The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Regularized Evolution for Image Classifier Architecture Search

Esteban Real,” Alok Aggarwal, Yanping Huang, Quoc V. Le
Google Brain, Mountain View, California, USA
Correspondence to E. Real at ereal @google.com

Abstract

The effort devoted to hand-crafting neural network image
classifiers has motivated the use of architecture search to dis-
cover them automatically. Although evolutionary algorithms
have been repeatedly applied to neural network topologies,
the image classifiers thus discovered have remained inferior
to human-crafted ones. Here, we evolve an image classifier—
AmoebaNet-A—that surpasses hand-designs for the first time.
To do this, we modify the tournament selection evolution-
ary algorithm by introducing an age property to favor the
younger genotypes. Matching size, AmoebaNet-A has com-
parable accuracy to current state-of-the-art ImageNet models
discovered with more complex architecture-search methods.
Scaled to larger size, AmoebaNet-A sets a new state-of-the-
art 83.9% top-1/96.6% top-5 ImageNet accuracy. In a con-
trolled comparison against a well known reinforcement learn-
ing algorithm, we give evidence that evolution can obtain re-
sults faster with the same hardware, especially at the earlier
stages of the search. This is relevant when fewer compute re-
sources are available. Evolution is, thus, a simple method to
effectively discover high-quality architectures.

Introduction

Until recently, most state-of-the-art image classifier archi-
tectures have been manually designed by human experts
(Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al.
2015; He et al. 2016; Huang et al. 2017; Hu, Shen, and Sun
2018). To speed up the process, researchers have looked into
automated methods (Baker et al. 2017a; Zoph and Le 2016;
Miikkulainen et al. 2017; Real et al. 2017; Xie and Yuille
2017; Suganuma, Shirakawa, and Nagao 2017; Liu et al.
2018a; Pham et al. 2018). These methods are now col-
lectively known as architecture-search algorithms. A tra-
ditional approach is neuro-evolution of topologies (Miller,
Todd, and Hegde 1989; Angeline, Saunders, and Pollack
1994; Stanley and Miikkulainen 2002). Improved hardware
now allows scaling up evolution to produce high-quality
image classifiers (Real et al. 2017; Xie and Yuille 2017;
Liu et al. 2018b). Yet, the architectures produced by evolu-
tionary algorithms / genetic programming have not reached
the accuracy of those directly designed by human experts.
Here we evolve image classifiers that surpass hand-designs.
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To do this, we make two additions to the standard evo-
lutionary process. First, we propose a change to the well-
established fournament selection evolutionary algorithm
(Goldberg and Deb 1991) that we refer to as aging evo-
lution or regularized evolution. Whereas in tournament se-
lection, the best genotypes (architectures) are kept, we pro-
pose to associate each genotype with an age, and bias the
tournament selection to choose the younger genotypes. We
will show that this change turns out to make a difference.
The connection to regularization will be clarified in the Dis-
cussion section. Second, we implement the simplest set of
mutations that would allow evolving in the NASNet search
space (Zoph et al. 2018). This search space associates con-
volutional neural network architectures with small directed
graphs in which vertices represent hidden states and labeled
edges represent common network operations (such as con-
volutions or pooling layers). Our mutation rules only alter
architectures by randomly reconnecting the origin of edges
to different vertices and by randomly relabeling the edges,
covering the full search space.

Searching in the NASNet space allows a controlled com-
parison between evolution and the original method for
which the space was designed, reinforcement learning (RL).
Thus, this paper presents the first comparative case study
of architecture-search algorithms for the image classifica-
tion task. Within this case study, we will demonstrate that
evolution can attain similar results with a simpler method,
as will be shown in the Discussion section. In particular, we
will highlight that in all our experiments evolution searched
faster than RL and random search, especially at the earlier
stages, which is important when experiments cannot be run
for long times due to compute resource limitations.

Despite its simplicity, our approach works well in our
benchmark against RL. It also evolved a high-quality model,
which we name AmoebaNet-A. This model is competitive
with the best image classifiers obtained by any other algo-
rithm today at similar sizes (82.8% top-1/96.1% top-5 Im-
ageNet accuracy). When scaled up, it sets a new state-of-
the-art accuracy (83.9% top-1 / 96.6% top-5 ImageNet ac-
curacy).

Related Work

Review papers provide informative surveys of earlier (Yao
1999; Floreano, Diirr, and Mattiussi 2008) and more recent



(Elsken, Metzen, and Hutter 2018) literature on image clas-
sifier architecture search, including successful RL studies
(Zoph and Le 2016; Baker et al. 2017a; Zoph et al. 2018;
Liu et al. 2018a; Zhong, Yan, and Liu 2018; Cai et al. 2018)
and evolutionary studies like those mentioned in the Intro-
duction. Other methods have also been applied: cascade-
correlation (Fahlman and Lebiere 1990), boosting (Cortes et
al. 2017), hill-climbing (Elsken, Metzen, and Hutter 2017),
MCTS (Negrinho and Gordon 2017), SMBO (Mendoza et
al. 2016; Liu et al. 2018a), and random search (Bergstra and
Bengio 2012), and grid search (Zagoruyko and Komodakis
2016). Some methods even forewent the idea of independent
architectures (Saxena and Verbeek 2016). There is much
architecture-search work beyond image classification too,
but that is outside our scope.

Even though some methods stand out due to their effi-
ciency (Suganuma, Shirakawa, and Nagao 2017; Pham et
al. 2018), many approaches use large amounts of resources.
Several recent papers reduced the compute cost through
progressive-complexity search stages (Liu et al. 2018a), hy-
pernets (Brock et al. 2018), accuracy prediction (Baker et al.
2017b; Klein et al. 2017; Domhan, Springenberg, and Hutter
2017), warm-starting and ensembling (Feurer et al. 2015),
parallelization, reward shaping and early stopping (Zhong,
Yan, and Liu 2018) or Net2Net transformations (Cai et al.
2018). Most of these methods could in principle be applied
to evolution too, but this is beyond the scope of this paper.

A popular approach to evolution has been through gen-
erational algorithms, e.g. NEAT (Stanley and Miikkulainen
2002). In these, all models in the population must finish
training before the next generation is computed. Genera-
tional evolution becomes inefficient in a distributed environ-
ment where a different machine is used to train each model:
machines that train faster models finish earlier and must wait
idle until all machines are ready. Real-time algorithms ad-
dress this issue, e.g. rtNEAT (Stanley, Bryant, and Miikku-
lainen 2005) and tournament selection (Goldberg and Deb
1991). Unlike the generational algorithms, however, these
discard models according to their performance or do not dis-
card them at all, resulting in models that remain alive in the
population for a long time—even for the whole experiment.
We will present evidence that the finite lifetimes of aging
evolution can give better results than direct tournament se-
lection, while retaining its efficiency.

An existing paper (Hornby 2006) uses a concept of age
but in a very different way than we do. In that paper, age
is assigned to genes to divide a constant-size population
into groups called age-layers. Each layer contains individ-
uals with genes of similar ages. Only after the genes have
survived a certain age-gap, they can make it to the next
layer. The goal is to restrict competition (the newly intro-
duced genes cannot be immediately out-competed by highly
selected older ones). Their algorithm requires the introduc-
tion of two additional meta-parameters (size of the age-gap
and number of age-layers). In contrast, in our algorithm, an
age is assigned to the individuals (not the genes) and is only
used to track which is the oldest individual in the popula-
tion. This permits removing such oldest individual at each
cycle (keeping a constant population size). Our approach,
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therefore, is in line with our goal of keeping the method as
simple as possible. In particular, our method remains simi-
lar to nature (where the young are less likely to die than the
very old) and it requires no additional meta-parameters.

Methods

This section contains a readable description of the methods.
The Methods Details section gives additional information.

Search Space

All experiments use the NASNet search space (Zoph et al.
2018). This is a space of image classifiers, all of which have
the fixed outer structure indicated in Figure 1 (left): a feed-
forward stack of Inception-like modules called cells. Each
cell receives a direct input from the previous cell (as de-
picted) and a skip input from the cell before it (Figure 1,
right). The cells in the stack are of two types: the normal
cell and the reduction cell. All normal cells are constrained
to have the same architecture, as are reduction cells, but the
architecture of the normal cells is independent of that of the
reduction cells. Other than this, the only difference between
them is that every application of the reduction cell is fol-
lowed by a stride of 2 that reduces the image size, whereas
normal cells preserve the image size. As can be seen in the
figure, normal cells are arranged in three stacks of N cells.
The goal of the architecture-search process is to discover the
architectures of the normal and reduction cells.

Softmax
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Normal Cell
Reduction Cel

Normal Cell
Normal Cell | x!

Normal Cell
Reduction Cel

Normal Cell

i

Normal Cell | x !

Input Image

Figure 1: NASNet Search Space outer structure (Zoph et al.
2018). LEFT: the full outer structure, omitting skip inputs
for clarity. RIGHT: detailed view with the skip inputs.

As depicted in Figure 1 (right) and Figure 2, each cell
has two input activation tensors and one output. The very
first cell takes two copies of the input image. After that, the
inputs are the outputs of the previous two cells.

Both normal and reduction cells must conform to the fol-
lowing construction. The two cell input tensors are con-
sidered hidden states “0” and “1”. More hidden states are
then constructed through pairwise combinations. A pairwise
combination is depicted in Figure 2 (inside dashed circle).
It consists in applying an operation (or op) to an existing



Figure 2: NASNet Search Space cell structure (Zoph et al.
2018). Example of a cell. Dotted line demarcates a pairwise
combination.

hidden state, applying another op to another existing hidden
state, and adding the results to produce a new hidden state.
Ops belong to a fixed set of common convnet operations
such as convolutions and pooling layers. Repeating hidden
states or operations within a combination is permitted. In the
cell example of Figure 2, the first pairwise combination ap-
plies a 3x3 average pool op to hidden state 0 and a 3x3 max
pool op to hidden state 1, in order to produce hidden state 2.
The next pairwise combination can now choose from hidden
states 0, 1, and 2 to produce hidden state 3 (chose 0 and 1
in Figure 2), and so on. After exactly five pairwise combina-
tions, any hidden states that remain unused (hidden states 5
and 6 in Figure 2) are concatenated to form the output of the
cell (hidden state 7).

A given architecture is fully specified by the five pairwise
combinations that make up the normal cell and the five that
make up the reduction cell. Once the architecture is speci-
fied, the model still has two free parameters that can be used
to alter its size (and its accuracy): the number of normal cells
per stack (N) and the number of output filters of the convo-
lution ops (F). N and F are determined manually.

Evolutionary Algorithm

The evolutionary method we used is summarized in Algo-
rithm 1. It keeps a population of P trained models through-
out the experiment. The population is initialized with models
with random architectures (“while |population|” in Algo-
rithm 1). All architectures that conform to the search space
described are possible and equally likely.

After this, evolution improves the initial population in cy-
cles (“while |history|” in Algorithm 1). At each cycle, it
samples S random models from the population, each drawn
uniformly at random with replacement. The model with the
highest validation fitness within this sample is selected as the
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Algorithm 1 Aging Evolution (i.e. Regularized Evolution)

population < empty queue
history < @ > Will contain all models.
while [population| < P do > Initialize population.
model.arch <~ RANDOMARCHITECTURE()
model.accuracy < TRAINANDEVAL(model.arch)
add model to right of population
add model to history
end while
while |history| < C do
sample < &
while |sample| < S do
candidate < random element from population
> The element stays in the population.
add candidate to sample
end while
parent < highest-accuracy model in sample
child.arch < MUTATE(parent.arch)
child.accuracy < TRAINANDEVAL(child.arch)
add child to right of population
add child to history
remove dead from left of population
discard dead
end while
return highest-accuracy model in history

> The population.

> Evolve for C cycles.
> Parent candidates.

> Oldest.

parent. A new architecture, called the child, is constructed
from the parent by the application of a transformation called
a mutation. A mutation causes a simple and random modi-
fication of the architecture and is described in detail below.
Once the child architecture is constructed, it is then trained,
evaluated, and added to the population. This process is called
tournament selection (Goldberg and Deb 1991).

It is common in tournament selection to keep the popu-
lation size fixed at the initial value P. This is often accom-
plished with an additional step within each cycle: discarding
(or killing) the worst model in the random S-sample. We will
refer to this approach as non-aging evolution. In contrast,
in this paper we prefer a novel approach: killing the oldest
model in the population—that is, removing from the popu-
lation the model that was trained the earliest (“remove dead
from left of pop” in Algorithm 1). This favors the newer
models in the population. We will refer to this approach as
aging evolution. In the context of architecture search, aging
evolution allows us to explore the search space more, instead
of zooming in on good models too early, as non-aging evo-
lution would (see Discussion section for details).

In practice, this algorithm is parallelized by distributing
the “while |history|” loop in Algorithm 1 over multiple
workers. Intuitively, the mutations can be thought of as pro-
viding exploration, while the parent selection provides ex-
ploitation. The parameter S controls the aggressiveness of
the exploitation: S = 1 reduces to a type of random search
and 2 < S < P leads to evolution of varying greediness.

New models are constructed by applying a mutation to
existing models, transforming their architectures in ran-
dom ways. To navigate the NASNet search space described



above, we use two main mutations that we call the hidden
state mutation and the op mutation. A third mutation, the
identity, is also possible. Only one of these mutations is ap-
plied in each cycle, choosing between them at random.

Hidden State
Mutation
—_—

Op

Figure 3: Illustration of the two mutation types.

The hidden state mutation consists of first making a ran-
dom choice of whether to modify the normal cell or the re-
duction cell. Once a cell is chosen, the mutation picks one of
the five pairwise combinations uniformly at random. Once
the pairwise combination is picked, one of the two elements
of the pair is chosen uniformly at random. The chosen ele-
ment has one hidden state. This hidden state is now replaced
with another hidden state from within the cell, subject to the
constraint that no loops are formed (to keep the feed-forward
nature of the convnet). Figure 3 (top) shows an example.

The op mutation behaves like the hidden state mutation
as far as choosing one of the two cells, one of the five pair-
wise combinations, and one of the two elements of the pair.
Then it differs in that it modifies the op instead of the hidden
state. It does this by replacing the existing op with a random
choice from a fixed list of ops (see Methods Details). Fig-
ure 3 (bottom) shows an example.

Baseline Algorithms

Our main baseline is the application of RL to the same
search space. RL was implemented using the algorithm and
code in the baseline study (Zoph et al. 2018). An LSTM con-
troller outputs the architectures, constructing the pairwise
combinations one at a time, and then gets a reward for each
architecture by training and evaluating it. More detail can be
found in the baseline study. We also compared against ran-
dom search (RS). In our RS implementation, each model is
constructed randomly so that all models in the search space
are equally likely, as in the initial population in the evolu-
tionary algorithm. In other words, the models in RS exper-
iments are not constructed by mutating existing models, so
as to make new models independent from previous ones.
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Experimental Setup

We ran controlled comparisons at scale, ensuring identical
conditions for evolution, RL and random search (RS). In
particular, all methods used the same computer code for net-
work construction, training and evaluation. Experiments al-
ways searched on the CIFAR-10 dataset (Krizhevsky and
Hinton 2009).

As in the baseline study, we first performed architec-
ture search over small models (i.e. small N and F) until
20k models were evaluated. After that, we used the model
augmentation trick (Zoph et al. 2018): we took architec-
tures discovered by the search (e.g. the output of an evo-
lutionary experiment) and turned them into a full-size, ac-
curate models. To accomplish this, we enlarged the mod-
els by increasing N and F so the resulting model sizes
would match the baselines, and we trained the enlarged
models for a longer time on the CIFAR-10 or the Ima-
geNet classification datasets (Krizhevsky and Hinton 2009;
Deng et al. 2009). For ImageNet, a stem was added at the
input of the model to reduce the image size, as shown in
Figure 6 (left). This is the same procedure as in the baseline
study. To produce the largest model (see last paragraph of
Results section), we increased N and F until we ran out of
memory. Actual values of N and F for all models are listed
in the Methods Details section.

Methods Details

This section complements the Methods section with the de-
tails necessary to reproduce our experiments. Possible ops:
none (identity); 3x3, 5x5 and 7x7 separable (sep.) convolu-
tions (convs.); 3x3 average (avg.) pool; 3x3 max pool; 3x3
dilated (dil.) sep. conv.; 1x7 then 7x1 conv. Evolved with
P=100, S=25. CIFAR-10 dataset (Krizhevsky and Hinton
2009) with Sk withheld examples for validation. Standard
ImageNet dataset (Deng et al. 2009), 1.2M 331x331 images
and 1k classes; 50k examples withheld for validation; stan-
dard validation set used for testing. During the search phase,
each model trained for 25 epochs; N=3/F=24, 1 GPU. Each
experiment ran on 450 K40 GPUs for 20k models (approx.
7 days). To optimize evolution, we tried 5 configurations
with P/S of: 100/2, 100/50, 20/20, 100/25, 64/16, best was
100/25. The probability of the identity mutation was fixed at
the small, arbitrary value of 0.05 and was not tuned. Other
mutation probabilities were uniform, as described in the
Methods. To optimize RL, started with parameters already
tuned in the baseline study and further optimized learning
rate in 8 configurations: 0.00003, 0.00006, 0.00012, 0.0002,
0.0004, 0.0008, 0.0016, 0.0032; best was 0.0008. To avoid
selection bias, plots do not include optimization runs, as was
decided a priori. Best few (20) models were selected from
each experiment and augmented to N=6/F=32, as in base-
line study; batch 128, SGD with momentum rate 0.9, L2
weight decay 5x 104, initial Ir 0.024 with cosine decay, 600
epochs, ScheduledDropPath to 0.7 prob; auxiliary softmax
with half-weight of main softmax. For Table 1, we used N/F
of 6/32 and 6/36. For ImageNet table, N/F were 6/190 and
6/448 and standard training methods (Szegedy et al. 2017):
distributed sync SGD with 100 P100 GPUs; RMSProp opti-



mizer with 0.9 decay and ¢=0.1, 4 x 1075 weight decay, 0.1
label smoothing, auxiliary softmax weighted by 0.4; dropout
probability 0.5; ScheduledDropPath to 0.7 probability (as in
baseline—note that this trick only contributes 0.3% top-1
ImageNet acc.); 0.001 initial Ir, decaying every 2 epochs by
0.97. Largest model used N=6/F=448. F always refers to the
number of filters of convolutions in the first stack; after each
reduction cell, this number is doubled. Wherever applicable,
we used the same conditions as the baseline study.

Results
Comparison With RL and RS Baselines

Currently, reinforcement learning (RL) is the predominant
method for architecture search. In fact, today’s state-of-
the-art image classifiers have been obtained by architec-
ture search with RL (Zoph et al. 2018; Liu et al. 2018a).
Here we seek to compare our evolutionary approach against
their RL algorithm. We performed large-scale side-by-side
architecture-search experiments on CIFAR-10. We first op-
timized the hyper-parameters of the two approaches inde-
pendently (details in Methods Details section). Then we ran
5 repeats of each of the two algorithms—and also of random
search (RS).

0.92 Evolution

RL

Top Testing Accuracy

RS

0.89

Experiment Time (hours) 200

Figure 4: Time-course of 5 identical large-scale experiments
for each algorithm (evolution, RL, and RS), showing ac-
curacy before augmentation on CIFAR-10. All experiments
were stopped when 20k models were evaluated, as done in
the baseline study. Note this plot does not show the compute
cost of models, which was higher for the RL ones.

Figure 4 shows the model accuracy as the experiments
progress, highlighting that evolution yielded more accurate
models at the earlier stages, which could become important
in a resource-constrained regime where the experiments may
have to be stopped early (for example, when 450 GPUs for
7 days is too much). At the later stages, if we allow to run
for the full 20k models (as in the baseline study), evolution
produced models with similar accuracy. Both evolution and
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RL compared favorably against RS. It is important to note
that the vertical axis of Figure 4 does not present the com-
pute cost of the models, only their accuracy. Next, we will
consider their compute cost as well.

As in the baseline study, the architecture-search experi-
ments above were performed over small models, to be able
to train them quicker. We then used the model augmentation
trick (Zoph et al. 2018) by which we take an architecture
discovered by the search (e.g. the output of an evolutionary
experiment) and turn it into a full-size, accurate model, as
described in the Methods.

0.967

Final Testing Accuracy

Evol.
O RL
/\ RS

0.957
0.

75 Model Cost (GigaFLOPs) 1.35

Figure 5: Final augmented models from 5 identical
architecture-search experiments for each algorithm, on
CIFAR-10. Each marker corresponds to the top models from
one experiment.

Figure 5 compares the augmented top models from the
three sets of experiments. It shows test accuracy and model
compute cost. The latter is measured in FLOPs, by which
we mean the total count of operations in the forward pass,
so lower is better. Evolved architectures had higher accuracy
(and similar FLOPs) than those obtained with RS, and lower
FLOPs (and similar accuracy) than those obtained with RL.
Number of parameters showed similar behavior to FLOPs.
Therefore, evolution occupied the ideal relative position in
this graph within the scope of our case study.

Table 1: CIFAR-10 testing set results for AmoebaNet-A,
compared to top model reported in the baseline study.

Model # Params  Test Error (%)
NASNet-A (baseline) 3.3 M 3.41
AmoebaNet-A (N=6, F=32) 2.6 M 3.40 + 0.08
AmoebaNet-A (N=6, F=36) 32M 3.34 +0.06

So far we have been comparing evolution with our repro-
duction of the experiments in the baseline study, but it is also
informative to compare directly against the results reported
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Figure 6: AmoebaNet-A architecture. The overall model (Zoph et al. 2018) (LEFT) and the AmoebaNet-A normal cell (MID-

DLE) and reduction cell (RIGHT).

by the baseline study. We select our evolved architecture
with highest validation accuracy and call it AmoebaNet-A
(Figure 6). Table 1 compares its test accuracy with the top
model of the baseline study, NASNet-A. Such a comparison
is not entirely controlled, as we have no way of ensuring
the network training code was identical and that the same
number of experiments were done to obtain the final model.
The table summarizes the results of training AmoebaNet-A
at sizes comparable to a NASNet-A version, showing that
AmoebaNet-A is slightly more accurate (when matching
model size) or considerably smaller (when matching accu-
racy). We did not train our model at larger sizes on CIFAR-
10. Instead, we moved to ImageNet to do further compar-
isons in the next section.

ImageNet Results

Following the accepted standard, we compare our top
model’s classification accuracy on the popular ImageNet
dataset against other top models from the literature. Again,
we use AmoebaNet-A, the model with the highest validation
accuracy on CIFAR-10 among our evolution experiments.
We highlight that the model was evolved on CIFAR-10 and
then transferred to ImageNet, so the evolved architecture
cannot have overfit the ImageNet dataset. When re-trained
on ImageNet, AmoebaNet-A performs comparably to the
baseline for the same number of parameters (Table 2, model
with F=190).

Finally, we focused on AmoebaNet-A exclusively and en-
larged it, setting a new state-of-the-art accuracy on Ima-
geNet of 83.9%/96.6% top-1/5 accuracy with 469M param-
eters (Table 2, model with F=448). Such high parameter
counts may be beneficial in training other models too but
we have not managed to do this yet.
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Discussion

This section will suggest directions for future work, which
we will motivate by speculating about the evolutionary pro-
cess and by summarizing additional minor results. The de-
tails of these minor results have been relegated to the supple-
ments, as they are not necessary to understand or reproduce
our main results above.

Scope of results. Some of our findings may be restricted
to the search spaces and datasets we used. A natural direc-
tion for future work is to extend the controlled comparison
to more search spaces, datasets, and tasks, to verify general-
ity, or to more algorithms. Supplement A presents prelimi-
nary results, performing evolutionary and RL searches over
three search spaces (SP-I: same as in the Results section;
SP-II: like SP-I but with more possible ops; SP-III: like SP-
II but with more pairwise combinations) and three datasets
(gray-scale CIFAR-10, MNIST, and gray-scale ImageNet),
at a small-compute scale (on CPU, F'=8, N=1). Evolution
reached equal or better accuracy in all cases (Figure 7, top).

Algorithm speed. In our comparison study, Figure 4 sug-
gested that both RL and evolution are approaching a com-
mon accuracy asymptote. That raises the question of which
algorithm gets there faster. The plots indicate that evolution
reaches half-maximum accuracy in roughly half the time.
We abstain, nevertheless, from further quantifying this ef-
fect since it depends strongly on how speed is measured (the
number of models necessary to reach accuracy a depends on
a; the natural choice of @ = ayq./2 may be too low to be
informative; efc.). Algorithm speed may be more important
when exploring larger spaces, where reaching the optimum
can require more compute than is available. We saw an ex-
ample of this in the SP-III space, where evolution stood out
(Figure 7, bottom-right). Therefore, future work could ex-
plore evolving on even larger spaces, where the initial rela-
tive speed of evolution may be even more significant.



Table 2: ImageNet classification results for AmoebaNet-A compared to hand-designs (top rows) and other automated methods
(middle rows). The evolved AmoebaNet-A architecture (bottom rows) reaches the current state of the art (SOTA) at similar
model sizes and sets a new SOTA at a larger size. All evolution-based approaches are marked with a *. We omitted Squeeze-
and-Excite-Net because it was not benchmarked on the same ImageNet dataset version.

Model # Parameters  # Multiply-Adds  Top-1 / Top-5 Accuracy (%)
Incep-ResNet V2 (Szegedy et al. 2017) 55.8M 13.2B 80.4/95.3
ResNeXt-101 (Xie et al. 2017) 83.6M 31.5B 80.9/95.6
PolyNet (Zhang et al. 2017) 92.0M 34.7B 81.3/95.8
Dual-Path-Net-131 (Chen et al. 2017) 79.5M 32.0B 81.5/95.8
GeNet-2 (Xie and Yuille 2017)* 156M - 72.1/90.4
Block-QNN-B (Zhong, Yan, and Liu 2018)* - - 75.7/192.6
Hierarchical (Liu et al. 2018b)* 64M - 79.7/94.8
NASNet-A (Zoph et al. 2018) 88.9M 23.8B 82.7/96.2
PNASNet-5 (Liu et al. 2018a) 86.1IM 25.0B 82.9/96.2
AmoebaNet-A (N=6, F=190)* 86.7M 23.1B 82.8/96.1
AmoebaNet-A (N=6, F=448)* 469M 104B 83.9/96.6
0.7730 -0.9952 -0.0385 of their slower peers. Verifying this speculation could be the
subject of future work. As mentioned in the Related Work
5 ‘ . [ g section, in this work we only considered asynchronous al-
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Model speed. The speed of individual models produced is
also relevant. Figure 5 demonstrated that evolved models are
faster (lower FLOPs). We speculate that asynchronous evo-
lution may be reducing the FLOPs because it is indirectly
optimizing for speed even when training for a fixed number
of epochs: fast models may do well because they “repro-
duce” quickly even if they initially lack the higher accuracy
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Figure 8: Small-compute-scale comparison between our ag-
ing tournament selection variant and the non-aging variant,
for different population sizes (P) and sample sizes (S). Ag-
ing tends to be beneficial (most markers above the y=x line).

In Supplement B, we also show that the benefits of aging



evolution tend to hold when varying the dataset or the search
space. In order to reduce compute requirements, all these
additional experiments were carried out on CPU instead of
GPU and used a gray-scale version of CIFAR-10.

Understanding aging evolution and regularization. We
can speculate that aging may help navigate the training
noise in evolutionary experiments, as follows. Noisy training
means that models may sometimes reach high accuracy just
by luck. In non-aging evolution (NAE, i.e. standard tourna-
ment selection), such lucky models may remain in the popu-
lation for a long time—even for the whole experiment. One
lucky model, therefore, can produce many children, caus-
ing the algorithm to focus on it, reducing exploration. Under
aging evolution (AE), on the other hand, all models have
a short lifespan, so the population is wholly renewed fre-
quently, leading to more diversity and more exploration. In
addition, another effect may be in play, which we describe
next. In AE, because models die quickly, the only way an
architecture can remain in the population for a long time
is by being passed down from parent to child through the
generations. Each time an architecture is inherited it must
be re-trained. If it produces an inaccurate model when re-
trained, that model is not selected by evolution and the ar-
chitecture disappears from the population. The only way for
an architecture to remain in the population for a long time is
to re-train well repeatedly. In other words, AE can only im-
prove a population through the inheritance of architectures
that re-train well. (In contrast, NAE can improve a popu-
lation by accumulating architectures/models that were lucky
when they trained the first time). That is, AE is forced to pay
attention to architectures rather than models. In other words,
the addition of aging involves introducing additional infor-
mation to the evolutionary process: architectures should re-
train well. This additional information prevents overfitting
to the training noise, which makes it a form of regulariza-
tion in the broader mathematical sense!. Regardless of the
exact mechanism, in Supplement C we perform experiments
to verify the plausibility of the conjecture that aging helps
navigate noise. There we construct a toy search space where
the only difficulty is a noisy evaluation. If our conjecture is
true, AE should be better in that toy space too. We found this
to be the case. We leave further verification of the conjecture
to future work, noting that theoretical results may prove use-
ful here.

Simplicity of aging evolution. A desirable feature of evo-
lutionary algorithms is their simplicity. By design, the appli-
cation of a mutation causes a random change. The process
of constructing new architectures, therefore, is entirely ran-
dom. What makes evolution different from random search is
that only the good models are selected to be mutated. This
selection tends to improve the population over time. In this
sense, evolution is simply “random search plus selection”. In
outline, the process can be described briefly: “keep a popula-
tion of N models and proceed in cycles: at each cycle, copy-
mutate the best of S random models and kill the oldest in
the population”. Implementation-wise, we believe the meth-
ods of this paper are sufficient for a reader to understand

"https://en.wikipedia.org/wiki/Regularization_(mathematics)
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evolution. The sophisticated nature of the RL alternative in-
troduces complexity in its implementation: it requires back-
propagation and poses challenges to parallelization (Sali-
mans et al. 2017). Even different implementations of the
same algorithm have been shown to produce different results
(Henderson et al. 2018). Finally, evolution is also simple in
that it has few meta-parameters, most of which do not need
tuning (Real et al. 2017). In our study, we only adjusted 2
meta-parameters and only through a handful of attempts (see
Methods Details section). In contrast, note that the RL base-
line requires training an agent/controller which is often itself
a neural network with many weights (such as an LSTM), and
its optimization has more meta-parameters to adjust: learn-
ing rate schedule, greediness, batching, replay buffer param-
eters, etc. (These meta-parameters are all in addition to the
weights and training parameters of the image classifiers be-
ing searched, which are present in both approaches.) It is
possible that through careful tuning, RL could be made to
produce even better models than evolution, but such tun-
ing would likely involve running many experiments, mak-
ing it more costly. Evolution did not require much tuning,
as described. It is also possible that random search would
produce equally good models if run for a very long time,
which would be very costly. Finally, the evolutionary algo-
rithm could be improved through additional complexity; for
example, the mutation probabilities could be learned to im-
prove speed.

Interpreting architecture search. Another important di-
rection for future work is that of analyzing architecture-
search experiments (regardless of the algorithm used) to try
to discover new neural network design patterns. Anecdo-
tally, for example, we found that architectures with high out-
put vertex fan-in (number of edges into the output vertex)
tend to be favored in all our experiments. In fact, the mod-
els in the final evolved populations have a mean fan-in value
that is 3 standard deviations above what would be expected
from randomly generated models. We verified this pattern
by training various models with different fan-in values and
the results confirm that accuracy increases with fan-in, as
had been found in ResNeXt (Xie et al. 2017). Discovering
broader patterns may require designing search spaces specif-
ically for this purpose.

Additional AmoebaNets. Using variants of the evo-
lutionary process described, we obtained three additional
models, which we named AmoebaNet-B, AmoebaNet-C, and
AmoebaNet-D. We describe these models and the process
that led to them in detail in Supplement D, but we summarize
here. AmoebaNet-B was obtained through through platform-
aware architecture search over a larger version of the NAS-
Net space. AmoebaNet-C is simply a model that showed
promise early on in the above experiments by reaching high
accuracy with relatively few parameters; we mention it here
for completeness, as it has been referenced in other work
(Cubuk et al. 2018). AmoebaNet-D was obtained by man-
ually extrapolating the evolutionary process and optimizing
the resulting architecture for training speed. It is very effi-
cient: AmoebaNet-D won the Stanford DAWNBench com-
petition for lowest training cost on ImageNet (Coleman et
al. 2018).



Supplements

The supplements can be found online at:
https://arxiv.org/abs/1802.01548

Conclusion

This paper used an evolutionary algorithm to discover image
classifier architectures. Our contributions are the following:

e We proposed aging evolution, a variant of tournament se-
lection by which genotypes die according to their age, fa-
voring the young. This improved upon standard tourna-
ment selection while still allowing for efficiency at scale
through asynchronous population updating. We open-
sourced the code.” We also implemented simple muta-
tions that permit the application of evolution to the popu-

lar NASNet search space.

We presented the first controlled comparison of algo-
rithms for image classifier architecture search in a case
study of evolution, RL and random search. We showed
that evolution had somewhat faster search speed and stood
out in the regime of scarcer resources / early stopping.
Evolution also matched RL in final model quality, em-
ploying a simpler method.

We evolved AmoebaNet-A (Figure 6), a competitive im-
age classifier. On ImageNet, it is the first evolved model
to surpass hand-designs. Matching size, AmoebaNet-A
has comparable accuracy to top image-classifiers discov-
ered with other architecture-search methods. At large size,
it sets a new state-of-the-art accuracy. We open-sourced
code and checkpoint.?
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