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Abstract

In this work, we study the problem of learning a single model
for multiple domains. Unlike the conventional machine learn-
ing scenario where each domain can have the corresponding
model, multiple domains (i.e., applications/users) may share
the same machine learning model due to maintenance loads
in cloud computing services. For example, a digit-recognition
model should be applicable to hand-written digits, house
numbers, car plates, etc. Therefore, an ideal model for cloud
computing has to perform well at each applicable domain.
To address this new challenge from cloud computing, we de-
velop a framework of robust optimization over multiple do-
mains. In lieu of minimizing the empirical risk, we aim to
learn a model optimized to the adversarial distribution over
multiple domains. Hence, we propose to learn the model and
the adversarial distribution simultaneously with the stochastic
algorithm for efficiency. Theoretically, we analyze the con-
vergence rate for convex and non-convex models. To our best
knowledge, we first study the convergence rate of learning a
robust non-convex model with a practical algorithm. Further-
more, we demonstrate that the robustness of the framework
and the convergence rate can be further enhanced by appro-
priate regularizers over the adversarial distribution. The em-
pirical study on real-world fine-grained visual categorization
and digits recognition tasks verifies the effectiveness and ef-
ficiency of the proposed framework.

Introduction
Learning a single model for multiple domains becomes a
fundamental problem in machine learning and has found ap-
plications in cloud computing services. Cloud computing
witnessed the development of machine learning in recent
years. Apparently, users of these cloud computing services
can benefit from sophisticated models provided by service
carrier, e.g., Aliyun. However, the robustness of deployed
models becomes a challenge due to the explosive popular-
ity of the cloud computing services. Specifically, to main-
tain the scalability of the cloud computing service, only a
single model will exist in the cloud for the same problem
from different domains. For example, given a model for dig-
its recognition in cloud, some users may call it to identify
the handwritten digits while others may try to recognize the
printed digits (e.g., house number).
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Figure 1: Illustration of optimizing over multiple domains.
In this example, a digit-recognition model provided by cloud
service carrier should be applicable for multiple domains,
e.g., handwritten digits, printed digits.

A satisfied model has to deal with both domains (i.e.,
handwritten digits, printed digits) well in the modern ar-
chitecture of cloud computing services. This problem is il-
lustrated in Fig. 1. Note that the problem is different from
multi-task learning (Zhang and Yang 2017) that aims to
learn different models (i.e., multiple models) for different
tasks by exploiting the shared information between related
tasks.

In a conventional learning procedure, an algorithm may
mix the data from multiple domains by assigning an ad-
hoc weight for each example, and then learn a model ac-
cordingly. The weight is pre-defined and can be uniform for
each example, which is known as empirical risk minimiza-
tion (ERM). Explicitly, the learned model can handle cer-
tain domains well but perform arbitrarily poor on the others.
The unsatisfied performance in certain domains will result in
business interruption from users. Moreover, assigning even
weights for all examples can suffer from the data imbalance
problem when the examples from certain domains dominate.

Recently, distributionally robust optimization has at-
tracted much attention (Chen et al. 2017; Namkoong and
Duchi 2016; Shalev-Shwartz and Wexler 2016). Unlike the
conventional strategy with the uniform distribution, it aims
to optimize the performance of the model in the worst case
distribution over examples. The learned model is explicitly
more robust by focusing on the hard examples. To learn
a robust model, many existing work apply the convex loss
functions, while the state-of-the-art performance for several
important practical problems are reported from the meth-
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ods with non-convex loss functions, e.g, deep neural net-
works (He et al. 2016; Krizhevsky, Sutskever, and Hinton
2012; Szegedy et al. 2015). (Chen et al. 2017) proposed an
algorithm to solve the non-convex problem, but their anal-
ysis relies on a near-optimal oracle for the non-convex sub-
problem, which is not feasible for most non-convex prob-
lems in real tasks. Besides, their algorithm has to go through
the whole data set at least once to update the parameters at
every iteration, which makes it too expensive for the large-
scale data set.

In this work, we propose a framework to learn a ro-
bust model over multiple domains rather than examples. By
learning the model and the adversarial distribution simulta-
neously, the algorithm can balance the performance between
different domains adaptively. Compared with the previous
work, the empirical data distribution in each domain remains
unchanged and our framework only learns the distribution
over multiple domains. Therefore, the learned model will not
be potentially misled by the adversarial distribution over ex-
amples. Our framework is also comparatively efficient due
to the adoption of stochastic gradient descent (SGD) for op-
timization. More importantly, we first prove that the pro-
posed method converges with a rate of O(1/T 1/3) without
the dependency on the oracle. To further improve the ro-
bustness of the framework, we introduce a regularizer for
the adversarial distribution. We find that an appropriate reg-
ularizer not only prevents the model from a trivial solution
but also accelerates the convergence rate toO(

√
log(T )/T ).

The detailed theoretical results are summarized in Table 1.
The empirical study on pets categorization and digits recog-
nition demonstrates the effectiveness and efficiency of the
proposed method.

Table 1: Convergence rate for the non-convex model and ad-
versarial distribution (“Adv-Dist”) under different settings.

Setting Convergence
Model Adv-Dist Model Adv-Dist
Smooth Concave O( 1

T 1/3 ) O( 1
T 1/3 )

Smooth Strongly Concave O(
√

log(T )
T ) O( log(T )

T )

Related Work
Robust optimization has been extensively studied in the past
decades (Bertsimas, Brown, and Caramanis 2011). Recently,
it has been investigated to improve the performance of the
model in the worst case data distribution, which can be in-
terpreted as regularizing the variance (Duchi, Glynn, and
Namkoong 2016). For a set of convex loss functions (e.g., a
single data set), (Namkoong and Duchi 2016) and (Shalev-
Shwartz and Wexler 2016) proposed to optimize the maxi-
mal loss, which is equivalent to minimizing the loss with the
worst case distribution generated from the empirical distri-
bution of data. (Namkoong and Duchi 2016) showed that for
the f -divergence constraint, a standard stochastic mirror de-
scent algorithm can converge at the rate ofO(1/

√
T ) for the

convex loss. In (Shalev-Shwartz and Wexler 2016), the anal-
ysis indicates that minimizing the maximal loss can improve

the generalization performance. In contrast to a single data
set, we focus on dealing with multiple data sets and propose
to learn the non-convex model in this work.

To tackle non-convex losses, (Chen et al. 2017) proposed
to apply a near-optimal oracle. At each iteration, the oracle
is called to return a near-optimal model for the given dis-
tribution. After that, the adversarial distribution over exam-
ples is updated according to the model from the oracle. With
an α-optimal oracle, authors proved that the algorithm can
converge to the α-optimal solution at the rate of O(1/

√
T ),

where T is the number of iterations. The limitation is that
even if we assume a near-optimal oracle is accessible for
the non-convex problem, the algorithm is too expensive for
the real-world applications. It is because that the algorithm
has to enumerate the whole data set to update the param-
eters at each iteration. Without a near-optimal oracle, we
prove that the proposed method can converge with a rate
of O(

√
log(T )/T ) with an appropriate regularizer and the

computational cost is much cheaper.

Robust Optimization over Multiple Domains
Given K domains, we denote the data set as {S1, · · · , SK}.
For the k-th domain, Sk = {xki , yki }, xki is an example (e.g.,
an image) and yki is the corresponding label. We aim to learn
a model that performs well over all domains. It can be cast
as a robust optimization problem as follows.

min
W

ε

s.t. ∀k, fk(W ) ≤ ε
where W is the parameter of a prediction model. fk(·) is the
empirical risk of the k-th domain as

fk(W ) =
∑

i:xki ∈Sk

1

|Sk|
`(xki , y

k
i ;W )

and `(·) can be any non-negative loss function. Since the
cross entropy loss is popular in deep learning, we will adopt
it in the experiments.

The problem is equivalent to the following minimax prob-
lem

min
W

max
p:p∈∆

L(p,W ) = p>f(W ) (1)

where f(W ) = [f1(W ), · · · , fK(W )]>. p is an adversarial
distribution over multiple domains and p ∈ ∆, where ∆ is
the simplex as ∆ = {p ∈ RK |

∑K
k=1 pk = 1;∀k, pk ≥ 0}.

It is a game between the prediction model and the adver-
sarial distribution. The minimax problem can be solved in an
alternating manner, which applies gradient descent to learn
the model and gradient ascent to update the adversarial dis-
tribution. Considering the large number of examples in each
data set, we adopt SGD to observe an unbiased estimation
for the gradient at each iteration, which avoids enumerating
the whole data set. Specifically, at the t-th iteration, a mini-
batch of sizem is randomly sampled from each domain. The
loss of the mini-batch from the k-th domain is

f̂ tk(W ) =
1

m

m∑
i=1

`(x̂ki:t, ŷ
k
i:t;W )
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It is apparent that E[f̂ tk(W )] = fk(W ) and E[∇f̂ tk(W )] =
∇fk(W ).

Algorithm 1 Stochastic Algorithm for Robust Optimization

Input: Data set {S1, · · · , SK}, size of mini-batch m,
step-sizes ηw, ηp
Initialize p1 = [1/K, · · · , 1/K]
for t = 1 to T do

Randomly sample m examples from each domain
Update Wt+1 as in Eqn. 2
Update pt+1 as in Eqn. 3

end for
return W = 1

T

∑
tWt, p̄ = 1

T

∑
t pt

After sampling, we first update the model by gradient de-
scent as
Wt+1 = Wt − ηwĝt; where ĝt =

∑
k

ptk∇f̂ tk(Wt) (2)

Then, the distribution p is updated in an adversarial way.
Since p is from the simplex, we can adopt multiplicative
updating criterion (Arora, Hazan, and Kale 2012) to update
it as

pkt+1 =
pkt exp(ηpf̂

t
k(Wt))

Zt
;

where Zt =
∑
k

pkt exp(ηpf̂
t
k(Wt)) (3)

Alg. 1 summarizes the main steps of the approach. For
the convex loss functions, the convergence rate is well
known (Nemirovski et al. 2009) and we provide a high prob-
ability bound for completeness. All detailed proofs of this
work can be found in the supplementary.
Lemma 1. Assume the gradient ofW and the function value
are bounded as ∀t, ‖∇f̂ tk(Wt)‖F ≤ σ, ‖f̂ t(Wt)‖2 ≤ γ and
∀W, ‖W‖F ≤ R. Let (W, p̄) denote the results returned
by Alg. 1 after T iterations. Set the step-sizes as ηw = R

σ
√
T

and ηp =
2
√

2 log(K)

γ
√
T

. Then, with a probability 1 − δ, we
have

max
p
L(p,W )−min

W
L(p̄,W ) ≤ c1√

T
+

2c2
√

log(2/δ)√
T

where c1 = O(
√

log(K)) and c2 is a constant.
Lemma 1 shows that the proposed method with the con-

vex loss can converge to the saddle point at the rate of
O(1/

√
T ) with high probability, which is a stronger result

than the expectation bound in (Namkoong and Duchi 2016).

Note that setting ηw = O( 1√
T

) and ηp = O(
√

log(K)
T ) will

not change the order of the convergence rate, which means
σ, γ and R are not required for implementation.

Non-convexity
Despite the extensive studies about the convex loss, there is
little research about the minimax problem with non-convex
loss. To provide the convergence rate for the non-convex
problem, we first have the following lemma.

Lemma 2. With the same assumptions as in Lemma 1, if `(·)
is non-convex but L-smoothness, we have∑

t

E[‖∇WtL(pt,Wt)‖2F ] ≤
L(p0,W0)

ηw
+
ηpTγ2

2ηw
+
TLηwσ2

2∑
t

E[L(pt,Wt)] ≥ max
p∈∆

∑
t

E[L(p,Wt)]− (
log(K)

ηp
+
Tηpγ2

8
)

Since the loss is non-convex, the convergence is measured
by the norm of the gradient (i.e., stationary point), which is
a standard criterion for the analysis in the non-convex prob-
lem (Ghadimi and Lan 2013). Lemma 2 indicates that W
can converge to a stationary point where pt is a qualified
adversary by setting the step-sizes elaborately. Furthermore,
it demonstrates that the convergence rate of W will be influ-
enced by the convergence rate of p via ηp.

With Lemma 2, we have the convergence analysis of the
non-convex minimax problem as follows.
Theorem 1. With the same assumptions as in Lemma 2, if

we set the step-sizes as ηw =

√
2γ
√

2 log(K)

σ
√
L

T−1/3 and ηp =

2
√

2 log(K)

γ T−2/3, we have

E[
1

T

∑
t

‖∇Wt
L(pt,Wt)‖2F ]

≤ (
L(p0,W0)√
2γ

√
2 log(K)

+

√
2γ

√
2 log(K))σ

√
LT−1/3

E[
1

T

∑
t

L(pt,Wt)]

≥ E[max
p∈∆

1

T

∑
t

L(p,Wt)]−
γ
√

log(K)√
2

T−1/3

Remark Compared with the convex case in Lemma 1, the
convergence rate of a non-convex problem is degraded from
O(1/

√
T ) to O(1/T 1/3). It is well known that the conver-

gence rate of general minimization problems with a smooth
non-convex loss can be up to O(1/

√
T ) (Ghadimi and Lan

2013). Our results further demonstrate that minimax prob-
lems with non-convex loss is usually harder than non-convex
minimization problems.

Different step-sizes can lead to different convergence
rates. For example, if the step-size for updating p is in-
creased as ηp = 1/

√
T and that for model is decreased as

ηw = 1/T 1/4, the convergence rate of p can be accelerated
toO(1/

√
T ) while the convergence rate of W will degener-

ate toO(1/T 1/4). Therefore, if a sufficiently small step-size
is applicable for p, the convergence rate of W can be sig-
nificantly improved. We exploit this observation to enhance
the convergence rate in the next subsection.

Regularized Non-convex Optimization
A critical problem in minimax optimization is that the for-
mulation is very sensitive to the outlier. For example, if there
is a domain with significantly worse performance than oth-
ers, it will dominate the learning procedure according to
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Eqn. 1 (i.e., one-hot value in p). Besides the issue of ro-
bustness, it is prevalent in real-world applications that the
importance of domains is different according to their bud-
gets, popularity, etc. Incorporating the side information into
the formulation is essential for the success in practice. Given
a prior distribution, the problem can be written as

min
W

max
p:p∈∆

p>f(W )

s.t. D(p||q) ≤ τ
where q is the prior distribution which can be a distribution
defined from the side information or a uniform distribution
for robustness. D(·) defines the distance between two distri-
butions, e.g., Lp distance or KL-divergence

DL2
(p||q) = ‖p− q‖22; DKL(p||q) =

∑
k

pk log(pk/qk)

Since KL-divergence cannot handle the prior distribution
with zero elements, optimal transportation (OT) distance be-
comes popular recently to overcome the drawback

DOT(p||q) = min
P∈U(p,q)

〈P,M〉

For computational efficiency, we use the version with an en-
tropy regularizer (Cuturi 2013) and we have
Proposition 1. Define the OT regularizer as

DOT(p||q) = max
α,β

min
P

1

ν

∑
i,j

Pi,j log(P (i, j))

+Pi,jMi,j + α>(P1K − p) + β>(P1K − q) (4)

and it is convex in p.
According to the duality theory (Boyd and Vandenberghe

2004), for each τ , we can have the equivalent problem with
a specified λ

min
W

max
p:p∈∆

L̂(p,W ) = p>f(W )− λ

2
D(p||q) (5)

Compared with the formulation in Eqn. 1, we introduce a
regularizer for the adversarial distribution.

If D(p||q) is convex in p, the similar convergence as
in Theorem. 1 can be obtained with the same analysis.
Moreover, according to the research for SGD, the strongly
convexity is the key to achieve the optimal convergence
rate (Rakhlin, Shamir, and Sridharan 2012). Hence, we
adopt a strongly convex regularizer i.e., L2 regularizer, for
the distribution. The convergence rate for other strongly con-
vex regularizers can be obtained with a similar analysis by
defining the smoothness and the strongly convexity with the
corresponding norm.

Equipped with the L2 regularizer, the problem in Eqn. 5
can be solved with projected first-order algorithm. We adopt
the projected gradient ascent to update the adversarial distri-
bution as

pt+1 = P∆(pt + ηtpĥ
t); where ĥt = f̂ t − λ(pt − q)

P∆(p) projects the vector p onto the simplex. The projec-
tion algorithm can be found in (Duchi et al. 2008) which is
based on K.K.T. condition. We also provide the gradient of
OT regularizer in the supplementary.

Since the regularizer (i.e., −L2) is strongly concave, the
convergence of p can be accelerated dramatically, which
leads to a better convergence rate for the minimax problem.
The theoretical result is as follows.
Theorem 2. With the same assumptions as in Theorem 1,
if we assume ∀t, ‖ĥt‖2 ≤ µ and set step-sizes as ηw =
2µ
√

log(T )

σ
√
λLT

and ηtp = 1
λt , we have

E[
1

T

∑
t

‖∇Wt L̂(pt,Wt)‖2F ]

≤

(
L(p0,W0)σ

√
λL

2µ
√

log(T )
+
µπ2σ

√
λL

12
+ 2µσ

√
λL log(T )

)
1
√
T

E[
1

T

∑
t

L̂(pt,Wt)] ≥ E[max
p∈∆

1

T

∑
t

L̂(p,Wt)]−
µ2 log(T )

λT

Remark With the strongly concave regularizer, it is not
surprise to obtain the O(log(T )/T ) convergence rate for p.
As we discussed in Lemma 2, a fast convergence rate of p
can improve that of W . In Theorem 2, the convergence rate
of W is improved from O(1/T 1/3) to O(

√
log(T )/T ). It

shows that the applied regularizer not only improves the ro-
bustness of the proposed framework but also accelerates the
learning procedure.

Moreover, the step-size for the adversarial distribution
provides a trade-off between the bias and variance of the
gradient. Therefore, the convergence rate can be further im-
proved by reducing the variance. We shrink the gradient with
a factor c and update the distribution as

pt+1 = P∆(pt +
ηtp

1 + c/t
ĥt)

When taking ηtp = 1
λt , the update becomes

pt+1 = P∆(pt +
1

λ(t+ c)
ĥt) (6)

With a similar analysis as Theorem 2, we have
Theorem 3. With the same assumptions as in Theorem 2, if
we set the step-size ηtp = 1

λ(t+c) , we have

E[
1

T

∑
t

L̂(pt,Wt)]

≥ E[max
p∈∆

1

T

∑
t

L̂(p,Wt)]− (λc+
µ2

2λ
ln(

T

c
+ 1) +

µ2

2λ
)
1

T

It shows that the constant c can control the trade-off be-
tween bias (i.e., λc) and variance (i.e., µ2

2λ ln(Tc + 1)). By
setting the constant appropriately, we can have the follow-
ing corollary

Corollary 1. When setting c = µ2

λ2(1+
√

1+ 2µ2

λ2T
)
, the RHS in

Theorem 3 is maximum.
The optimality is from the fact that RHS is concave in c

and detailed discussion can be found in the supplementary.
The algorithm for robust optimization with the regularizer

is summarized in Alg. 2.
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Algorithm 2 Stochastic Regularized Robust Optimization

Input: Data set {S1, · · · , SK}, size of mini-batch m,
step-sizes ηw, ηp
Initialize p1 = [1/K, · · · , 1/K]
Compute the constant c as in Corollary 1
for t = 1 to T do

Randomly sample m examples from each domain
Update Wt+1 with gradient descnet
(Optional) Solve the problem in Eqn. 4 if applying
DOT(pt||q)
Update pt+1 with gradient ascent
Project pt+1 onto the simplex

end for

Trade Efficiency for Convergence
In this subsection, we study if we can recover the optimal
convergence rate for the general non-convex problem as in
(Ghadimi and Lan 2013). Note that (Chen et al. 2017) ap-
plies a near-optimal oracle to achieve the O(1/

√
T ) con-

vergence rate. Given a distribution, it is hard to observe
an oracle for the non-convex model. In contrast, obtaining
the near-optimal adversarial distribution with a fixed model
is feasible. For the original problem in Eqn. 1, the solu-
tion is trivial as returning the index of the domain with the
largest empirical loss. For the problem with the regularizer
in Eqn. 5, the near-optimal p can be obtained efficiently
by any first order methods (Boyd and Vandenberghe 2004).
Therefore, we can change the updating criterion for the dis-
tribution at the t-th iteration to

Obtain pt+1 such that ‖pt+1 − p∗t+1‖1 ≤ ξt+1

where p∗t+1 = arg max
p:p∈∆

L(p,Wt) (7)

With the new updating criterion and letting F(W ) =
maxp L(p,W ), we can have a better convergence rate as
follows.

Theorem 4. With the same assumptions as in Theorem 1,
if we update p as in Eqn. 7, where ξt = 1√

t
, and set the

step-size as ηw =
√

2
σ
√
LT

, we have

∑
t

E[
1

T
‖∇F(Wt)‖2F ] ≤ (F(W0) + 1)

√
Lσ√
2T

+
2σ2

√
T

For the problem in Eqn. 1, ξt can be 0 by a single pass
through the whole data set. It shows that with an expen-
sive but feasible operator as in Eqn. 7, the proposed method
can recover the optimal convergence rate for the non-convex
problem.

Experiments
We conduct the experiments on training deep neural net-
works over multiple domains. The methods in the compari-
son are summarized as follows.

• Individual: It learns the model from an individual do-
main.

• MixtureEven: It learns the model from multiple domains
with even weights, which is equivalent to fixing p as an
uniform distribution.

• MixtureOpt: It implements the approach proposed in
Alg. 2 that learns the model and the adversarial distribu-
tion over multiple domains simultaneously.

We adopt the popular cross entropy loss as the loss func-
tion `(·) in this work. Deep models are trained with SGD
and the size of each mini-batch is set to 200. For the meth-
ods learning with multiple domains, the number of exam-
ples from different domains are the same in a mini-batch
and the size is m = 200/K. Compared with the strat-
egy that samples examples according to the learned dis-
tribution, the applied strategy is deterministic and will not
introduce extra noise. The method is evaluated by inves-
tigating the worst case performance among multiple do-
mains. For the worst case accuracy, it is defined as Accw =
mink{Acc1, · · · ,AccK}. The worst case loss is defined as
fw(W ) = maxk{f1(W ), · · · , fK(W )}. All experiments
are implemented on an NVIDIA Tesla P100 GPU.

Pets Categorization
First, we compare the methods on a fine-grained vi-
sual categorization task. Given the data sets of VGG
cats&dogs (Parkhi et al. 2012) and ImageNet (Russakovsky
et al. 2015), we extract the shared labels between them and
then generate the subsets with desired labels from them,
respectively. The resulting data set consists of 24 classes
and the task is to assign the image of pets to one of these
classes. For ImageNet, each class contains about 1, 200 im-
ages for training while that of VGG only has 100 images.
Therefore, we apply data augmentation by flipping (hori-
zontal+vertical) and rotating ({45◦, · · · , 315◦}) for VGG to
avoid overfitting. After that, the number of images in VGG
is similar to that of ImageNet. Some exemplar images from
these data sets are illustrated in Fig. 3. We can find that the
task in ImageNet is more challenging than that in VGG due
to complex backgrounds.

We adopt ResNet18 (He et al. 2016) as the base model in
this experiment. It is initialized with the parameters learned
from ILSVRC2012 (Russakovsky et al. 2015) and we set
the learning rate as ηw = 0.005 for fine-tuning. Consider-
ing the small size of data sets, we also include the method
of (Chen et al. 2017) in comparison and it is denoted as
MixtureOracle. Since the near-optimal oracle is infeasible
for MixtureOracle, we apply the model with 100 SGD iter-
ations instead as suggested in (Chen et al. 2017). The prior
distribution in the regularizer is set to the uniform distribu-
tion.

Fig. 2 summarizes the worst case training loss among
multiple domains for the methods in the comparison. Since
the performance of models learned from multiple domains is
significantly better than those learned from an individual set,
we illustrate the results in separate figures. Fig. 2 (a) com-
pares the proposed method to those with the individual data
set. It is evident that the proposed method has the superior
performance and learning with an individual domain cannot
handle the data from other domains well. Fig. 2 (b) shows
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(a) Pets Categorization
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(c) Digits Recognition
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Figure 2: Illustration of worst case training loss.

Table 2: Comparison on pets categorization. We report the loss and accuracy (%) on each data set.

Methods ImageNet VGG AccTrw AccTewLossTr AccTr AccTe LossTr AccTr AccTe

IndividualImageNet 0.07 98.95 89.92 0.85 74.56 80.44 74.56 80.44
IndividualVGG 0.90 75.47 77.92 0.02 100.00 86.85 75.47 77.92
MixtureEven 0.17 95.56 88.50 0.05 99.58 89.85 95.56 88.50

MixtureOracle 0.15 96.04 88.92 0.06 99.41 89.99 96.04 88.92
MixtureOpt 0.12 97.36 89.42 0.11 97.72 89.35 97.36 89.35

VGG

ImageNet

Figure 3: Exemplar images from ImageNet and VGG.
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Figure 4: Comparison of discrepancy in losses.
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Figure 5: Comparison of running time.

the results of the methods learning with multiple data sets.
First, we find that both MixtureOracle and MixtureOpt can
achieve the lower worst case loss than MixtureEven, which
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(a) σ ∈ {0, 4, 8, 12}
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(b) σ ∈ {0, 10, 20, 30}

Figure 6: Illustration of best and worst training loss on Ima-
geNet with Gaussian noise N (0, σ2).

confirms the effectiveness of the robust optimization. Sec-
ond, MixtureOpt performs best among all of these methods
and it demonstrates that the proposed method can optimize
the performance over the adversarial distribution. To inves-
tigate the discrepancy between the performances on two do-
mains, we illustrate the result in Fig. 4. The discrepancy is
measured by the difference between the empirical loss as
fImageNet − fVGG. We can find that fImageNet is smaller
than fVGG at the beginning but fVGG decreases faster than
fImageNet. It is because the model is initialized with the
parameters pre-trained on ImageNet. However, the task in
VGG is easier than that in ImageNet, and fVGG drops faster
after a few iterations. Compared with the benchmark meth-
ods, the discrepancy from the proposed method is an order of
magnitude better throughout the learning procedure. It ver-
ifies the robustness of MixtureOpt and also shows that the
proposed method can handle the drifting between multiple
domains well. Finally, to compare the performance explic-
itly, we include the detailed results in Table 2. Compared
with the MixtureEven, we observe that MixtureOpt can pay
more attention to ImageNet than VGG and trade the perfor-
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Figure 7: Illustration of the influence of the regularizer.

Table 3: Comparison on digits recognition.

Methods MNIST SVHN AccTrw AccTewLossTr AccTr AccTe LossTr AccTr AccTe

IndividualMNIST 0.001 100.00 98.81 4.01 30.80 29.58 30.80 29.58
IndividualSVHN 1.91 66.66 68.25 0.10 97.11 91.84 66.66 68.25
MixtureEven 0.001 100.00 98.74 0.14 96.20 91.33 96.20 91.33
MixtureOpt 0.03 99.03 98.13 0.11 97.05 92.14 97.05 92.14

mance between them.
To further demonstrate that MixtureOpt can trade the per-

formance effectively, we conduct the experiments with noisy
data. We simulate each individual domain by adding the ran-
dom Gaussian noise from N (0, σ2) to each pixel of the im-
ages from ImageNet pets. We vary the variance to generate
the different domains and obtain two tasks where each has
four domains with σ ∈ {0, 4, 8, 12} and σ ∈ {0, 10, 20, 30},
respectively. Fig. 6 compares the gap between the best and
worst performance on different domains for MixtureEven

and MixtureOpt. First, we can find that the proposed method
improves the worst-case performance significantly while
keeping the best performance almost the same. Besides, do-
mains can achieve the similar performance for the simple
task with variance in {0, 4, 8, 12}. For the hard task that in-
cludes an extreme domain with noise from N (0, 302), the
best performance is not sacrificed much due to the appropri-
ate regularizer in MixtureOpt.

After the comparison of performance, we illustrate the in-
fluence of the parameter λ in Fig. 7. The parameter can be
found in Eqn. 5 and it constrains the distance of the adversar-
ial distribution to the prior distribution. Besides the L2 regu-
larizer applied in MixtureOpt, we also include the results of
the OT regularizer defined in Proposition 1 and the method
is denoted as MixtureOT. Fig. 7 (a) and (c) compare the dis-
crepancy between the losses as in previous experiments. It is
obvious that the smaller the λ, the smaller the gap between
two domains. Fig. 7 (b) and (d) summarize the drifting in
a distribution, which is defined as pImageNet − pVGG. Evi-
dently, the learned adversarial distribution can switch adap-
tively according to the performance of the current model and
the importance of multiple domains can be constrained well
by setting λ appropriately.

Finally, we compare the running time in Fig. 5. Due
to the lightweight update for the adversarial distribution,
MixtureOpt and MixtureOT have almost the same running

time as MixtureEven. MixtureOracle has to enumerate the
whole data set after each 100 SGD iterations to update the
current distribution, hence, its running time with only 50
complete iterations is nearly 3 times slower than the pro-
posed method with 5, 000 iterations on these small data sets.

Digits Recognition

In this experiment, we examine the methods on the task
of digits recognition, which is to identify 10 digits (i.e.,
0-9) from images. There are two benchmark data sets for
the task: MNIST and SVHN. MNIST (LeCun et al. 1998)
is collected for recognizing handwritten digits. It contains
60, 000 images for training and 10, 000 images for test.
SVHN (Netzer et al. 2011) is for identifying the house num-
bers from Google Street View images, which consists of
604, 388 training images and 26, 032 test images. Note that
the examples in MNIST are 28×28 gray images while those
in SVHN are 32 × 32 color images. To make the format
consistent, we resize images in MNIST to be 32 × 32 and
repeat the gray channel in RGB channels to generate the
color images. Considering the task is more straightforward
than pets categorization, we apply the AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) as the base model in this ex-
periment and set the learning rate as ηw = 0.01. With a
different deep model, we also demonstrate that the proposed
framework can incorporate with various deep models.

Fig. 2 (c) and (d) show the comparison of the worst case
training loss and Table 3 summarizes the detailed results. We
can observe the similar conclusion as the experiments on
pets categorization. MixtureEven can achieve good perfor-
mance on these simple domains while the proposed method
can further improve the worst case performance and provide
a more reliable model for multiple domains.
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Conclusion
In this work, we propose a framework to learn a robust
model over multiple domains, which is essential for the ser-
vice of cloud computing. The introduced algorithm can learn
the model and the adversarial distribution simultaneously,
for which we provide a theoretical guarantee on the conver-
gence rate. The empirical study on real-world applications
confirms that the proposed method can obtain a robust non-
convex model. In the future, we plan to examine the per-
formance of the method with more applications. Besides,
extending the framework to multiple domains with partial
overlapped labels is also important for real-world applica-
tions.
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