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Abstract

Existing imitation learning approaches often require that the
complete demonstration data, including sequences of actions
and states, are available. In this paper, we consider a more
realistic and difficult scenario where a reinforcement learn-
ing agent only has access to the state sequences of an expert,
while the expert actions are unobserved. We propose a novel
tensor-based model to infer the unobserved actions of the ex-
pert state sequences. The policy of the agent is then optimized
via a hybrid objective combining reinforcement learning and
imitation learning. We evaluated our hybrid approach on an
illustrative domain and Atari games. The empirical results
show that (1) the agents are able to leverage state expert se-
quences to learn faster than pure reinforcement learning base-
lines, (2) our tensor-based action inference model is advanta-
geous compared to standard deep neural networks in inferring
expert actions, and (3) the hybrid policy optimization objec-
tive is robust against noise in expert state sequences.

Introduction
Human expert behavioral data are widely used for policy
learning in sequential decision-making tasks (Schaal 1999;
Argall et al. 2009). One of the most effective paradigms
is imitation learning, where a policy is trained via direct
supervision to clone expert behaviors (Pomerleau 1989;
Ross, Gordon, and Bagnell 2011). Imitation learning gen-
erally requires both observable states and actions as input.
However, expert actions are often unavailable or not directly
usable. Literature has considered scenarios where the expert
and the imitation learner may have different viewpoints (Liu
et al. 2017), temporal resolution or action sets (Yu et al.
2018). In such cases, cloning behavior directly is not an op-
tion. How to leverage such data to facilitate learning is a
realistic and challenging problem.

In this paper, we investigate a novel learning scenario
where an agent learns from both its own experience and
state-trajectory-only expert demonstrations. We propose an
iterative learning framework as follows, illustrated in Fig-
ure 1. We first learn a novel tensor-based action inference
model as the learning agent interacts with the environment.
Our model enforces a duality for consistent learning as
the inferred action from two consecutive states reconstructs
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Figure 1: The proposed hybrid reinforcement learning with
expert state sequences framework.

the latter state. Then, upon observation of demonstration
without actions, the learned dynamics is used to infer the
missing actions. Finally, we improve the learning policy by
jointly considering the imitation performance and rewards
from environment interaction via Advantage Actor-Critic
(A2C) (Dhariwal et al. 2017).

To demonstrate the effectiveness of the proposed itera-
tive learning process, we conduct experiments on the Taxi
domain as well as eight commonly used Atari games.
The experimental results confirm a faster convergence rate
of the proposed framework compared to advantage actor-
critic alone, and a better policy compared to behavioral
cloning from observations (BCO) (Torabi, Warnell, and
Stone 2018a), which only considers a similar action infer-
ence approach for behavioral cloning but ignores potential
reward signals. We additionally show that our framework is
robust against noisy expert state trajectories, and works well
even when the number of demonstrations is limited.

Related Work
Imitation Learning The tasks of learning from demon-
strations and imitation learning have attracted considerable
research attention from many fields in machine learning.
The approaches are roughly divided into two groups, be-
havioral cloning and Inverse Reinforcement Learning (IRL).
Survey articles include (Schaal 1999; Billard et al. 2008;
Argall et al. 2009). Behavioral Cloning (BC) uses supervised
learning, where the learner directly regresses onto the pol-
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icy of the expert (Pomerleau 1989; Ross, Gordon, and Bag-
nell 2011; Liu et al. 2017). This requires observation-action
tuples, and cannot be applied when actions are absent. On
the other hand, IRL methods aim to infer the goal of an ex-
pert, expressed as a reward function (Ng and Russell 2000;
Abbeel and Ng 2004; Ziebart et al. 2008; Levine, Popovic,
and Koltun 2011; Borsa et al. 2017). This can then be used
for RL to recover a policy (Ratliff, Bagnell, and Zinkevich
2006; Ramachandran and Amir 2007). Contemporaneous
work (Torabi, Warnell, and Stone 2018b) extends BC to Be-
havioral Cloning from Observations (BCO), a setting where
expert state-transitions are observed but actions are not ob-
served. This differs from our setting where we hybridize
BCO with RL.

Hybrid RL with Expert Actions Several work has fo-
cused on combining standard RL with supervised training on
expert actions, for example, by alternating steps of RL and
IRL to obtain more accurate estimates (Ho and Ermon 2016;
Finn, Levine, and Abbeel 2016). Although both lines of re-
search were successfully applied to a variety of tasks, they
almost always assume that the state-action trajectories of ex-
perts are in the same space as the learner observed. As ar-
gued in some recent work (Stadie, Abbeel, and Sutskever
2017; Duan et al. 2017; Liu et al. 2017), such an assump-
tion is restrictive and unrealistic. Instead, they proposed to
discover the transformations between the learner and the
teacher state space. Additional recent work combines human
expert data and RL in policy learning. Gilbert et al. (2015),
Lipton et al. (2016) and Lakshminarayanan, Ozair, and Ben-
gio (2016) store expert state-action pairs in a replay buffer to
facilitate learning. Hosu and Rebedea (2016) utilize expert
state-action pairs to facilitate action value learning. Subra-
manian, Isbell Jr, and Thomaz (2016) leverage human data
for efficient exploration. Hester et al. (2017) combine sev-
eral approaches and demonstrates superior performance on
Atari games. Nair et al. (2017) reported significant progress
in training robotic tasks using a combination of RL and a
small set of human demonstrations. Our method differs from
all these approaches in that we do not assume expert actions
are available.

Very recent work starts to investigate leveraging expert
state sequences only to accelerate imitation learning. Aytar
et al. (2018) utilize state only demonstration data to address
the hard exploration issue for Atari games. Zhu et al. (2018)
leverage a small amount of demonstration data to assist a
reinforcement learning agent for robotic manipulation tasks.

Model-based RL Researchers have known for decades
that learning a domain model concurrently with learning a
behavior policy can significantly improve over model-free
RL (Sutton 1991). Chebotar et al. (2017) recently demon-
strated much better sample efficiency using model-based RL
for robotics tasks, without requiring demonstrations. Oh et
al. (2015) and Machado et al. (2018) trained deep neural
network models to predict the next frame or successor rep-
resentation in Atari games with good effect. They applied
element-wise multiplications on the state and action embed-

dings to obtain the embedding of the next state, which could
be viewed as a special case of our model.

Sequential Decision Making with Expert State
Sequences

We formulate the sequential decision-making task as a
Markov decision process (MDP). An MDP is a tuple <
S,A, P,R, γ > where S is the state space and A is the ac-
tion space. P : S × A × S → [0, 1] is the state transition
function and P (s′|s, a) = Pr(s′|s, a) is the probability that
the next state is s′ given a current state s and action a is
taken. R : S × A → R is the reward function with R(s, a)
being the expectation of immediate rewards, r(s, a), of tak-
ing action a in state s. γ is a temporal discounting factor.
A stochastic policy π : S × A → [0, 1] specifies the ac-
tion to take in states. A state value function is defined as
the expected sum of discounted rewards following a policy
from a state: V π(s) = E[

∑∞
t=1 γ

t−1rt|s0 = s, π]. Simi-
larly, a state-action value function is defined as Qπ(s, a) =
E[
∑∞
t=1 γ

t−1rt|s0 = s, a0 = a, π]. The optimal policy π∗
has action value function Q∗ = maxπ Q

π . Taking actions
greedily with respect to Q∗ yields the optimal policy π∗.

In addition, we assume a set of state sequences (with
unknown actions) demonstrated by an expert is given. We
denote expert state sequences as a set of N state pairs,
D = {(ŝi, ŝ′i)}Ni=1, where ŝ′i is the next state of ŝi. Note
that we do not assume that states are consecutive across dif-
ferent pairs, i.e., ŝ′i is not necessarily equivalent to ŝi+1. We
aim to design a flexible framework that can accommodate
dataset D in various formats.

Hybrid Reinforcement Learning with Expert
State Sequences

To utilize the expert state sequences, our method learns a
model of the environment to infer the missing expert actions
from consecutive expert states. The inferred actions com-
bined with the expert states are then utilized to provide ad-
ditional supervision on the policy of our agent via behavioral
cloning. The learning paradigm of our agent is illustrated in
Figure 1. The agent interacts with the environment following
its current policy π(.; θ) as traditional RL agents. θ denotes
the learning parameters of the policy π. When the agent in-
teracts with the environment, the state-action-next-state tu-
ples {(s, a, s′)} of its experience are collected to addition-
ally train an action inference modelM : S×S → A, which
maps the state-next-state pair into an action. The details of
the modelM will be provided in the Low-Rank Tensor For-
mulation section. We sample a batch of consecutive expert
state pairs {(ŝi, ŝ′i)} and apply the action inference model
M to obtain the action estimate âi = M(ŝi, ŝ

′
i) for each

expert state pair (ŝi, ŝ′i). The action estimate âi and the ex-
pert state ŝi are combined as a batch of expert state-action
pairs {(ŝi, âi)} to optimize the policy of the agent via be-
havioral cloning. The agent also applies RL to optimize its
policy simultaneously.

In the rest of this section, we provide details of the action
inference modelM, followed by the hybrid training objec-
tive combining behavioral cloning and RL.
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Modeling State Transition Dynamics and Action
Inference
Traditional model-based RL usually estimates the forward
dynamics of the stochastic state transitions of the environ-
ment as P f : S × A × S → [0, 1] with P f (s′|s, a) be-
ing the likelihood of the next states s′ conditioned on the
current state s and action a. Ideally the action inference
model should be consistent with such model-based RL ap-
proach. Specifically, the output of the action inference model
should be the action maximizing the likelihood of the ob-
served state transition. Such approach may require |A|-time
computation of P f (.) in order to find the best action out-
put. A more computation-friendly solution would be to ob-
tain a consistent view of the state transitions which directly
estimates the likelihood of actions conditioned on two con-
secutive states P i : S × S × A → [0, 1], with P i(a|s, s′)
being the likelihood of action a for the state pair (s, s′).
M(s, s′) = argmaxa P

i(a|s, s′). Tensors offer natural rep-
resentation of the joint model of P f and P i. A tensor is able
to compute the two views of the state transitions effectively.
One technical contribution of this paper is a tensor-based
action inference model to maintain the two views of the en-
vironment dynamics consistently and simultaneously.

Low-Rank Tensor Formulation
Motivation in Small Domains For an MDP with state
space S and action space A, P f and P i can be rep-
resented as tensor multiplication on a shared tensor
T ∈ R|S|×|A|×|S| where T (s, a, s′) stores the count
number, c(s, a, s′), of the tuple (s, a, s′) in the agent’s
experience. Then the maximum likelihood estimate of
P f (s′|s, a) = c(s, a, s′)/

∑
s′ c(s, a, s

′) and P i(a|s, s′) =
c(s, a, s′)/

∑
a c(s, a, s

′) could be represented as:

P f (s′|s, a) = hsa[s
′]/||hsa||1

hsa = c(s, a, :) = T ×1 1(s)×2 1(a)

P i(a|s, s′) = hss′ [a]/||hss′ ||1
hss′ = c(s, :, s′) = T ×1 1(s)×3 1(s

′)

where 1(i) is a one-hot vector at location i, ||.||1
is the L1 norm of a vector, and ×m denotes the
mode-m product, defined as (T ×m W )i1,...,j,...,iK =∑dm
im=1 Ti1,...,im,...,iKWim,j . Note that c(s, a, s′) = T ×1

1(s) ×2 1(a) ×3 1(s′), and c(s, a, s′) can be viewed as a
score of the tuple (s, a, s′) from tensor multiplications. hsa
is a vector of length |S| with hsa[s′] = c(s, a, s′) and hss′
is a vector of length |A| with hss′ [a] = c(s, a, s′). P f and
P i are normalized vectors of hsa and hss′ . By organizing
the count numbers of the tuples (s, a, s′) into tensor, P f and
P i could be modeled jointly by the same tensor T in the
tabular cases. But for MDPs with large state space, such ten-
sor would be both memory-demanding and computationally
expensive.

We reduce the tensor computation via the following ap-
proaches: (1) We reduce the dimensionality of the tensor

Figure 2: Tensor formulation of state-transition modeling for
playing Atari games. A state consists of a window of frames,
which are images from the game screen. Those images pass
a convolutional neural network and result in a state embed-
ding (left part). Given a tuple (s, a, s′), our model predicts
a score by multiplying a tensor T with the hidden represen-
tations of s, a, δs, i.e. hs,ha,hδs (right part). The matrices
Ws,Wδs and W map state embeddings es and es′−es and
the one-hot encoding of action a to vectors.

by allowing the states embed in a lower dimension. We em-
bed the state representation es ∈ Rs1 to a lower dimension
space Rds via a matrix Ws ∈ Rds×s: hs = Wses. Instead
of using the embedding of the next state hs′ , we use the
embedding for the difference between two states in tensor
multiplications. The rationale in embedding the state differ-
ences instead of next states directly is that not all the infor-
mation in the next states are relevant to the actions. More-
over, the difference between two states could be embedded
in a even lower dimensional space since not all state infor-
mation are relevant to state transitions. The effects of actions
are more related to the state differences. We denote the state
difference embedding as hδs = Wδs(hs′ − hs) ∈ Rdδs
where Wδs ∈ Rdδs×ds . Similarly, we embed the actions
ha ∈ Rda . Thus the score of the a tuple (s, a, s′) can be
computed as score(s, a, s′) = T ×1 hs×2 ha×3 hδs where
T ∈ Rds×da×dδs . Figure 2 demonstrates the above formu-
lation with an Atari game example. Under this formulation,
the predicted representation of the action and state difference
is thus:

ĥδs = T ×1 hs ×2 ha,

ĥa = T ×1 hs ×3 hδs

In order to have consistent score for the tuple (s, a, s′)
using either the predicted embedding or the original embed-
ding, part of the learning objective is to minimize the dis-
tance between the predicted representation and the original
ones: minEs,a,s′ [||ĥδs − hδs||1+||ĥa − ha||1].

(2) Even though T is now independent from the state
space and the action space, it may still be computationally
expensive. To further reduce the computation, first we intro-
duce symmetry, T [:, k, :] = T [:, :, k] with dδs = da = d,
into the tensor by assuming the action and the difference in
the state embedding between the current state and the next

1For example, es could be a one-hot vector from a lookup table
for small state space domains, or an output vector from ConvNet to
represent image inputs for video game domains.
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state could be embedded similarly when conditioned on the
current state. Then we approximate the tensor slices T [:, k, :]
as a sum of R rank-1 matrices following Li et al. (2017):

T [:, k, :] =
R∑
r=1

Mr[:, k]⊗Nr[:, k]
T .

where matrix Mr ∈ Rds×d, Nr ∈ Rd×d and ⊗ de-
notes the outer product. [:, k] denotes the k-th column of
the matrix. Thus each element k of ĥa can be written as
ĥa[k] =

∑R
r=1(hsMr[:, k])× (hδsNr[:, k]). Letting � de-

note Hadamard (point-wise) product, we have:

ĥa =

R∑
r=1

(hsMr)� (hδsNr).

With our symmetric T [:, :, k] = T [:, k, :], the tensor slides
T [:, :, k] could be approximated by the same Mr and Nr,
thus we have:

ĥδs =

R∑
r=1

(hsMr)� (haNr).

This gives a computationally efficient dual state transi-
tion model F(s, x) =

∑R
r=1(hsMr) � (hxNr) to predict

both ĥδs (x is action) and ĥa (x is state-difference δs). The
predicted ĥa is then used to predict the action probability
P i(.|s, s′) = SoftMax(Waĥa + ba), where Wa ∈ R|A|×d
and ba ∈ R|A|.

Similarly, the probability of the next state s′ is
P f (.|s, a) = SoftMax(Ws′(ĥδs +W′

δshs) + bs′), where
Ws′ ∈ R|S|×d, W′

δs ∈ Rd×ds and bs′ ∈ R|S|. 2

Learning Objective for the State Transition Model The
experience of the agent while interacting with the environ-
ment is used to optimize the dual state transition model F .
Since F is end-to-end trainable, we optimize F to maximize
the likelihood of the tuple (s, a, s′) of the agent’s own expe-
rience.

The training objective is defined as follows:

Ldual-model = E(s,a,s′)

[
− logP f (s′|s, a)− logP i(a|s, s′)

+ ‖ha − ĥa‖1 + ‖hδs − ĥδs‖1
]

In our learning scenario, only P i is relevant so we simplify
the objective to model only the action inference part:

Lact = E(s,a,s′)

[
− logP i(a|s, s′) +

‖ha − ĥa‖1 + ‖hδs − ĥδs‖1
]

2Exactly following the tensor scoring function gives the prob-
ability estimation P i(.|s, s′) = SoftMax(Haĥa), where Ha ∈
R|A|×d is the concatenation of has for all a; and P f (.|s, a) =

SoftMax(Hs′ ĥδs), where Hs′ ∈ R|S|×d is the concatenation of
(hs′ + hs)s for all s′. However, as adopted by Li et al. (2017), the
proposed estimation gives better empirical results. This is possibly
because the classification objective benefits from more free param-
eters. Furthermore, P f can be replaced by reconstruction loss for
large state space as used in Oh et al. (2015).

(a)

(b)

Figure 3: Model architectures for (a) Taxi and (b) Atari
games. The Multi-Layer Perceptron (MLP) action inference
baseline is also visualized in (a).

The learned P i is used to infer the actions given two
consecutive expert states (ŝ, ŝ′): M(ŝ, ŝ′) = â =
argmaxa P

i(a|ŝ, ŝ′).

Hybrid Learning Objective
The hybrid training objective of the policy π combines the
RL objective to maximize the expected sum of the dis-
counted rewards and the imitation objective to maximize
the likelihood of the inferred actions on the demonstrated
states. Our RL method is Advantage Actor Critic (A2C).
A2C learns the state value V (s) by minimizing the squared
advantage function values A(st) =

∑N
n=1 γ

n−1rt+n +
γNV (st+N ) − V (st). A2C optimizes the policy via policy
gradient E[A(s)∇θ log π(a|s)]. Let θ denote the parameters
of the policy π. The hybrid objective of our policy learning
is:

(1)
Uhybrid(θ) = Es,a

[
A(s) log π(a|s; θ) + αH(π(.|s))

]
+ E(ŝ,ŝ′)∼ρ(D)

[
log π(M(ŝ, ŝ′)|ŝ; θ)

]
where ρ() is a sampling distribution on the expert state pairs.
It could be uniform or biased to match the state distribution
of the agent’s policy via curriculum learning. H(π(.|s)) is
the entropy of the policy for state s.
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(a) (b) (c)

Figure 4: Learning curves of different agents on the Taxi domain. The figures show the average cumulative rewards across
80,000 time steps. The shadow regions represent the standard deviation of the average cumulative rewards. The figures are
best viewed in colors. (a) The performance of our method and different baselines. BC represents agents only use the inferred
actions on expert states to optimize the policies. MLP/Dual represent the architecture of the action inference model. (b) The
performance of our method and variant with different action inference model ranks. (c) The performance of our method varies
with different types of noise from expert state sequences.

Empirical Evaluation
To validate the proposed learning paradigm, we evaluate
our proposed method on the Taxi domain (Dietterich 1998)
and eight Atari games from OpenAI Gym (Brockman et al.
2016).

Taxi Domain
We first evaluate our method on the Taxi domain. In addi-
tion, we analyze the performance of our proposed method
when different types of noise exist in the expert state se-
quences and show that our hybrid learning approach is more
robust compared to pure behavioral cloning from expert
state sequences (Torabi, Warnell, and Stone 2018a). Last,
we illustrate the parameter compression rate compared to the
full tensor approach and analyze the parameter sensitivity.

Experiment Setup As shown in Figure 3a, our agent ar-
chitecture consists of two main components: A2C and the
action inference model. A2C uses two forward step estima-
tion for the advantage function. The state is represented as
a one-hot vector of length 500 for both the actor and critic.
The policy and state values are computed via separated lin-
ear transformations. No parameters are shared between the
actor and the critic. The action inference model first projects
current states and next states to vectors of length 128. The
matrices Mr and Nr of the action inference model are of
size 128 × 128. The action inference model has rank 2. We
use human rule to collect demonstration covering the whole
500 states. The performance of the human rule is optimal.

To analyze our hybrid RL with expert state sequences, we
compare with the following methods:

• A2C: This method trains as a standard RL task, ignoring
the expert state sequences. Its configuration is the same as
our A2C component.

• Behavioral cloning with duality action inference (BC-
Dual): This agent does not consider RL signals and only
optimizes its policies by cloning the inferred actions on

expert states. The action inference model is the same as
ours.

• Imitation Learning (IL): Only this agent has access to
the expert actions. This agent utilizes the expert actions
to conduct behavioral cloning directly. No reinforcement
learning signal is leveraged.

To evaluate our action inference model, we additionally
compare two variants where our action inference model is
replaced by a multi-layer perceptron (MLP) as illustrated in
Figure 3a. Similar to our action inference model, the states
are first projected as vectors of length 128, then two state
embeddings are concatenated and passed through two fully
connected layers, and each layer has 128 units followed by
ReLU nonlinearity. The total number of parameters of the
MLP is close to ours.3 The variants replace our action infer-
ence model with MLP are:

• A2C with MLP-based action inference(Hybrid-MLP):
It is the same as our proposed hybrid RL method except
the action inference model is replaced by the MLP base-
line.

• Behavioral cloning with MLP action inference (BC-
MLP): It is the same as Behavioral cloning with duality
action inference except the action inference model is re-
placed by the MLP baseline.

Each agent is trained and evaluated on 16 independent
runs with different random seeds.

Experiment Results Figure 4a shows learning curves of
different agents, and we make the following observations.
1) By comparing the hybrid agents with their pure imi-
tation learning counterparts (Ours vs. BC-DUAL, Hybrid-
MLP vs. BC-MLP), we see the hybrid agents have better
performance. Pure behavioral cloning training signals only

3The number of parameters of our action inference model is
128×128×2×2 and the MLP is roughly 256×128+128×128×2.

3743



Figure 5: Action prediction accuracy on the expert actions
of our action inference model and the MLP-based action in-
ference model in hybrid policy learning at different training
time steps.

discriminate optimal vs. non-optimal actions, while the re-
ward signals could help the agent to discriminate all ac-
tions, which could help to identify good actions to explore
the environment. With the help of RL signals, the distribu-
tion of training data for the action inference model changes
such that it will learn faster on key states. The results also
show that, while the pure behavioral cloning agent improves
rapidly at the beginning of learning, it takes much longer
than the hybrid counterparts to reach the optimal policy. 2)
By comparing our action inference model to its MLP coun-
terparts (Ours vs. Hybrid-MLP, and BC-Dual vs. BC-MLP),
the dual action inference model demonstrates performance
advantages. Since the dual model does not have any non-
linear transformations as MLP, our action inference model
is more data efficient in learning the environment dynamics
and it is more robust to state distribution changes in learning
as shown in Figure 5 showing the action prediction accuracy
in Ours vs. Hybrid-MLP. 3) Both the hybrid agents outper-
form the pure A2C agents, which shows that the hybrid ob-
jective is effective in leveraging the expert state sequences
to facilitate learning.

Effect of Ranks on Performance & Parameter Reduction
Our low-rank tensor model efficiently reduces the parameter
space while keeping good enough performance. First, the
full parameter tensor without any low-rank approximation
technique contains 500 × 6 × 500 parameters for the Taxi
domain (|S|= 500 and |A|= 6). In comparison, our best-
performing rank-2 model has a total number of parameters
of |{Mr,Nr}r={1,2}|= (128× 128× 2)× 2, compressing
the original tensor at a ratio of 4.37%. Figure 4b compared
the learning curves with different ranks. Even the rank is set
to 1, the performance is degenerated but the advantage over
pure A2C agents still preserves. Setting a higher rank (R=4)
does not improve the results and the learning curve is almost
the same as the rank-2 model.

Robustness against Noise in Demonstrations The above
results demonstrate the performance advantage in an ideal
setting where the expert state sequences cover the whole
state space and the expert behaves optimally. We analyze the
robustness of our agent against potential noise from the ex-
pert state sequences. We study two potential types of noise
in expert state sequences: (1) Missing state ratio (η), namely
the percentage of states that do not exist in the expert state
sequences, and (2) Non-optimal action ratio (ε), the percent-
age of state transitions caused by non-optimal actions. The
performance of our agents for various values of η and ε is
summarized in Figure 4c. By comparing the hybrid agents
with the pure behavioral cloning agents, the hybrid agents
are able to recover the optimal policies while the pure be-
havioral cloning agents get stuck at certain sub-optimal poli-
cies. This illustrates that the hybrid approach relies less on
the optimality of the demonstrations. The figure also shows
that non-optimal state transitions have a significant impact
on the performance because the agent could get stuck in the
Taxi domain, which could result in a sum of negative re-
wards until the maximum number of steps is reached.

Atari Games
We evaluate our method on eight Atari games with machine
generated state sequences to evaluate the scalability of our
method.

Experiment Setup

Model Architecture We adopt the commonly used CNN
architecture as in Mnih et al. (2015) for Atari games. As
shown in Figure 3b, the last four images are stacked in chan-
nel and rescaled to 84×84 as state input. The state encoding
function is a four-layer convolutional neural network. The
first hidden layer convolves 32 8×8 filters with stride 4. The
second layer convolves 64 4×4 filters with stride 2. The third
layer convolves 32 3×3 filters with stride 1. The last layer
of the state encoding function is fully-connected and con-
sists of 512 output units . Each layer is followed by ReLU as
nonlinearity. The last output vector is passed through a lin-
ear layer to generate the value estimates for the critic of A2C
and through another linear layer followed by a softmax as
the policy for the actor of A2C. Our action inference model
shares the same state encoding CNN. The last output vector
of length 512 is first passed through a linear layer with 128
output units. The matrices {Mr,Nr}r are all 128×128. The
rank is set to be 8.

We use pre-trained A2C agents with 5 million frames to
generate 100 trajectories as demonstration state sequences.
Each trajectory is terminated when one player life is lost.
Similar to the Taxi domain, the agents are trained and evalu-
ated on 16 simultaneous environments with different random
seeds.

Expert State Sampling Curriculum Unlike the Taxi do-
main, the state mismatch between the demonstration and the
agent at the beginning of the learning is significant. As the
action inference model is only trained on the players’ own
state distribution, the demonstration states that are far from
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(a) Alien (b) BeamRider (c) Breakout (d) MsPacman

(e) Pong (f) Qbert (g) Seaquest (h) SpaceInvaders

Figure 6: Learning curves of our method and the A2C baseline on eight Atari games. The figures show the average scores of
the trained models with different number of image frames. The shadow regions represent one standard deviation.

the agent’s own experience could be wrongly labeled. Be-
cause of this, the pure behavioral cloning from demonstra-
tion agents (BC-) fail in achieving reasonable performance.
On the other hand, learning from states that are far away
from the agent’s own state distribution is not immediately
helpful. To mitigate such mismatch, we apply a curriculum
in sampling the demonstration when optimizing the poli-
cies. Specifically, we only sample from the first K = 10
time steps of each trajectory at the beginning of learning. We
gradually increase K by 1 for approximate 8,000 frames. In
this way, the sampled state distribution of the demonstration
matches better to the players’ own experience. Furthermore,
we only use the inferred actions after 100,000 frames to op-
timize the agent’s policies when the action prediction model
becomes reliable.

Experiment Results The learning curves of our agent and
the A2C baseline are shown in Figure 6. Of all the eight
games we evaluate, the hybrid agent is able to leverage ex-
pert demonstration to speed up learning on six games (Alien,
BeamRider, Breakout, MsPacman, Pong and Qbert, Fig-
ure 6(a-f)). For the other two games, A2C seems to stuck
at Seaquest at a score of 1800, either the hybrid agent or the
A2C agent is able to escape from that local minima; the ac-
tion inference has the worst accuracy on the game SpaceIn-
vaders.

Conclusion
We have proposed an iterative learning paradigm to facili-
tate the problem of decision-making by utilizing demonstra-
tions from experts. Differ from many previous approaches,
we consider a realistic and difficult setting that actions per-
formed by the experts are unavailable. To better make use of
the state-only demonstrations, we propose to learn a novel
tensor-based action inference model based on the agent’s

own experience. The learned dynamics is further used to in-
fer the missing actions from the expert demonstrations. At
last, a hybrid objective is proposed that improves the policy
via imitation learning and A2C jointly. The experiment re-
sults on eight Atari games and an illustrative Taxi domain
demonstrates the advantageous performances of our model
against a set of baselines. We also show that our model is
robust against noisy expert state trajectories.
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