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Abstract

We study a classification problem where each feature can be
acquired for a cost and the goal is to optimize a trade-off be-
tween the expected classification error and the feature cost. We
revisit a former approach that has framed the problem as a se-
quential decision-making problem and solved it by Q-learning
with a linear approximation, where individual actions are ei-
ther requests for feature values or terminate the episode by
providing a classification decision. On a set of eight problems,
we demonstrate that by replacing the linear approximation
with neural networks the approach becomes comparable to the
state-of-the-art algorithms developed specifically for this prob-
lem. The approach is flexible, as it can be improved with any
new reinforcement learning enhancement, it allows inclusion
of pre-trained high-performance classifier, and unlike prior art,
its performance is robust across all evaluated datasets.

Introduction
In real-world classification problems, one often has to deal
with limited resources - time, money, computational power
and many other. Medical practitioners strive to make a diag-
nosis for their patients with high accuracy. Yet at the same
time, they want to minimize the amount of money spent on
examinations, or the amount of time that all the procedures
take. In the domain of computer security, network traffic is
often analyzed by a human operator who queries different ex-
pensive data sources or cloud services and eventually decides
whether the currently examined traffic is malicious or benign.
In robotics, the agent may utilize several measurement de-
vices to decide its current position. Here, each measurement
has an associated cost in terms of the energy consumption.
In all of these cases, the agent gathers a set of features, but
it is not desirable to have a static set that works on average.
Instead, we want to optimize for a specific sample - the cur-
rent patient, certain computer on a network or the immediate
robot’s location.

These real-world problems give rise to the problem of
Classification with Costly Features (CwCF). In this setting,
an algorithm has to classify a sample, but can only reveal its
features at a defined cost. Each sample is treated indepen-
dently, and for each sample the algorithm sequentially selects
features conditioning on values already revealed. Inherently,
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Figure 1: Illustrative sequential process of classification. The
agent sequentially asks for different features (actions af ) and
finally performs a classification (ac). The particular decisions
are influenced by the observed values.

a different subset of features can be selected for different
samples. The goal is to minimize the expected classification
error, while also minimizing the expected incurred cost.

In this paper, we extend the approach taken by Dulac-
Arnold et al. (2011), which proposed to formalize the prob-
lem as an Markov decision process (MDP) and solve it with
linearly approximated Q-learning. In this formalization, each
sample corresponds to an episode, where an agent sequen-
tially decides whether to acquire another feature and which,
or whether to already classify the sample (see Figure 1). At
each step, the agent can base its decision on the values of the
features acquired so far. For the actions requesting a feature,
the agent receives a negative reward, equal to the feature cost.
For the classification actions, the reward is based on whether
the prediction is correct. Dulac-Arnold et al. prove in their
paper that the optimal solution to this MDP corresponds to
the optimal solution of the original CwCF problem.

Since 2011, we are not aware of any work improving upon
the method of Dulac-Arnold et al. In this paper, we take a
fresh look at the method and show that simple replacement
of the linear approximation with neural networks can outper-
form the most recent methods specifically designed for the
CwCF problem. We take this approach further and implement
several state-of-the-art techniques from Deep Reinforcement
Learning (Deep RL), where we show that they improve per-
formance, convergence speed and stability. We argue that
our method is extensible in various ways and we implement
two extensions: First we identify parts of the model that can
be pre-trained in a fast and supervised way, which improves
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performance initially during the training. Second, we allow
the model to selectively use an external High-Performance
Classifier (HPC), trained separately with all features. In many
real-world domains, there is an existing legacy, cost-agnostic
model, which can be utilized. This approach is similar to (Nan
and Saligrama 2017), but in our case it is a straightforward
extension to the baseline model. We evaluate and compare the
method on several two- and multi-class public datasets with
number of features ranging from 8 to 784. We do not perform
any thorough hyperparameter search for each dataset, yet our
method robustly performs well on all of them, while often
outperforming the prior-art algorithms. The source code is
available at github.com/jaromiru/cwcf.

Problem definition
Let (x, y) ∈ D be a sample drawn from a data distribution
D. Vector x ∈ X ⊆ Rn contains feature values, where xi is
a value of feature fi ∈ F = {f1, ..., fn}, n is the number of
features, and y ∈ Y is a class. Let c : F → R be a function
mapping a feature f into its real-valued cost c(f), and let
λ ∈ [0, 1] be a cost scaling factor.

The model for classifying one sample is a parametrized
couple of functions yθ : X → Y , zθ : X → ℘(F), where
yθ classifies and zθ returns the features used in the classifi-
cation. The goal is to find such parameters θ that minimize
the expected classification error along with λ scaled expected
feature cost. That is:

argmin
θ

1

|D|
∑

(x,y)∈D

`(yθ(x), y) + λ
∑

f∈zθ(x)

c(f)

 (1)

We view the problem as a sequential decision-making prob-
lem, where at each step an agent selects a feature to view
or makes a class prediction. We use standard reinforcement
learning setting, where the agent explores its environment
through actions and observes rewards and states. We repre-
sent this environment as a partially observable Markov deci-
sion process (POMDP), where each episode corresponds to a
classification of one sample from a dataset. We use POMDP
definition, because it allows a simple definition of the tran-
sition mechanics. However, our model solves a transformed
MDP with stochastic transitions and rewards.

Let S be the state space, A set of actions and r, t reward
and transition functions. State s = (x, y, F̄) ∈ S represents
a sample (x, y) and currently selected set of features F̄ . The
agent receives only an observation o = {(xi, fi) | ∀fi ∈ F̄},
that is, the selected parts of x without the label.

Action a ∈ A = Ac ∪ Af is one of the classification
actions Ac = Y , or feature selecting actions Af = F . Clas-
sification actions Ac terminate the episode and the agent
receives a reward of 0 in case of correct classification, else
−1. Feature selecting actions Af reveal the corresponding
value xi and the agent receives a reward of −λc(fi). The set
of available feature selecting actions is limited to features not
yet selected. Reward function r : S ×A → R is:

r((x, y, F̄), a) =


−λc(fi) if a ∈ Af , a = fi

0 if a ∈ Ac and a = y

−1 if a ∈ Ac and a 6= y
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Figure 2: Different settings of λ result in different cost-
accuracy trade-off. Five different runs, miniboone dataset.

By altering the value of λ, one can make a trade-off between
precision and average cost. Higher λ forces the agent to prefer
lower cost and shorter episodes over precision and vice versa.
Further intuition can be gained by looking at Figure 2.

The initial state does not contain any disclosed features,
s0 = (x, y, ∅), and is drawn from the data distribution D.
The environment is deterministic with a transition function
t : S ×A → S ∪ T , where T is the terminal state:

t((x, y, F̄), a) =

{T if a ∈ Ac
(x, y, F̄ ∪ a) if a ∈ Af

These properties make the environment inherently episodic,
with a maximal length of an episode of |F| + 1. Finding
the optimal policy πθ that maximizes the expected reward in
this environment is equivalent to solving eq. (1), which was
shown by Dulac-Arnold et al. (2011).

Background
In Q-learning, one seeks the optimal function Q∗, represent-
ing the expected discounted reward for taking an action a in
a state s and then following the optimal policy, and it satisfies
the Bellman equation:

Q∗(s, a) = E
s′∼t(s,a)

[
r(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(2)

where r(s, a, s′) is the received reward and γ ≤ 1 is the
discount factor. A neural network with parameters θ takes a
state s and outputs an estimateQθ(s, a), jointly for all actions
a. It is optimized by minimizing MSE between the both
sides of eq. (2) for transitions (st, at, rt, st+1) empirically
experienced by an agent following a greedy policy πθ(s) =
argmaxaQ

θ(s, a). Formally, we are looking for parameters
θ by iteratively minimizing the loss function `θ, for a batch
of transitions B:

`θ(B) =
1

|B|
∑

(st,at,rt,st+1)∈B

(qt −Qθ(st, at))2 (3)

where qt is regarded as a constant when differentiated, and is
computed as:

qt =

{
rt if st+1 = T
rt + max

a
γQθ(st+1, a) otherwise (4)

3960



As the error decreases, the approximated function Qθ con-
verges to Q∗. However, this method proved to be unstable
in practice (Mnih et al. 2015). In the following section, we
briefly describe techniques used in this work that stabilize
and speed-up the learning.

Deep Q-learning (Mnih et al. 2015) includes a separate
target network with parameters φ, which follow parameters θ
with a delay. Here we use the method of Lillicrap et al. (2016),
where the weights are regularly updated with expression
φ := (1 − ρ)φ + ρθ, with some parameter ρ. The slowly
changing estimate Qφ is then used in qt, when st+1 6= T :

qt = rt + max
a

γQφ(st+1, a) (5)

Double Q-learning (Van Hasselt, Guez, and Silver 2016)
is a technique to reduce bias induced by the max in eq. (4), by
combining the two estimates Qθ and Qφ into a new formula
for qt, when st+1 6= T :

qt = rt + γQφ(st+1, argmax
a

Qθ(st+1, a)) (6)

In the expression, the maximizing action is taken from Qθ,
but its value is estimated with the target network Qφ.

Dueling Architecture (Wang et al. 2016) uses a decom-
position of the Q-function into two separate value and ad-
vantage functions. The architecture of the network is altered
so that the it outputs two estimates V θ(s) and Aθ(s, a) for
all actions a, which are then combined to a final output
Qθ(s, a) = V θ(s) + Aθ(s, a) − 1

|A|
∑
a′ A

θ(s, a′). When
training, we take the gradient w.r.t. the final estimate Qθ.
By incorporating baseline V θ across different states, this
technique accelerates and stabilizes training.

Retrace (Munos et al. 2016) is a method to efficiently
utilize long traces of experience with truncated importance
sampling. We store generated trajectories into an experience
replay buffer (Lin 1993) and utilize whole episode returns
by recursively expanding eq. (2). The stored trajectories
are off the current policy and a correction is needed. For
a sequence (s0, a0, r0, . . . , sn, an, rn, T ), we implement Re-
trace together with Double Q-learning by replacing qt with

qt = rt + γ E
a∼πθ(st)

[
Qφ(st+1, a)

]
+

+ γρ̄t+1

[
qt+1 −Qφ(st+1, at+1)

] (7)

Where we define Qφ(T , ·) = 0 and ρ̄t = min(π(at|st)
µ(at|st) , 1) is

a truncated importance sampling between exploration policy
µ that was used when the trajectory was sampled and the
current policy π. We allow the policy πθ to be stochastic –
at the beginning, it starts close to the sampling policy µ but
becomes increasingly greedy as the training progresses. It
prevents premature truncation in the eq. (7) and we observed
faster convergence. Note that all qt values for a whole episode
can be calculated in O(n) time. Further, it can be easily
parallelized across all episodes.

Method
We first describe a Deep Q-learning (DQN) based method,
and leave other extensions to the next section.

FFNN

Features x̄ Mask m

QcQf

Figure 3: The architecture of the model. The input layer
consists of the feature vector x̄ concatenated with the binary
mask m, followed by a feed-forward neural network (FFNN).
Final fully connected layer jointly outputs Q-values for both
classification and feature-selecting actions.

An observation o is mapped into a tuple (x̄,m):

x̄i =

{
xi if fi ∈ F̄
0 otherwise

,mi =

{
1 if fi ∈ F̄
0 otherwise

Vector x̄ ∈ Rn is a masked vector of the original x. It con-
tains values of x which have been acquired and zeros for
unknown values. Mask m ∈ {0, 1}n is a vector denoting
whether a specific feature has been acquired, and it contains
1 at a position of acquired features, or 0. The combination of
x̄ and m is required so that the model can differentiate be-
tween a feature not present and observed value of zero. Each
dataset is normalized with its mean and standard deviation
and because we replace unobserved values with zero, this
corresponds to the mean-imputation of missing values.

The neural network is fed with concatenated vectors x̄, m
and output Q-values jointly for all actions. The neural net-
work has three fully connected hidden layers, each followed
by the ReLu non-linearity, where the number of neurons in
individual layers change depending on the used dataset. The
overview is shown in Figure 3.

A set of environments with samples randomly drawn from
the dataset are simulated and the experienced trajectories
are recorded into the experience replay buffer. After each
action, a batch of transitions B is taken from the buffer and
optimized upon with Adam (Kingma and Ba 2015), with eqs.
(3, 5). The gradient is normalized before back-propagation
if its norm exceeds 1.0. The target network is updated after
each step. Overview of the algorithm and the environment
simulation is in Algorithm 1 and 2.

Because all rewards are non-positive, the whole Q-function
is also non-positive. We use this knowledge and clip the qt
value so that it is at most 0. We experimentally found that
this approach avoids an initial explosion in predicted values
and weights and speeds up and stabilizes the learning process.
The definition of the reward function also results in optimistic
initialization: Since the outputs of an untrained network are
around zero, the model tends to overestimate the real Q-
values, which has a positive effect on exploration.

The environment is episodic with a short average length of
episodes, therefore we use undiscounted returns with γ = 1.0.
We use ε-greedy policy that behaves greedily most of the time,
but picks a random action with probability ε. Exploration rate
ε starts at a defined initial value and it is linearly decreased
over time to its minimum value.
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Extensions
Pre-training Classification actions Ac are terminal and
their Q-values do not depend on any following states. Hence,
these Q-values can be efficiently pretrained in a supervised
way. Before starting the main method, we repeatedly sample
different states by randomly picking a sample x from the
dataset and generating a mask m. The values mi follow the
Bernoulli distribution with probability p. As we want to gen-
erate states with different amount of observed features, we
randomly select 3

√
p ∼ U(0, 1) for different states. This way,

the distribution of generated masks m is shifted towards the
initial state with no observed features. We use the generated
states s to pretrain the part of the networkQθ(s, a), for classi-
fication actions a ∈ Ac. Since the main algorithm starts with
already accurate classification predictions, this technique has
a positive effect on the initial speed of the training process.

HPC Our second extension is the High-Performance Clas-
sifier. This can coincide with an expensive and (not-always)
accurate oracle, that appears in real-world problems (e.g.
the human operator in computer security), or a legacy cost-
agnostic system already in place. We model these cases with a
separately trained classifier, typically of a different type than
neural networks (e.g. random forests or SVM). The extension
is implemented by an addition of a separate action aHPC, that
corresponds to forwarding the current sample to the HPC.
The cost for this action is the summed cost of all remaining
features, i.e. r(s, aHPC) = −λ∑f∈F\F̄ c(f). The action is
terminal, t(s, aHPC) = T . The model learns to use this ad-
ditional action, which has two main effects: (1) It improves
performance for samples needing a large amount of features.
(2) It offloads the complex samples to HPC, so the model
can focus its capacity more effectively for the rest, improving
overall performance. Note that HPC is an optional extension,
but is likely to improve performance if the chosen classifier
outperforms neural networks on the particular dataset.

Deep RL extensions Since our method is based on a
generic RL technique, any domain-independent improvement
can be included into the algorithm. Here we decide to include
the three described techniques: Double Q-learning, Dueling
Architecture and Retrace. Compared to the DQN model, a
few changes are necessary: The architecture is changed to
Dueling and the optimization step is made on eqs. (3, 7). The
baseline agent uses one-step return in eq. (5), but the full
agent with Retrace updates the Q-values along the whole
sequence with eq. (7). In the latter case, we sample whole
episodes instead of individual steps, but we keep the total
number of steps in batches similar. The target policy is set to
be η-greedy, where η is linearly decreased towards zero. This
way, the target and exploration policy are close together at the
beginning of the training, which avoids premature truncations
in eq. (7) and speeds-up the training.

Other possible extensions Our method provides a flexible
framework that can be extended in numerous ways. More
than one external classifier can be included in our model. We
hypothesize that the model would learn to adaptively query
different classifiers that perform well for the current sample.

Algorithm 1 Training
Randomly initialize parameters θ and φ
Initialize environments E with (x, y, ∅) ∈ (X ,Y, ℘(F))
Initialize replay bufferM with a random agent
while not converged do

for all e ∈ E do
Simulate one step with ε-greedy policy πθ:

a = πθ(s); s′, r = STEP(e, a)

Add transition (s, a, r, s′) into circular bufferM
end for
Sample a random batch B fromM
for all (si, ai, ri, s

′
i) ∈ B do

Compute target qi according to eq. (5)
Clip qi with maximum of 0

end for
Perform one step of gradient descent on `θ w.r.t. θ:

`θ(B) =

|B|∑
i=1

(qi −Qθ(si, ai))2

Update parameters φ := (1− ρ)φ+ ρθ
end while

Algorithm 2 Environment simulation
Operator � marks the element-wise multiplication.
function STEP(e ∈ E , a ∈ A)

if a ∈ Ac then

r =

{
0 if a = e.y

−1 if a 6= e.y
Reset e with a new sample (x, y, ∅) from a dataset
Return (T , r)

else if a ∈ Af then
Add a to set of selected features: e.F̄ = e.F̄ ∪ a
Create mask mi = 1 if fi ∈ F̄ and 0 otherwise
Return ((e.x�m,m),−λc(a))

end if
end function

Instead of the static reward of−1 for misclassification, one
can provide actual misclassification costs for the particular
domain and our method would find the optimal solution. One
could even set different misclassification costs to different
classes, leading to the domain of cost-sensitive classification.

In real-world cases, several features often come together
with one request (e.g. one request to a cloud service can pro-
vide many values). In this case, the features can be grouped
together to create a macro-feature, which is provided at once.
In other cases, the number of the features may be too large
to be practical. In these cases, existing algorithms (Wang,
Trapeznikov, and Saligrama 2015) can be used to automati-
cally group the features.

Experiments
We compare our method with two state-of-the-art methods,
Adapt-Gbrt (Nan and Saligrama 2017) and BudgetPrune
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Figure 4: Comparison with prior-art algorithms. Adapt-Gbrt is not shown on (b-f), because the open-sourced code is not
compatible with multi-class datasets. RL-lin is Q-learning with linear approximation, RL-dqn is the baseline method. The
horizontal lines correspond to the plain neural network based classifier and SVM. Datasets forest-2 and cifar-2 have two clases.

(Nan, Wang, and Saligrama 2016) in Figure 4. We instan-
tiate our method in three versions: Q-learning with linear
approximation (RL-lin), Q-learning with neural networks
(RL-dqn) and the complete agent with all extensions (RL).

Experiment Details
We use several public datasets (Lichman 2013; Krizhevsky
and Hinton 2009), which are summarized in Table 1. We use
three two-class and five multi-class datasets, with number
of features ranging from 8 to 784. Two datasets were as-
signed random costs, selected from {0.2, 0.4, 0.6, 0.8}. Other
datasets are left with the uniform cost of 1.0 and the meth-
ods work as adaptive feature selection – being able to select
different features for different samples. We normalize the
datasets with their mean and standard deviation and split
them into training, validation and testing sets. Note that our
results may differ from those reported in prior-art, because
we use different preprocessing and splits.

Adapt-Gbrt is a random forest (RF) based algorithm and,
similarly to our HPC extension, it uses an external HPC
model. It jointly learns a gating function and Low-Prediction
Cost model (LPC) that adaptively approximates HPC in re-
gions where it makes accurate predictions. The gating func-
tion redirects the samples to either HPC or LPC. BudgetPrune
is another algorithm that prunes an existing RF using linear
programming to optimize the cost vs. accuracy trade-off.

We obtained the results for both Adapt-Gbrt and Budget-
Prune by running the source code published by their authors.
The published version of Adapt-Gbrt is restricted to datasets

Dataset feats. cls. #trn #val #tst costs

mnist 784 10 50k 10k 10k U
cifar 400 10 40k 10k 10k U
cifar-2 400 2 40k 10k 10k U
forest 54 7 200k 81k 300k U
forest-2 54 2 200k 81k 300k U
miniboone 50 2 45k 19k 65k U
wine 13 3 70 30 78 V
yeast 8 10 600 200 684 V

Table 1: Used datasets. The cost is either uniform (U) or
variable (V) across features.

with only two classes, hence we report it only on those.
Separately, we train an SVM as the external classifier on

each dataset. Hyperparameters were selected using cross-
validation. This SVM is then used as the external classifier
(HPC) both in our method and AdaptGbrt. We also train a
plain neural network based classifier with the same size as
our model for each dataset and report its performance, along
with the performance of the SVM.

All algorithms include a λ-like parameter and we repeat-
edly run each of them with different settings and seeds. Fol-
lowing the methodology of Nan and Saligrama (2017), we
evaluate the runs on the validation set and select the points
making a convex hull in the cost-accuracy space. Finally,
we re-evaluate these points on the test set. The method cor-
responds to a best case scenario, but does not describe the
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Figure 5: Performance of different versions of the algorithm.

variance between different runs. We show all runs in the
miniboone dataset, along with the selected points in Figure 6.

We define a hyperparameter epoch length, that differs
across datasets, to be a number of training steps. For each
dataset, we heuristically estimate the size of the neural net-
work (NN) by training NN based classifiers with number
of neurons selected from {64, 128, 256, 512} in three layers
with ReLu activation. We choose the lowest size that per-
forms well on the task, without excess complexity. We use
automatic learning-rate scheduling and early-stopping. We
track the reward averaged over epochs on the training set and
lower the learning-rate immediately when the reward fails to
increase. Similarly, we use the average reward on the valida-
tion set and interrupt the computation if the reward fails to
increase consecutively for three epochs. We keep other hy-
perparameters the same across all experiments, and their
exact values are reported in Tables 2, 3 in the Appendix.

Discussion
Comparing the full agent (RL) to the prior-art, the RL out-
performs Adapt-Gbrt and BudgetPrune in miniboone, forest
(except for the very low cost range), cifar, mnist and cifar. On
cifar-2 and forest-2, there are ranges of costs, where another
algorithm is better, but it is a different algorithm each time.
Minding the fact that the algorithm was not specifically tuned
for each dataset, this indicates high robustness.

A notable result is that the step from linear approximation
(RL-lin) to neural networks (RL-dqn) translates into a large
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Figure 6: Different runs of our algorithm in the miniboone
dataset. Validation set was used to select the best points.
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Figure 7: Average reward during training. All versions con-
verge to a good solution, but with different speed. Miniboone,
λ = 0.01, averaged over 10 runs.

improvement of performance in all tested datasets but yeast
and wine. These two datasets are small and the linear method
works well. Because the linear approximation is a special
case of neural networks, it indicates that the results can be
improved if the architecture and hyperparameters were ad-
justed separately for each dataset. The additional extensions
of the full agent (RL) contributed mainly to the stability of
the agent, which was rendered into better performance in the
large datasets: cifar, cifar-2 and mnist (Figure 4cdh).

We further investigate the different versions of our algo-
rithm in Figure 5 and 7. We found that the there are differ-
ences in convergence speeds, which is another important
factor beside performance. Without advanced RL techniques,
RL-dqn converges slowest. With pretraining, the model is
initialized closer to an optima. Another fact is that the perfor-
mance improves continuously with progression of the train-
ing. This may be useful in non-stationary domains, where the
statistics of the domain change in time. Also, the learning
can be interrupted anytime, still providing a sensible result.

Another interesting fact is that RL-dqn and the version
without HPC perform better on the forest dataset. The situa-
tion is even more profound in the case of forest-2 (Figure 4g),
where the BudgetPrune also outperforms the SVM. We inves-
tigated the issue and found that the SVM has 0.995 accuracy
on the training set of forest-2, causing the RL agent to overfit
and rely on its HPC. To further analyze the issue, we trained
models without the external classifier (RL-nohpc) and with
a non-predictive HPC (RL-fakehpc), by preparing random
predictions for all samples (see Figure 8b). We found that the
agent without the external classifier performed better than the
agent with HPC, confirming that the agent indeed overfits.
With the case of the non-predictive HPC, it introduced some
instability into the training, but the performance is still higher
for a range of costs. The results show that including HPC
should be done with caution – the agent is able to ignore a
non-predictive classifier to some extent, but an overfit clas-
sifier can be harmful. Surprisingly, the agent without HPC
module is not constrained by the performance of the plain
neural network, indicating a good generalization ability.

In Figure 8a we summarize how many features a trained
agent requested for different samples in the miniboone
dataset. We include the HPC queries to get intuition about in
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Figure 8: (a) Histogram of number of used features across
the whole miniboone dataset, black indicates that the HPC
was queried at that point. (b) Comparison of the full agent,
an agent without HPC and a non-predictive classifier on the
forest-2 dataset. The used SVM has very low training error,
causing the RL agent to overfit. The agent is able to ignore
the fake HPC to some extent.

which cases the external classifier is used. The agent classifies
40% of all samples with under 15 features and with almost
no HPC usage. For the rest of samples, the agent queries the
HPC in about 19% cases. The histogram confirms that the
agent is classifies adaptively, requesting a different amount of
features across samples, and triggering the external classifier
on demand. With further analysis, we confirm that the agent
also requests a different set of features for different samples.

Related Work
We build upon work of Dulac-Arnold et al. (2011), which
used Q-learning with linear regression, resulting in limited
performance. We replace the linear approximation with neu-
ral networks, extend the approach with supervised pretraining
and external HPC and thoroughly compare to recent methods.

Contardo, Denoyer, and Artieres (2016) use a recurrent
neural network that uses attention to select blocks of features
and classifies after a fixed number of steps. Compared to
our work, decisions of this network are hard to explain. On
the other hand, our Q-learning based algorithm produces
semantically meaningful values for each action. Moreover,
as we use a standard algorithm, we can directly benefit from
any enhancements made by the community.

There is a plethora of tree-based algorithms (Xu, Wein-
berger, and Chapelle 2012; Kusner et al. 2014; Xu et al. 2013;
2014; Nan, Wang, and Saligrama 2015; 2016; Nan and
Saligrama 2017). Last two articles implement BudgetPrune
and AdaptGbrt algorithms, that we describe in Experiments.

A different set of algorithms employed linear programming
(LP) to this domain (Wang, Trapeznikov, and Saligrama 2014;
Wang et al. 2014). Wang et al. (2014) use LP to select a
model with the best accuracy and lowest cost, from a set of
pre-trained models, all of which use a different set of features.
The algorithm also chooses a model based on the complexity
of the sample, similarly to Adapt-Gbrt.

Wang, Trapeznikov, and Saligrama (2015) propose to re-
duce the problem by finding different disjoint subsets of
features, that are used together as macro-features. These

macro-features form a graph, which is solved with dynamic
programming. The algorithm for finding different subsets
of features is complementary to our algorithm and could be
possibly used jointly to improve performance.

Trapeznikov and Saligrama (2013) use a fixed order of
features to reveal, with increasingly complex models that can
use them. However, the order of features is not computed,
and it is assumed that it is set manually. Our algorithm is not
restricted to a fixed order of features (for each sample it can
choose a completely different subset), and it can also find
their significance automatically.

Recent work (Maliah and Shani 2018) focuses on CwCF
with misclassification costs, constructs decision trees over
attribute subsets and use their leaves to form states of an MDP.
They directly solve the MDP with value-iteration for small
datasets with number of features ranging from 4-17. On the
other hand, our method can be used to find an approximate
solution to much larger datasets. In this work, we do not
account for misclassification costs, but they could be easily
incorporated into the rewards for classification actions.

Tan (1993) analyzes a problem similar to our definition,
but algorithms introduced there require memorization of all
training examples, which is not scalable in many domains.

Conclusion
Classification with costly features (CwCF) is a sequen-
tial decision-making problem that inspired many problem-
specific solutions. While domain independent methods for
general decision-making problems, such as reinforcement
learning (RL), have been proposed as a solution, they have
not performed well in comparison to the state-of-the-art algo-
rithms specifically tailored to this problem. In light of the re-
cent progress, we revisit the RL approach and evaluate several
Deep Q-learning based algorithms. The investigation shows
that even basic Deep RL is comparable and often superior to
state-of-the-art algorithms Adapt-Gbrt (Nan and Saligrama
2017) and BudgetPrune (Nan, Wang, and Saligrama 2016).

The RL approach has a relatively low number of parame-
ters and is robust with respect to their modification, which
facilitates the deployment. It is a modular framework, al-
lowing for numerous extensions, for example the supervised
pre-training and the inclusion of an external classifier demon-
strated in this paper. RL approach can also benefit from future
advancements of Deep RL itself, which we demonstrated
by utilizing Double Q-learning, Dueling Architecture and
Retrace. Lastly, using RL for CwCF enables continual adap-
tation to changes in non-stationary environments, commonly
present in real-world problems.
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Appendix

Symbol description value

|E| no. of parallel environments 1000
γ discount-factor 1.0
Retrace-λ Retrace parameter λ 1.0
ρ target network update factor 0.1
|B| no. of steps in batch 50k
|M| no. of episodes in memory 40k
ε-start starting exploration 1.0
ε-end final exploration 0.1
η-start start greediness of policy π 0.5
η-end final greediness of policy π 0.0
εsteps length of exploration phase 2× ep len
LR-pretrain pre-training learning-rate 1× 10−3

LR-start initial learning-rate 5× 10−4

LR-min minimal learning-rate 1× 10−7

LR-scale learning-rate multiplicator 0.3

Table 2: Global parameters

Dataset hidden layer size epoch length (ep len)

mnist† 512 10k
cifar† 512 10k
cifar-2† 512 10k
forest 256 10k
forest-2 256 10k
miniboone 128 1k
wine 128 1k
yeast 128 1k

Table 3: Dataset parameters. †Specific settings are used:
|M| = 10k,LR-pretrain = 2× 10−5,LR-start = 10−5
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