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Abstract

This paper proposes a novel Recurrent Neural Network (RNN)
language model that takes advantage of character information.
We focus on character n-grams based on research in the field of
word embedding construction (Wieting et al. 2016). Our pro-
posed method constructs word embeddings from character n-
gram embeddings and combines them with ordinary word em-
beddings. We demonstrate that the proposed method achieves
the best perplexities on the language modeling datasets: Penn
Treebank, WikiText-2, and WikiText-103. Moreover, we con-
duct experiments on application tasks: machine translation and
headline generation. The experimental results indicate that our
proposed method also positively affects these tasks.

1 Introduction
Neural language models have played a crucial role in re-
cent advances of neural network based methods in natural
language processing (NLP). For example, neural encoder-
decoder models, which are becoming the de facto standard
for various natural language generation tasks including ma-
chine translation (Sutskever, Vinyals, and Le 2014), summa-
rization (Rush, Chopra, and Weston 2015), dialogue (Wen et
al. 2015), and caption generation (Vinyals et al. 2015) can be
interpreted as conditional neural language models. Moreover,
neural language models can be used for rescoring outputs
from traditional methods, and they significantly improve the
performance of automatic speech recognition (Du et al. 2016).
This implies that better neural language models improve the
performance of application tasks.

In general, neural language models require word embed-
dings as an input (Zaremba, Sutskever, and Vinyals 2014).
However, as described by (Verwimp et al. 2017), this ap-
proach cannot make use of the internal structure of words
although the internal structure is often an effective clue for
considering the meaning of a word. For example, we can
comprehend that the word ‘causal’ is related to ‘cause’ im-
mediately because both words include the same character
sequence ‘caus’. Thus, if we incorporate a method that han-
dles the internal structure such as character information, we
can improve the quality of neural language models and prob-
ably make them robust to infrequent words.
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Intelligence (www.aaai.org). All rights reserved.

To incorporate the internal structure, (Verwimp et al. 2017)
concatenated character embeddings with an input word em-
bedding. They demonstrated that incorporating character em-
beddings improved the performance of RNN language mod-
els. Moreover, (Kim et al. 2016) and (Jozefowicz et al. 2016)
applied Convolutional Neural Networks (CNN) to construct
word embeddings from character embeddings.

On the other hand, in the field of word embedding construc-
tion, some previous researchers found that character n-grams
are more useful than single characters (Wieting et al. 2016;
Bojanowski et al. 2017). In particular, (Wieting et al. 2016)
demonstrated that constructing word embeddings from char-
acter n-gram embeddings outperformed the methods that
construct word embeddings from character embeddings by
using CNN or a Long Short-Term Memory (LSTM).

Based on their reports, in this paper, we propose a neural
language model that utilizes character n-gram embeddings.
Our proposed method encodes character n-gram embeddings
to a word embedding with simplified Multi-dimensional Self-
attention (MS) (Shen et al. 2018). We refer to this constructed
embedding as charn-MS-vec. The proposed method regards
charn-MS-vec as an input in addition to a word embedding.

We conduct experiments on the well-known benchmark
datasets: Penn Treebank, WikiText-2, and WikiText-103. Our
experiments indicate that the proposed method outperforms
neural language models trained with well-tuned hyperparam-
eters and achieves state-of-the-art scores on each dataset. In
addition, we incorporate our proposed method into a standard
neural encoder-decoder model and investigate its effect on
machine translation and headline generation. We indicate that
the proposed method also has a positive effect on such tasks.

2 RNN Language Model
In this study, we focus on RNN language models, which are
widely used in the literature. This section briefly overviews
the basic RNN language model.

In language modeling, we compute joint probability by
using the product of conditional probabilities. Let w1:T be
a word sequence with length T , namely, w1, ..., wT . We for-
mally obtain the joint probability of word sequence w1:T as
follows:

p(w1:T ) = p(w1)

T−1∏
t=1

p(wt+1|w1:t). (1)
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p(w1) is generally assumed to be 1 in this literature, i.e.,
p(w1)=1, and thus we can ignore its calculation1.

To estimate the conditional probability p(wt+1|w1:t),
RNN language models encode sequence w1:t into a fixed-
length vector and compute the probability distribution of each
word from this fixed-length vector. Let V be the vocabulary
size and let Pt ∈ RV be the probability distribution of the
vocabulary at timestep t. Moreover, let Dh be the dimension
of the hidden state of an RNN and let De be the dimensions
of embedding vectors. Then, RNN language models predict
the probability distribution Pt+1 by the following equation:

Pt+1 = softmax(Wht + b), (2)
ht = f(et, ht−1), (3)
et = Ext, (4)

where W ∈ RV×Dh is a weight matrix, b ∈ RV is a bias term,
and E ∈ RDe×V is a word embedding matrix. xt ∈ {0, 1}V
and ht ∈ RDh are a one-hot vector of an input word wt and
the hidden state of the RNN at timestep t, respectively. We
define ht at timestep t = 0 as a zero vector, that is, h0 = 0.
Let f(·) represent an abstract function of an RNN, which
might be the LSTM, the Quasi-Recurrent Neural Network
(QRNN) (Bradbury et al. 2017), or any other RNN variants.

3 Incorporating Character n-gram
Embeddings

We incorporate charn-MS-vec, which is an embedding con-
structed from character n-gram embeddings, into RNN lan-
guage models since, as discussed earlier, previous studies
revealed that we can construct better word embeddings by
using character n-gram embeddings (Wieting et al. 2016;
Bojanowski et al. 2017). In particular, we expect charn-MS-
vec to help represent infrequent words by taking advantage
of the internal structure.

Figure 1 is the overview of the proposed method using
character 3-gram embeddings (char3-MS-vec). As illustrated
in this figure, our proposed method regards the sum of char3-
MS-vec and the standard word embedding as an input of an
RNN. In other words, let ct be charn-MS-vec and we replace
Equation 4 with the following:

et = Ext + ct. (5)

3.1 Multi-dimensional Self-attention
To compute ct, we apply an encoder to character n-gram em-
beddings. Previous studies demonstrated that additive com-
position, which computes the (weighted) sum of embeddings,
is a suitable method for embedding construction (Takase,
Okazaki, and Inui 2016; Wieting et al. 2016). Thus, we
adopt (simplified) multi-dimensional self-attention (Shen et
al. 2018), which computes weights for each dimension of
given embeddings and sums up the weighted embeddings
(i.e., element-wise weighted sum) as an encoder. Let si be
the character n-gram embeddings of an input word, let I be

1This definition is based on published implementations of
previous studies such as https://github.com/wojzaremba/lstm and
https://github.com/salesforce/awd-lstm-lm.
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Figure 1: Overview of the proposed method. The proposed
method computes charn-MS-vec from character n-gram (3-
gram in this figure) embeddings and inputs the sum of it and
the standard word embedding into an RNN.

the number of character n-grams extracted from the word,
and let S be the matrix whose i-th column corresponds to si,
that is, S = [s1, ..., sI ]. The multi-dimensional self-attention
constructs the word embedding ct by the following equations:

ct =

I∑
i=1

gi � si, (6)

{gi}j = {softmax(
[
(WcS)

T
]
j
)}i, (7)

where � means element-wise product of vectors, Wc ∈
RDe×De is a weight matrix, [·]j is the j-th column of a given
matrix, and {·}j is the j-th element of a given vector. In
short, Equation 7 applies the softmax function to each row of
[WcS] and extracts the i-th column as gi.

Let us consider the case where an input word is ‘the’ and
we use character 3-gram in Figure 1. We prepare special
characters ‘ˆ’ and ‘$’ to represent the beginning and end of the
word, respectively. Then, ‘the’ is composed of three character
3-grams: ‘ˆth’, ‘the’, and ‘he$’. We multiply the embeddings
of these 3-grams by transformation matrix Wc and apply the
softmax function to each row2 as in Equation 7. As a result

2(Shen et al. 2018) applied an activation function and one more
transformation matrix to embeddings but we omit these operations.

5075



PTB WT2 WT103

Vocab 10,000 33,278 267,735

Train 929,590 2,088,628 103,227,021
#Token Valid 73,761 217,646 217,646

Test 82,431 245,569 245,569

Table 1: Statistics of PTB, WT2, and WT103.

of the softmax, we obtain a matrix that contains weights for
each embedding. The size of the computed matrix is identical
to the input embedding matrix: De × I . We then compute
Equation 6, i.e., the weighted sum of the embeddings, and add
the resulting vector to the word embedding of ‘the’. Finally,
we input the vector into an RNN to predict the next word.

3.2 Word Tying
(Inan, Khosravi, and Socher 2017) and (Press and Wolf 2017)
proposed a word tying method (WT) that shares the word
embedding matrix (E in Equation 4) with the weight ma-
trix to compute probability distributions (W in Equation 2).
They demonstrated that WT significantly improves the per-
formance of RNN language models.

In this study, we adopt charn-MS-vec as the weight matrix
in language modeling. Concretely, we use E + C instead of
W in Equation 2, where C ∈ RDe×V contains charn-MS-vec
for all words in the vocabulary.

4 Experiments on Language Modeling
We investigate the effect of charn-MS-vec on the word-level
language modeling task. In detail, we examine the following
four research questions;
1. Can character n-gram embeddings improve the perfor-

mance of state-of-the-art RNN language models?
2. Do character n-gram embeddings have a positive effect

on infrequent words?
3. Is multi-dimensional self-attention effective for word em-

bedding construction as compared with several other simi-
lar conventional methods?

4. How many n should we use?

4.1 Datasets
We used the standard benchmark datasets for the word-
level language modeling: Penn Treebank (PTB) (Marcus,
Marcinkiewicz, and Santorini 1993), WikiText-2 (WT2), and
WikiText-103 (WT103) (Merity et al. 2017). (Mikolov et al.
2010) and (Merity et al. 2017) published pre-processed PTB3,
WT2, and WT1034. Following the previous studies, we used
these pre-processed datasets for our experiments.

Table 1 describes the statistics of the datasets. Table 1
demonstrates that the vocabulary size of WT103 is too large,
and thus it is impractical to compute charn-MS-vec for all

3http://www.fit.vutbr.cz/˜mikolov/rnnlm/
4https://einstein.ai/research/the-wikitext-long-term-

dependency-language-modeling-dataset

words at every step. Therefore, we did not use C for word
tying. In other words, we used only word embeddings E as
the weight matrix W in WT103.

4.2 Baseline RNN Language Model
For base RNN language models, we adopted the state-of-
the-art LSTM language model (Merity, Keskar, and Socher
2018b) for PTB and WT2, and QRNN for WT103 (Bradbury
et al. 2017). (Melis, Dyer, and Blunsom 2018) demonstrated
that the standard LSTM trained with appropriate hyperpa-
rameters outperformed various architectures such as Recur-
rent Highway Networks (RHN) (Zilly et al. 2017). In addi-
tion to several regularizations, (Merity, Keskar, and Socher
2018b) introduced Averaged Stochastic Gradient Descent
(ASGD) (Polyak and Juditsky 1992) to train the 3-layered
LSTM language model. As a result, their ASGD Weight-
Dropped LSTM (AWD-LSTM) achieved state-of-the-art re-
sults on PTB and WT2. For WT103, (Merity, Keskar, and
Socher 2018a) achieved the top score with the 4-layered
QRNN. Thus, we used AWD-LSTM for PTB and WT2, and
QRNN for WT103 as the base language models, respectively.
We used their implementations5 for our experiments.

4.3 Results
Table 2 shows perplexities of the baselines and the proposed
method. We varied n for charn-MS-vec from 2 to 4. For the
baseline, we also applied two word embeddings to investigate
the performance in the case where we use more kinds of word
embeddings. In detail, we prepared E1, E2 ∈ RDe×V and
used E1 +E2 instead of E in Equation 4. Table 2 also shows
the number of character n-grams in each dataset. This table
indicates that charn-MS-vec improved the performance of
state-of-the-art models except for char4-MS-vec on WT103.
These results indicate that charn-MS-vec can raise the quality
of word-level language models. In particular, Table 2 shows
that char3-MS-vec achieved the best scores consistently. In
contrast, an additional word embedding did not improve the
performance. This fact implies that the improvement of charn-
MS-vec is caused by using character n-grams. Thus, we
answer yes to the first research question.

Table 3 shows the training time spent on each epoch. We
calculated it on the NVIDIA Tesla P100. Table 3 indicates
that the proposed method requires more computational time
than the baseline unfortunately. We leave exploring a faster
structure for our future work.

Table 4 shows perplexities on the PTB dataset where the
frequency of an input word is lower than 2,000 in the train-
ing data. This table indicates that the proposed method can
improve the performance even if an input word is infrequent.
In other words, charn-MS-vec helps represent the meanings
of infrequent words. Therefore, we answer yes to the second
research question in the case of our experimental settings.

We explored the effectiveness of multi-dimensional self-
attention for word embedding construction. Table 5 shows
perplexities of using several encoders on the PTB dataset.
As in (Kim et al. 2016), we applied CNN to construct word
embeddings (charCNN in Table 5). Moreover, we applied the

5https://github.com/salesforce/awd-lstm-lm
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PTB WT2 WT103
Method #Charn #Params Valid Test #Charn #Params Valid Test #Charn #Params Valid Test

Baseline - 24M 58.88 56.36 - 33M 66.98 64.11 - 153M 31.24 32.19
2 embeds - 28M 58.94 56.56 - 47M 66.71 64.00 - 261M 31.75 32.71

char2-MS-vec 773 25M 57.88 55.91 2,442 35M 65.60 62.96 8,124 158M 31.18 31.92
char3-MS-vec 5,258 26M 57.40 55.56 12,932 39M 65.05 61.95 51,492 175M 30.95 31.81
char4-MS-vec 15,416 31M 57.30 55.64 39,318 49M 64.84 62.19 179,900 226M 31.23 32.21

Table 2: Perplexities on each dataset. We varied the n for charn-MS-vec from 2 to 4.

Method Seconds / epoch

Baseline 63.78
char2-MS-vec 173.77
char3-MS-vec 171.10
char4-MS-vec 165.46

Table 3: Computational speed of the baseline and proposed
method on NVIDIA Tesla P100.

Method Valid Test

Baseline 44.02 41.14

char2-MS-vec 43.21 40.99
char3-MS-vec 42.74 40.50
char4-MS-vec 42.71 40.41

Table 4: Perplexities on the PTB dataset where an input word
is infrequent in the training data, which means its frequency
is lower than 2,000.

summation and standard self-attention, which computes the
scalar value as a weight for a character n-gram embedding,
to construct word embeddings (charn-Sum-vec and charn-
SS-vec, respectively). For CNN, we used hyperparameters
identical to (Kim et al. 2016) (“Original Settings” in Table 5)
but the setting has two differences from other architectures: 1.
The dimension of the computed vectors is much larger than
the dimension of the baseline word embeddings and 2. The
dimension of the input character embeddings is much smaller
than the dimension of the baseline word embeddings. There-
fore, we added two configurations: assigning the dimension
of the computed vectors and input character embeddings a
value identical to the baseline word embeddings (in Table
5, “Small CNN result dims” and “Large embedding dims”,
respectively).

Table 5 shows that the proposed charn-MS-vec outper-
formed charCNN even though the original settings of char-
CNN had much larger parameters. Moreover, we trained char-
CNN with two additional settings but CNN did not improve
the baseline performance. This result implies that charn-MS-
vec is better embeddings than ones constructed by applying
CNN to character embeddings. Table 5 also indicates that
charn-Sum-vec was harmful to the performance. Moreover,
charn-SS-vec did not have a positive effect on the baseline.
These results answer yes to the third research question; our

Method #Params Valid Test

Baseline 24M 58.88 56.36

The proposed method (charn-MS-vec)

char2-MS-vec 25M 57.88 55.91
char3-MS-vec 26M 57.40 55.56
char4-MS-vec 31M 57.30 55.64

Using CNN (charCNN)

Original Settings 36M 60.59 58.03
Small CNN result dims 21M 82.39 80.01
Large embedding dims 36M 60.75 58.06

Using Sum (charn-Sum-vec)

char2-Sum-vec 25M 61.77 59.57
char3-Sum-vec 26M 59.72 57.39
char4-Sum-vec 30M 59.40 56.72

Using Standard self-attention (charn-SS-vec)

char2-SS-vec 25M 58.66 56.44
char3-SS-vec 26M 59.42 57.30
char4-SS-vec 30M 58.37 56.33

Exclude C from word tying

char2-MS-vec 25M 58.10 56.12
char3-MS-vec 26M 58.62 56.19
char4-MS-vec 31M 58.68 56.78

Remove word embeddings E

char2-MS-vec 21M 74.22 72.39
char3-MS-vec 22M 60.60 58.88
char4-MS-vec 27M 57.65 55.74

Same #Params as baseline

char2-MS-vec 24M 57.93 56.15
char3-MS-vec 24M 57.81 55.81
char4-MS-vec 24M 59.48 57.69

Table 5: Perplexities of each structure on PTB dataset.

use of multi-dimensional self-attention is more appropriate
for constructing word embeddings from character n-gram
embeddings.

Table 5 also shows that excluding C from word tying (“Ex-
clude C from word tying”) achieved almost the same score as
the baseline. Moreover, this table indicates that performance
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Model #Params Valid Test

LSTM (medium) (Zaremba, Sutskever, and Vinyals 2014) 20M 86.2 82.7
LSTM (large) (Zaremba, Sutskever, and Vinyals 2014) 66M 82.2 78.4
Character-Word LSTM (Verwimp et al. 2017) - - 82.04
LSTM-CharCNN-Large (Kim et al. 2016) 19M - 78.9
Variational LSTM (medium) (Gal and Ghahramani 2016) 20M 81.9 ± 0.2 79.7 ± 0.1
Variational LSTM (large) (Gal and Ghahramani 2016) 66M 77.9 ± 0.3 75.2 ± 0.2
Variational RHN (Zilly et al. 2017) 32M 71.2 68.5
Variational RHN + WT (Zilly et al. 2017) 23M 67.9 65.4
Variational RHN + WT + IOG (Takase, Suzuki, and Nagata 2017) 29M 67.0 64.4
Neural Architecture Search (Zoph and Le 2017) 54M - 62.4
LSTM with skip connections (Melis, Dyer, and Blunsom 2018) 24M 60.9 58.3
AWD-LSTM (Merity, Keskar, and Socher 2018b) 24M 60.0 57.3
AWD-LSTM + Fraternal Dropout (Zolna et al. 2018) 24M 58.9 56.8
AWD-LSTM-MoS (Yang et al. 2018) 22M 56.54 54.44
AWD-LSTM-DOC (Takase, Suzuki, and Nagata 2018) 23M 54.12 52.38

Proposed method: AWD-LSTM + char3-MS-vec 26M 57.40 55.56
Proposed method: AWD-LSTM-MoS + char3-MS-vec 23M 56.13 53.98
Proposed method: AWD-LSTM-DOC + char3-MS-vec 24M 53.76 52.34

Table 6: Perplexities of the proposed method and as reported in previous studies on the PTB dataset.

Model #Params Valid Test

LSTM (Grave, Joulin, and Usunier 2017) - - 99.3
Variational LSTM + IOG (Takase, Suzuki, and Nagata 2017) 70M 95.9 91.0
Variational LSTM + WT + AL (Inan, Khosravi, and Socher 2017) 28M 91.5 87.0
LSTM with skip connections (Melis, Dyer, and Blunsom 2018) 24M 69.1 65.9
AWD-LSTM (Merity, Keskar, and Socher 2018b) 33M 68.6 65.8
AWD-LSTM + Fraternal Dropout (Zolna et al. 2018) 34M 66.8 64.1
AWD-LSTM-MoS (Yang et al. 2018) 35M 63.88 61.45
AWD-LSTM-DOC (Takase, Suzuki, and Nagata 2018) 37M 60.29 58.03

Proposed method: AWD-LSTM + char3-MS-vec 39M 65.05 61.95
Proposed method: AWD-LSTM-MoS + char3-MS-vec 39M 62.20 59.99
Proposed method: AWD-LSTM-DOC + char3-MS-vec 41M 59.47 57.30

Table 7: Perplexities of the proposed method and as reported in previous studies on the WT2 dataset.

Model #Params Valid Test

LSTM (Grave, Joulin, and Usunier 2017) - - 48.7
GCNN-8 (Dauphin et al. 2016) - - 44.9
GCNN-14 (Dauphin et al. 2016) - - 37.2
QRNN (Merity, Keskar, and Socher 2018a) 153M 32.0 33.0

Proposed method: QRNN + char3-MS-vec 175M 30.95 31.81

Table 8: Perplexities of the proposed method and as reported in previous studies on the WT103 dataset.

fails as the the number of parameters is increased. Thus, we
need to assign C to word tying to prevent over-fitting for the
PTB dataset. In addition, this result implies that the perfor-
mance of WT103 in Table 2 might be raised if we can apply
word tying to WT103.

Moreover, to investigate the effect of only charn-MS-vec,
we ignore Ext in Equation 5. We refer to this setting as “Re-
move word embeddings E” in Table 5. Table 5 shows cahr3-

MS-vec and char4-MS-vec are superior to char2-MS-vec.
In the view of perplexity, char3-MS-vec and char4-MS-vec
achieved comparable scores to each other. On the other hand,
char3-MS-vec is composed of much smaller parameters. Fur-
thermore, we decreased the embedding size De to adjust the
number of parameters to the same size as the baseline (“Same
#Params as baseline” in Table 5). In this setting, char3-MS-
vec achieved the best perplexity. Therefore, we consider that
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char3-MS-vec is more useful than char4-MS-vec, which is
the answer to the fourth research question. We use the com-
bination of the char3-MS-vec ct and word embedding Ext

in the following experiments.
Finally, we compare the proposed method with the pub-

lished scores reported in previous studies. Tables 6, 7, and
8, respectively, show perplexities of the proposed method
and previous studies on PTB, WT2, and WT1036. Since
AWD-LSTM-MoS (Yang et al. 2018) and AWD-LSTM-
DOC (Takase, Suzuki, and Nagata 2018) achieved the state-
of-the-art scores on PTB and WT2, we combined char3-MS-
vec with them. These tables show that the proposed method
improved the performance of the base model and outper-
formed the state-of-the-art scores on all datasets. In particular,
char3-MS-vec improved perplexity by at least 1 point from
current best scores on the WT103 dataset.

5 Experiments on Applications
As described in Section 1, neural encoder-decoder models
can be interpreted as conditional neural language models.
Therefore, to investigate if the proposed method contributes
to encoder-decoder models, we conduct experiments on ma-
chine translation and headline generation tasks.

5.1 Datasets
For machine translation, we used two kinds of language pairs:
English-French and English-German sentences in the IWSLT
2016 dataset7. The dataset contains about 208K English-
French pairs and 189K English-German pairs. We conducted
four translation tasks: from English to each language (En-Fr
and En-De), and their reverses (Fr-En and De-En).

For headline generation, we used sentence-headline
pairs extracted from the annotated English Gigaword cor-
pus (Napoles, Gormley, and Van Durme 2012) in the same
manner as (Rush, Chopra, and Weston 2015). The training set
contains about 3.8M sentence-headline pairs. For evaluation,
we exclude the test set constructed by (Rush, Chopra, and
Weston 2015) because it contains some invalid instances, as
reported in (Zhou et al. 2017). We instead used the test sets
constructed by (Zhou et al. 2017) and (Kiyono et al. 2017).

5.2 Experimental Settings
We employed the neural encoder-decoder with attention
mechanism described in (Kiyono et al. 2017) as the base
model. Its encoder consists of a 2-layer bidirectional LSTM
and its decoder consists of a 2-layer LSTM with attention
mechanism proposed by (Luong, Pham, and Manning 2015).
We refer to this neural encoder-decoder as EncDec. To in-
vestigate the effect of the proposed method, we introduced
char3-MS-vec into EncDec. Here, we applied char3-MS-vec
to both the encoder and decoder. Moreover, we did not apply
word tying technique to EncDec because it is default setting
in the widely-used encoder-decoder implementation8.

6To compare models trained only on the training data, we ex-
cluded methods that use the statistics of the test data (Grave, Joulin,
and Usunier 2017; Krause et al. 2017).

7https://wit3.fbk.eu/
8http://opennmt.net/

We set the embedding size and dimension of the LSTM hid-
den state to 500 for machine translation and 400 for headline
generation. The mini-batch size is 64 for machine translation
and 256 for headline generation. For other hyperparameters,
we followed the configurations described in (Kiyono et al.
2017). We constructed the vocabulary set by using Byte-
Pair-Encoding9 (BPE) (Sennrich, Haddow, and Birch 2016)
because BPE is a currently widely-used technique for vocab-
ulary construction. We set the number of BPE merge oper-
ations to 16K for machine translation and 5K for headline
generation.

5.3 Results
Tables 9 and 10 show the results of machine translation
and headline generation, respectively. These tables show
that EncDec+char3-MS-vec outperformed EncDec in all test
data. In other words, these results indicate that our proposed
method also has a positive effect on the neural encoder-
decoder model. Moreover, it is noteworthy that char3-MS-vec
improved the performance of EncDec even though the vocab-
ulary set constructed by BPE contains subwords. This implies
that character n-gram embeddings improve the quality of not
only word embeddings but also subword embeddings.

In addition to the results of our implementations, the lower
portion of Table 10 contains results reported in previous stud-
ies. Table 10 shows that EncDec+char3-MS-vec also outper-
formed the methods proposed in previous studies. Therefore,
EncDec+char3-MS-vec achieved the top scores in the test sets
constructed by (Zhou et al. 2017) and (Kiyono et al. 2017)
even though it does not have a task-specific architecture such
as the selective gate proposed by (Zhou et al. 2017).

In these experiments, we only applied char3-MS-vec to
EncDec but (Morishita, Suzuki, and Nagata 2018) indicated
that combining multiple kinds of subword units can improve
the performance. We will investigate the effect of combining
several character n-gram embeddings in future work.

6 Related Work
RNN Language Model (Mikolov et al. 2010) introduced
RNN into language modeling to handle arbitrary-length se-
quences in computing conditional probability p(wt+1|w1:t).
They demonstrated that the RNN language model out-
performed the Kneser-Ney smoothed 5-gram language
model (Chen and Goodman 1996), which is a sophisticated
n-gram language model.

(Zaremba, Sutskever, and Vinyals 2014) drastically im-
proved the performance of language modeling by applying
LSTM and the dropout technique (Srivastava et al. 2014).
(Zaremba, Sutskever, and Vinyals 2014) applied dropout to
all the connections except for recurrent connections but (Gal
and Ghahramani 2016) proposed variational inference based
dropout to regularize recurrent connections. (Melis, Dyer,
and Blunsom 2018) demonstrated that the standard LSTM
can achieve superior performance by selecting appropriate hy-
perparameters. Finally, (Merity, Keskar, and Socher 2018b)
introduced DropConnect (Wan et al. 2013) and averaged
SGD (Polyak and Juditsky 1992) into the LSTM language

9https://github.com/rsennrich/subword-nmt
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Model En-Fr En-De Fr-En De-En

EncDec 34.37 23.05 34.07 28.18
EncDec+char3-MS-vec 35.48 23.27 34.43 28.86

Table 9: BLEU scores on the IWSLT16 dataset. We report the average score of 3 runs.

Test set by (Zhou et al. 2017) Test set by (Kiyono et al. 2017)
Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

EncDec 46.77 24.87 43.58 46.78 24.52 43.68
EncDec+char3-MS-vec 47.04 25.09 43.80 46.91 24.61 43.77
ABS (Rush, Chopra, and Weston 2015) 37.41 15.87 34.70 - - -
SEASS (Zhou et al. 2017) 46.86 24.58 43.53 - - -
(Kiyono et al. 2017) 46.34 24.85 43.49 46.41 24.58 43.59

Table 10: ROUGE F1 scores on the headline generation test sets provided by (Zhou et al. 2017) and (Kiyono et al. 2017). The
upper part is the results of our implementation and the lower part shows the scores reported in previous studies. In the upper part,
we report the average score of 3 runs.

model and achieved state-of-the-art perplexities on PTB and
WT2. For WT103, (Merity, Keskar, and Socher 2018a) found
that QRNN (Bradbury et al. 2017), which is a faster architec-
ture than LSTM, achieved the best perplexity. Our experimen-
tal results show that the proposed charn-MS-vec improved
the performance of these state-of-the-art language models.

(Yang et al. 2018) explained that the training of RNN lan-
guage models can be interpreted as matrix factorization. In
addition, to raise an expressive power, they proposed Mix-
ture of Softmaxes (MoS) that computes multiple probability
distributions from a final RNN layer and combines them
with a weighted average. (Takase, Suzuki, and Nagata 2018)
proposed Direct Output Connection (DOC) that is a general-
ization of MoS. They used middle layers in addition to the
final layer to compute probability distributions. These meth-
ods (AWD-LSTM-MoS and AWD-LSTM-DOC) achieved
the current state-of-the-art perplexities on PTB and WT2. Our
proposed method can also be combined with MoS and DOC.
In fact, Tables 6 and 7 indicate that the proposed method
further improved the performance of them.

(Kim et al. 2016) introduced character information into
RNN language models. They applied CNN to character em-
beddings for word embedding construction. Their proposed
method achieved perplexity competitive with the basic LSTM
language model (Zaremba, Sutskever, and Vinyals 2014) even
though its parameter size is small. (Jozefowicz et al. 2016)
also applied CNN to construct word embeddings from char-
acter embeddings. They indicated that CNN also positively
affected the LSTM language model in a huge corpus. (Ver-
wimp et al. 2017) proposed a method concatenating character
embeddings with a word embedding to use character informa-
tion. In contrast to these methods, we used character n-gram
embeddings to construct word embeddings. To compare the
proposed method to these methods, we combined the CNN
proposed by (Kim et al. 2016) with the state-of-the-art LSTM
language model (AWD-LSTM) (Merity, Keskar, and Socher
2018b). Our experimental results indicate that the proposed
method outperformed the method using character embed-

dings (charCNN in Table 5).
Some previous studies focused on boosting the perfor-

mance of language models during testing (Grave, Joulin, and
Usunier 2017; Krause et al. 2017). For example, (Krause et
al. 2017) proposed dynamic evaluation that updates model
parameters based on the given correct sequence during eval-
uation. Although these methods might further improve our
proposed language model, we omitted these methods since it
is unreasonable to obtain correct outputs in applications such
as machine translation.

Embedding Construction Previous studies proposed vari-
ous methods to construct word embeddings. (Luong, Socher,
and Manning 2013) applied Recursive Neural Networks to
construct word embeddings from morphemic embeddings.
(Ling et al. 2015) applied bidirectional LSTMs to character
embeddings for word embedding construction. On the other
hand, (Bojanowski et al. 2017) and (Wieting et al. 2016)
focused on character n-gram. They demonstrated that the
sum of character n-gram embeddings outperformed ordi-
nary word embeddings. In addition, (Wieting et al. 2016)
found that the sum of character n-gram embeddings also
outperformed word embeddings constructed from character
embeddings with CNN and LSTM.

As an encoder, previous studies argued that additive com-
position, which computes the (weighted) sum of embed-
dings, is a suitable method theoretically (Tian, Okazaki,
and Inui 2016) and empirically (Muraoka et al. 2014;
Takase, Okazaki, and Inui 2016). In this paper, we used multi-
dimensional self-attention to construct word embeddings be-
cause it can be interpreted as an element-wise weighted sum.
Through experiments, we indicated that multi-dimensional
self-attention is superior to the summation and standard self-
attention as an encoder.

7 Conclusion
In this paper, we incorporated character information with
RNN language models. Based on the research in the field
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of word embedding construction (Wieting et al. 2016), we
focused on character n-gram embeddings to construct word
embeddings. We used multi-dimensional self-attention (Shen
et al. 2018) to encode character n-gram embeddings. Our
proposed charn-MS-vec improved the performance of state-
of-the-art RNN language models and achieved the best per-
plexities on Penn Treebank, WikiText-2, and WikiText-103.
Moreover, we investigated the effect of charn-MS-vec on ap-
plication tasks, specifically, machine translation and headline
generation. Our experiments show that charn-MS-vec also
improved the performance of a neural encoder-decoder on
both tasks.
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