximation of the BQ weights;
for details, please see Appendix.
In the proposed method, kernel selection is crucial both

numerically and theoretically. In the above convergence proof,
linear convergence occurs only under the assumption that there
exists a ball with centered at µp whose radius R is positive
within the affine hullM. Bach et al. (Bach, Lacoste-Julien,
and Obozinski 2012) proved that, for infinite dimensional
RKHSs, such as the case of radial basis function (RBF)
kernels, such an assumption never holds. Thus, we can only
have sub-linear convergence for RBF kernels in general.
However, as pointed out by Briol et al. (Briol et al. 2015)
, even if we use RBF kernels, thanks to finite-precision
rounding error in computers, we are treating in simulations
are actually essentially finite dimensional. This also holds in
our situation, and in experiments, we empirically observed

3609

the linear convergence of our algorithm. We will show such a
numerical result later.

A theory for the constant step size and line search is shown
in Appendix.

Discussion
For specifying the initial particle x1, we can sample it from
the prior distribution. The merit of this approach is that we
can choose the step size in a computationally less demanding
way such as the constant step size and line search (shown in
Appendix) since the initial particle is not in a high probability
mass region, uniformly decreasing less important weights by
constant step size or line search. However, we empirically
found in our preliminary experiments that this initialization
does not perform well compared to MAP initialization. We
suspect that the gradient of Eq.(5) is too inexact when initial
particles are sampled from the prior.

Let us analyze the reason why MAP initialization performs
well as follows. Although the gradient is incorrect, the LMO
can be solved with error to some extent because the first
particle is close to the MAP estimation and the evaluation
points of the expectation include, at least, a high density
region on p(x). If the LMO is δ-close to the true value, the
weights of old incorrect particles will be updated to be small
enough to be ignored as the algorithm proceeds. For such a
reason, the framework using processed particles works.

The empirical approximation of the BQweights can also be
justified almost in the same way as above. Since the empirical
distribution includes, at least, a high density region on p(x),
the deviation of the step size (e.g., error due to the empirical
approximation) from the exact BQ weight is smaller than the
criterion in Theorem 1.

In summary, since we prepare the initial particles at a high
probability mass region, the FW algorithm successfully finds
the next particle even though the gradient for LMO or weights
are inexact. As the algorithm proceeds, the weights of less
reliable particles become small and accuracy of the estimation
is increased. This is an intuition how the proposed algorithm
works.

Related works
In this section, we discuss the relationship between ourmethod
and SVGD, SP and variational boosting.

Relation to SVGD
SVGD is a method of optimizing a fixed number of particles
simultaneously. On the other hand, MMD-FW is a greedy
method adding new particles one per step. Both methods
can work in high-dimensional problems since they use the
information of the gradient of the score function. To ap-
proximate a high-dimensional target distribution, we may
need many particles, but it is unclear how many particles are
needed beforehand. Thus, a greedy approach is preferable
for high-dimensional problems. Since in SVGD it is unclear
how we can increase the number of particles after we fin-
ish the optimization, MMD-FW is more convenient in such
a case. However, simultaneous optimization is sometimes

computationally more efficient and show better performance
compared to a greedy approach(See the experimental results).
Based on this fact, we combine SVGD and MMD-FW by

focusing on the fact that the update equations of SVGD and
MMD-FW are almost the same except for the weights. More
specifically, we prepare particles by SVGD first, and then
apply MMD-FW by treating particles obtained by SVGD as
the initial state of each greedy particle. For details, please see
Appendix. This combination enables us to enjoy the efficient
simultaneous optimization of SVGD and the greedy property
and theoretical guarantee of MMD-FW.
In terms of computation costs, SVGD is O(N2) per itera-

tion. InMMD-FW, we only optimize one particle, and thus, its
computation cost is O(N) at each step inside Approx-LMO
. Up to the N -th particle, the total cost is O(N(N + 1)/2),
which is in the same order as SVGD. However, the number
of LMO iterations in MMD-FW is much smaller than that
of SVGD since the problem involves only one particle in
MMD-FW, which is much easier to solve than SVGD which
treats N particles simultaneously. Therefore, we can expect
the computation cost of MMD-FW to be cheaper than SVGD.

Relation to SP
The biggest difference between MMD-FW and SP is the
objective function. Due to this difference, we use gradient
descent to obtain new particles which is still computation-
ally effective in high-dimensional problems. However, SP
minimizes KSD, so we cannot use gradient descent since
the calculation requires evaluations of the Hessian at each
step, which is impossible in high-dimensional problems. To
cope with this problem, SP uses sampling or grid search
for optimization, which does not work in high-dimensional
problems due to the curse of dimensionality. As we will see
later, SP does not work well with complex models such as a
Bayesian neural net.
Another difference is that our method can reliably use an

approximate step size for the weights of particles. We have
shown how the deviation of the approximate weights from the
exact ones affects the convergence rate, which justified the use
of our method even when the exact step size is unavailable.
Lastly, we use FW to establish a greedy algorithm. This

enables us to utilize many useful variants of the FW algorithm
such as a distributed variant(Wang et al. 2016). For details,
see Appendix.
However, compared with SP, we cannot evaluate the ob-

jective function directly, so we resort to other performance
measures such as the log likelihood, accuracy, or RMSE in
test datasets. For SP, we can directly evaluate KSD at each
iteration.

Relation to variational boosting
The proposed method is closely related to variational boost-
ing (Locatello et al. 2017a). In (Locatello et al. 2017a), the
authors analyzed the variational boosting by using the FW al-
gorithm and showed the convergence to the target distribution.
In variational boosting, a mixture of Gaussian distributions
are used as an approximate posterior and its flexibility is
increased the number of components in the mixture of Gaus-
sian distributions. An intuition behind the convergence of

3610

variational boosting is that any distribution can be expressed
by appropriately combining Gaussian mixture distributions.
That situation is quite similar toMMD-FW,where we increase
the number of particles greedily. In MMD-FW, we can regard
each particle as being corresponding to each component of
variational boosting. In both methods, the flexibility of the
approximate posterior grows as we increase the number of
components or particles and this allows us to establish the
linear convergence under certain conditions. The difference
is that we consider the solution in an RKHS and minimize
MMD to approximate the posterior for MMD-FW, while
variational boosting minimizes the KL divergence and treats
the posterior in the parameter space.

Relation to kernel herding and Bayesian
quadrature
In this paper, we are assuming that p(x) is the posterior
distribution. On the other hand, if p(x) is a prior distribution,
kernel herding (Chen, Welling, and Smola 2010) or Bayesian
quadrature (Ghahramani and Rasmussen 2003), are useful.
In those methods, xn’s are decided to directly minimize
some criterions. For example, the kernel herding method
(Chen, Welling, and Smola 2010; Bach, Lacoste-Julien, and
Obozinski 2012) minimizes MMD in a greedy way. The
biggest difference from our method is that if p(x) is the prior
distribution, we can sample many particles from p(x) and
thus we can only choose the best particle that decreases the
objective function maximally at each iteration. In MMD-FW,
on the other hand, we cannot prepare the particles beforehand,
and thus, we directly derive particles by gradient descent.

Other related work
Recently, there has been a tendency to combine an approxima-
tion of the posterior with optimizationmethods, which assures
us of some theoretical guarantee, e.g, (Locatello et al. 2017a;
Dai et al. 2016). Our approach also performs discrete ap-
proximation by convex optimization in an RKHS. Another
related example is sequential kernel herding(Lacoste-Julien,
Lindsten, and Bach 2015). They applied the FW algorithm to
particle filtering in state space models. While their method
focused on the state space models, our proposed method is a
general approximation method for Bayesian inference.

Numerical experiments
We experimentally confirmed the usefulness of the proposed
method compared with SVGD and SP in both toy datasets and
real world datasets. Other than comparing the performance
measured in terms of the accuracy or RMSE of the proposed
method with SVGD and SP, we also have the following two
purposes for the experiments. The first purpose of the experi-
ments is to confirm that our algorithm is faster than SVGD
in terms of wall clock time. This is because, as mentioned
before in the section of relation to SVGD, it solves simple
problems compared with SVGD, thus we need less number
of iterations to optimize each particle than that of SVGD. The
second purpose is to confirm the convergence behavior.

In all experiments, we used the radial basis function kernel,
k(x, x′) = exp(− 1

2h2 |x − x′|2) for proposed method and

SVGD, where h is the kernel bandwidth. The choice of h
is critical to the success of the algorithms. There are three
methods to specify the bandwidth, fixed bandwidth, median
trick, gradient descent. We experimented on the above three
choices and found that a fixed kernel bandwidth and the
median trick are stable in general, and thus, we only show the
results obtained by the median trick in this section. The results
of other methods are shown with other detailed experimental
settings in Appendix. For the kernel of SP, we used the three
kernels proposed by the original paper (Chen et al. 2018):
IMQ kernel k1(x, x′) = (α+ ||x−x′||22)β , inverse log kernel
k2(x, x

′) = (α + log(1 + ||x − x′||22))−1, and IMQ score
kernel k3(x, x′) = (α + ||∇ log p(x) − ∇ log p(x′)||22)β ,
where α = 1.0 and β = 0.5 are used as suggested in the
original paper.
For the approx-LMO, we used Adam (Kingma and Ba

2014) for all experiments. Due to space limitations, the toy
data results are shown in Appendix. About the benchmark
experiment, we split dataset 90% for training and 10% for
testing.

Bayesian logistic regression
We considered Bayesian logistic regression for binary classifi-
cation. The settings were the same as in those (Liu and Wang
2016), where we put a Gaussian prior p0(w|α) = N(0, α−1)
for regression weights w and p0(α) = Gamma(1, 0.01). As
the dataset, we used Covertype (Dheeru and Karra Taniskidou
2017), with 581,012 data points and 54 features. The posterior
dimension is 56. The results are shown in Fig. 1. In Fig. 1(a),
the vertical axis is the test accuracy and the horizontal axis is
wall clock time. As we discussed in Section 4.1, our algorithm
was faster than SVGD in terms of wall clock time. SP did
not work well. We also compared MMD-FW with stochastic
gradient Langevin dynamics(SGLD) (Welling and Teh 2011)
and faster than SGLD. In Appendix, we also studied the
situation where the first particle does not correspond to MAP
estimation, and instead random initialization.
Fig. 1(b) shows the convergence behavior, where the ver-

tical axis isMMD2 and the horizontal one is the number of
particles in the log scale. To calculate MMD, we generated
“true samples” by Hamiltonian Monte Carlo (Neal and others
2011). Since RBF kernel is an infinite dimensional kernel,
to further check the convergence behavior under the finite
dimensional kernel, we approximated the RBF kernel by ran-
dom Fourier expansion (RFF) (See Appendix for the details
of the RFF). In Fig. 1(b), D is the number of frequency of
RFF. Also, we still compared with SP on MMD although this
comparison is a little unfair since the objective of SP is kernel-
ized Stein discrepancy. As discussed in the previous section,
although the convergence is sub-linear order theoretically
since we used RBF kernel which is an infinite dimensional
kernel, we observed the linear convergence thanks to the
rounding error in the computer. The convergence speed of
RBF kernel approximated by RFF showed the linear, which is
the expected behavior since the approximated kernel by RFF
is the finite dimensional kernel.
SVGD had a smaller MMD than the proposed method,

which is due to the fact that SVGD simultaneously optimizes
all particles and tries to put particles in the best position in

3611

Table 1: Benchmark results on test RMSE and log likelihood by Bayesian neural net regression model

Dataset Posterior Avg. Test RMSE Avg. Test log likelihood Fixed Wall clock
dimension SVGD Ours SVGD Ours Time (Secs)

Naval (N=11,934, D=17) 953 4.9e-4±7.5e-5 4.2e-4±5.3e-5 6.08± 0.11 6.00±0.12 150
Protein (N=45730, D=9) 553 4.51± 0.057 4.43±0.035 −2.93± 0.013 -2.91±0.0073 40
Year (N=515344, D=91) 9203 9.54± 0.08 9.50±0.09 -3.65±0.005 -3.65±0.011 300

0 2 4 6 8 10 12

Wall-Clock Time (s)

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

T
es
t
A
cc
u
ra
cy

MMD-FW

SGLD

SP(IMQ)

SP(IMQ-score)

SP(Inverse)

SVGD,N=20

SVGD,N=50

SVGD,N=100

SVGD,N=200

(a) Comparison of MMD-FW and SVGD in terms of wall clock
time with the test accuracy

100 101 102

Number of Particles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
M
D

2

SP(IMQ)

SP(IMQ-score)

SP(Inverse)

MMD-FW RFF D=500

MMD-FW RFF D=2000

MMD-FW

SVGD

(b) Convergence behavior in terms of number of the particles
with MMD2

Figure 1: Comparison for the logistic regression model

correspondence with the global optima. In contrast, MMD-
FW only increased the particles greedily, and this resulted
in local optima. Hence, the better performance of SVGD
compared with MMD-FW with the same number of particles
in terms of MMD is a natural result.

Bayesian neural net regression
We experimented with Bayesian neural networks for regres-
sion. The settings were the same as those in (Liu and Wang

0 20 40 60 80 100 120 140

Wall-Clock Time (s)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

T
es
t
R
M
S
E

MMD-FW

SGLD

SVGD,N=20

SVGD,N=50

(a) Comparison of MMD-FW and SVGD in terms of wall clock
time with test RMSE

100 101

Number of Particles

0.2

0.3

0.4

0.5

0.6

0.7

M
M
D

2

SVGD

MMD-FW

(b) Convergence behavior in terms of the number of the particles
with MMD2

Figure 2: Comparison for the Bayesian neural net regression
model

2016). We used a neural network with one hidden layer, 50
units, and the ReLU activation function. As the dataset, we
used the Naval data from the UCI (Dheeru and Karra Taniski-
dou 2017), which contains 11,934 data points and 17 features.
The posterior dimension was 953. The results are shown in
Fig. 2. In Fig. 2a, the vertical axis is the test RMSE, and the
horizontal axis is wall clock time. In Fig 2b, the vertical axis is
theMMD2, and the horizontal axis is the number of particles.
Since it is difficult to prepare MAP initialization for Bayesian
neural networks at first in MMD-FW, we consider non-MAP
initialization, and we gradually reduced earlier weight sizes
by adjusting the step size. The posterior dimension was much

3612

higher than that of the logistic regression, but our algorithm
was faster than SVGD in terms of wall clock time and linearly
converged, which is consistent with the theory.
Results for other datasets are shown in Table 1, where

we fixed the wall clock time and applied MMD-FW and
SVGD within that period. SP did not work well because
of the high dimensionality so its results are not shown. We
experimented 5 random trials for changing the splitting of the
dataset. For the Protein data, we used the same model as the
Naval data, and for the Year data, we used the same model as
others except that the number of hidden units is 100. From
these benchmark dataset experiments, we confirmed that our
method shows almost the same performance as SVGD in
many cases but shows faster optimization. Moreover, it shows
linear convergence.

Conclusions
In this work, we proposed MMD-FW, a novel approxima-
tion method for posterior distributions. Our method enjoys
empirically good performance and theoretical guarantee si-
multaneously. In practice, our algorithm is faster than existing
methods in terms of wall clock time and works well even in
high-dimensional problems. As future work, we will further
apply this framework other than the posterior approximation
and further analyze the effect of rounding error on conver-
gence rate.

Acknowledgment
FF was supported by JST AIP-PRISM Grant Number JP-
MJCR18ZH Japan and Google Fellowship, IS was supported
by KAKENHI 17H04693, and MS was supported by KAK-
ENHI 17H00757.

References
Bach, F.; Lacoste-Julien, S.; and Obozinski, G. 2012. On the
equivalence between herding and conditional gradient algorithms.
InProceedings of the InternationalConference onMachine Learning,
1355–1362.
Bishop, C. M. 2006. Pattern Recognition and Machine Learning.
Springer.
Blei, D. M.; Kucukelbir, A.; and McAuliffe, J. D. 2017. Variational
inference: A review for statisticians. Journal of the American
Statistical Association 112(518):859–877.
Briol, F.-X.; Oates, C.; Girolami, M.; and Osborne, M. A. 2015.
Frank-Wolfe Bayesian quadrature: Probabilistic integration with the-
oretical guarantees. In Advances in Neural Information Processing
Systems, 1162–1170.
Chen, W. Y.; Mackey, L.; Gorham, J.; Briol, F.-X.; and Oates, C. J.
2018. Stein points. arXiv preprint arXiv:1803.10161.
Chen, Y.; Welling, M.; and Smola, A. 2010. Super-samples from
kernel herding. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, 109–116. AUAI Press.
Dai, B.; He, N.; Dai, H.; and Song, L. 2016. Provable Bayesian infer-
ence via particle mirror descent. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 985–994.
Dheeru, D., and Karra Taniskidou, E. 2017. UCI machine learning
repository. http://archive.ics.uci.edu/ml.
Ghahramani, Z., and Rasmussen, C. E. 2003. Bayesian Monte Carlo.
In Advances in Neural Information Processing Systems, 505–512.

Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.; and
Smola, A. 2012. A kernel two-sample test. Journal of Machine
Learning Research 13(Mar):723–773.
Huszár, F., and Duvenaud, D. 2012. Optimally-weighted herding
is Bayesian quadrature. In Proceedings of the Twenty-Eighth Con-
ference on Uncertainty in Artificial Intelligence, 377–386. AUAI
Press.
Jaggi, M. 2013. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In Proceedings of the International Conference
on Machiine Learning, 427–435.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Lacoste-Julien, S., and Jaggi, M. 2015. On the global linear
convergence of Frank-Wolfe optimization variants. In Advances in
Neural Information Processing Systems, 496–504.
Lacoste-Julien, S.; Jaggi, M.; Schmidt, M.; and Pletscher, P. 2013.
Block-coordinate Frank-Wolfe optimization for structural SVMs.
In Proceedings of International Conference on Machine Learning,
53–61.
Lacoste-Julien, S.; Lindsten, F.; and Bach, F. 2015. Sequential
kernel herding: Frank-Wolfe optimization for particle filtering. arXiv
preprint arXiv:1501.02056.
Liu, Q., and Wang, D. 2016. Stein variational gradient descent:
A general purpose Bayesian inference algorithm. In Advances In
Neural Information Processing Systems, 2378–2386.
Liu, Q.; Lee, J.; and Jordan, M. 2016. A kernelized stein discrepancy
for goodness-of-fit tests. In Proceedings of International Conference
on Machine Learning, 276–284.
Liu, Q. 2017. Stein variational gradient descent as gradient flow. In
Advances in Neural Information Processing Systems, 3118–3126.
Locatello, F.; Khanna, R.; Ghosh, J.; and Rätsch, G. 2017a. Boosting
variational inference: an optimization perspective. arXiv preprint
arXiv:1708.01733.
Locatello, F.; Khanna, R.; Tschannen, M.; and Jaggi, M. 2017b.
A unified optimization view on generalized matching pursuit and
Frank-Wolfe. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, 860–868.
Neal, R. M., et al. 2011. MCMC using Hamiltonian dynamics. In
Handbook of Markov Chain Monte Carlo. CRC Press New York,
NY. 113–162.
Wang, Y.-X.; Sadhanala, V.; Dai, W.; Neiswanger, W.; Sra, S.; and
Xing, E. 2016. Parallel and distributed block-coordinate frank-wolfe
algorithms. In International Conference on Machine Learning,
1548–1557.
Welling, M., and Teh, Y. W. 2011. Bayesian learning via stochastic
gradient Langevin dynamics. In Proceedings of the 28th Interna-
tional Conference on Machine Learning, 681–688.

3613

