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Abstract

Detecting anomalies in surveillance videos has long been an
important but unsolved problem. In particular, many existing
solutions are overly sensitive to (often ephemeral) visual ar-
tifacts in the raw video data, resulting in false positives and
fragmented detection regions. To overcome such sensitivity
and to capture true anomalies with semantic significance, one
natural idea is to seek validation from abstract representa-
tions of the videos. This paper introduces a framework of
robust anomaly detection using multilevel representations of
both intensity and motion data. The framework consists of
three main components: 1) representation learning using De-
noising Autoencoders, 2) level-wise representation genera-
tion using Conditional Generative Adversarial Networks, and
3) consolidating anomalous regions detected at each repre-
sentation level. Our proposed multilevel detector shows a sig-
nificant improvement in pixel-level Equal Error Rate, namely
11.35%, 12.32% and 4.31% improvement in UCSD Ped 1,
UCSD Ped 2 and Avenue datasets respectively. In addition,
the model allowed us to detect mislabeled anomalies in the
UCDS Ped 1.

1 Introduction
With the increasing popularity of surveillance cameras in
public places, there have been growing interests in systems
that automatically detect anomalous events in videos. Such
systems are crucial in domains like traffic monitoring and se-
curity control, where the sheer volume of video data makes
manual video analysis infeasible. Video anomaly detectors
follow two main approaches based on the availability of
data labels. Supervised methods (Singh and Mohan 2017;
Zhang et al. 2016; Li, Mahadevan, and Vasconcelos 2014)
usually learn the regular objects from the set of normal ex-
amples. Often the labels for supervised learning are costly
to obtain and are prone to human errors. Without label
information, unsupervised methods assume that abnormal-
ity has a lower probability of occurrence than regular ob-
jects in reality (Sodemann, Ross, and Borghetti 2012) and
identify any event that rarely occurs in videos to be an
anomaly. Since unsupervised learning can utilize huge un-
labeled video archives on a daily basis, this is the approach
we take to design our system.
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Both supervised and unsupervised methods usually work
on low-level features of pixel/edge/motion information to
detect abnormality (Ribeiro, Lazzaretti, and Lopes 2017;
Hasan et al. 2016; Chong and Tay 2017). For example, a
query frame is compared with its reconstructed frame that
is produced by deep Convolutional Autoencoders (CAEs)
(Ribeiro, Lazzaretti, and Lopes 2017; Hasan et al. 2016) or
CAEs/Long Short Term Memories (Chong and Tay 2017;
Luo, Liu, and Gao 2017). Regions with high reconstruc-
tion errors (over a given threshold) indicate the presence
of anomaly objects. Madhdyar Ravanbakhsh et al. (Ra-
vanbakhsh et al. 2017a; 2017b) apply the idea of adver-
sarial learning in Generative Aversarial Networks (GANs)
to localize anomaly behaviors. Two conditional GANs are
trained on the data pair of frames and their optical flow fea-
tures to produce generated frames/optical flow maps given
the other data. An irregular object is usually associated with
a high generation error in (Ravanbakhsh et al. 2017a) or
a low value of GAN’s discriminator (Ravanbakhsh et al.
2017b). Again, the inputs of these GAN-based systems are
raw video frames.

Detecting abnormality using low-level features encoun-
ters two issues: i) low-level detection usually causes frag-
mented and interrupted regions because an anomalous object
may contains very normal pixels, for example, a white car
also has pixels similar to a white footpath, and ii) low-level
information is sensitive to noise and is significantly affected
by environment changes and thus low-level detectors usu-
ally make a lot of false detections. These problems indicate
the unreliability and ineffectiveness of low-level detectors.
To address the first issue, we propose to detect anomaly ob-
jects at abstract representation. Such abstractness can be dis-
covered via multilayer architecture of deep networks (Zeiler
and Fergus 2014), where low layers encode visual features
such as edges, corners and colors whilst higher layers de-
scribe semantic identities such as objects and their posi-
tional relationships. Object-level detection allows us to ob-
tain complete anomaly objects without fragments or inter-
ruption. To tackle the second problem of false detections,
we are based on the idea that true anomaly objects should
be highlighted at many levels of detections and therefore we
combine low-level detection with abstract-level detection to
accurately isolate abnormality. This combination has three
benefits: a) increase the reliability of detection; b) reduce
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false detections at low levels and also abstract levels; and c)
more detected objects found by abstract-level detectors but
not by low-level ones. In particular, we firstly use Denoising
Autoencoders (DAEs) to extract the high representations of
low-level data, i.e., pixel intensity and optical flow features,
and then follow the Conditional Adversarial Generative Net-
works (cGAN) approach in (Ravanbakhsh et al. 2017a;
2017b) to detect anomaly objects at each representation
level. Detected objects that show a strong agreement be-
tween detection results at all levels are considered as anoma-
lies.

It is worthy to note that there are several studies (Tran and
Hogg 2017; Xu et al. 2017; Sabokrou et al. 2017) that can
detect anomalies at deep representation. More specifically,
these systems divide frames into local patches, feed these
patches into a deep network to obtain higher representation
and then identify anomaly patches using these representa-
tions. Our work stands out from such systems in two as-
pects: i) our multilevel anomaly detector is completely dif-
ferent from the existing single level detectors, which work
on either low-level data or high-level representations but not
both; and ii) our detection is done on the representation of
the whole frame, which completely preserves objects and
their interactions in the scene, whilst image partition cor-
rupts and disconnects objects and therefore, semantic infor-
mation is lost dramatically in aforementioned patch setting.

To summarize, the main contributions of this work are
three-fold:

• A multilevel detection framework is introduced to detect
anomaly objects in a video sequence at different levels of
semantic representations and consolidate these layer-wise
detections for more reliable and accurate results.

• Thorough experiments and analysis show that our multi-
level detectors significantly outperform other state-of-the-
art anomaly detectors (11.35%, 12.32% and 4.31% im-
provement in pixel-level Equal Error Rate) in three bench-
marks of UCSD Ped 1, UCSD Ped 2 and Avenue datasets.
A new record is obtained by our system in UCSD Ped 2.

• We also discover annotation mistakes of missing ab-
normality (video 32) and mislabeled partially oc-
cluded/distant objects in the UCSD Ped 1 dataset. We cor-
rect these errors and introduce a new annotation for the
widely-used benchmark dataset UCSD Ped 1.

2 Preliminaries
We firstly introduce the basic concepts of Denoising Autoen-
coders and Conditional Adversarial Generative Networks
that are the fundamental building-blocks of our system.

2.1 Denoising Autoencoders
Denoising Autoencoder (DAE) (Vincent et al. 2008) is a
neural network that is trained to reconstruct a data sample
v ∈ D from its corrupted version ṽ ∼ qnoise (ṽ|v), where
qnoise can be any noise distribution, e.g., a Gaussian or uni-
form distribution. The network is divided into two parts: an
encoder and a decoder. The encoder fθ (ṽ), parameterized
by θ, takes the input v and maps it to a code h in the hidden

space. The decoding function gφ (h) projects the code back
to the input space. In DAE, fθ and gφ are usually constructed
as deep convolutional networks of weight and bias parame-
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wherein the second term sets the penalty for the weights’
sparsity and γ is a regularization hyper-parameter. Training
AEs on perturbed data ṽ not only prevents the model from
learning an identity function - a trivial solution of AEs, but
also allows to obtain better representations, which are more
robust to noise in images (Vincent et al. 2008).

2.2 Conditional Generative Adversarial Networks
Similar to (Ravanbakhsh et al. 2017a), our anomaly detec-
tion system is also based on the generation errors of differ-
ent image feature types and thus we are interested in Condi-
tional Generative Adversarial Networks (cGAN) (Isola et al.
2017) to learn the transformation between two image rep-
resentations, e.g., frames to optical flow images and vice
versa. More specifically, cGAN learns a generative model
G that outputs an image G (x, z) (e.g., an optical flow im-
age) from a source image x (e.g., a pixel intensity im-
age) and a random vector z. Using the adversarial learning
mechanism, the generator aims at generating realistic im-
ages, which look like target images y and cannot be distin-
guished by a deterministic neural network, named discrimi-
nator D : {x,o} → [0, 1], where D (x,o) is indicates how
correct o is a transformed image of x. By contrast, D is op-
timized to discriminate the “fake” pair of images generated
by G and the real pair from the data. This training phase is
summarized through the following objective function:

JcGAN = Ex,z [log (1− D (x,G (x, z)))] +

Ex,y [log D (x,y)] + λJL1
(x,y) (2)

wherein the additional L1 loss JL1
(x,y) =

‖y − G (x, z)‖1 forces G to generate images as close
to the target images as possible and the hyper-parameter λ
balances the losses. At training time, G tries to minimize
Eq. 2 whilst D learns to maximize this equation. We update
the discriminator with one gradient step and then the
generator with one step in each training epoch (Goodfellow
et al. 2014). We refer readers to (Isola et al. 2017) for more
details of the networks and their training protocol.

3 Multilevel Anomaly Detection
In this section, we describe our proposal of MultiLevel
Anomaly Detector (MLAD) in detail. Since representation
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Figure 1: Our proposed MLAD system: a) framework overview and b) single level detection.

learning enables to express the scene at various levels of ab-
stractness, detecting unusual objects at these levels can bring
the benefit of discovering different aspects of abnormality
and then improve the detection performance. Our system can
be split into the training and detection phases. In the train-
ing phase, we i) compute the optical flow image for every
frame; ii) train one separate DAE on each type of frame data
and optical flow data; iii) feed each data type into the corre-
sponding trained DAE to extract its high-level features; and
iv) train a pair of cGANs on these high-level representations
of the frame and motion data.

To detect anomalies in testing videos, the system performs
the following steps: i) extracting optical flow features of
testing frames; ii) obtaining the high-level representations
of frames and motion features using the DAEs; iii) apply-
ing trained cGANs to compute generation error maps at one
level; iv) thresholding these maps to obtain binary detection
maps at each level; and finally v) combining these detec-
tion maps into a final detection result. The overview of both
training and detection processes is illustrated in Fig. 1a.

3.1 Learning Multilevel Representations
The training step starts with extracting motion features and
learning abstract representations of all low-level data. Given
a training video collection DF = {Fi}

Nf

i=1 of Nf frames,
we firstly resize all frames into 256× 256 images and scale
their values into [−1, 1]. The method in (Brox et al. 2004)
is adopted to compute the motion map Oi for every two
consecutive frames Fi and Fi+1. Each motion map is a 3-
channel image of optical flow description along the x-axis,
the y-axis and their magnitude. Next, we train two Denois-
ing Autoencoders DAEF and DAEO separately on the frame
data DF and the motion data DO = {Oi} by minimizing
Eq. 1. These networks have the same number of layers for
both encoder and decoder. For the encoding path, we use
convolutional layers with the stride of 2 and the kernel size
of 5 × 5, followed by batch normalization layers and leaky
ReLU activation functions. In the decoder, we use the simi-
lar architecture but replace convolutional layers with decon-

volutional ones. All networks are trained using Adagrad op-
timizer (Duchi, Hazan, and Singer 2011), γ = 1, a learning
rate of 0.1 and 500 epochs.

When DAEF has been learned from the training data, we
feed each frame Fi into the network and achieve the activa-
tions at each encoding layer. Since leaky ReLU activations
are unbounded, we normalize them to zero-mean and unit-
variance and then clip them to [−1, 1] to obtain F (l)

i as the
lth level of abstract representation for the frame data. We
apply the same procedure to extract the abstract representa-
tion O(l)

i for the motion data. Finally, both D(l)
F =

{
F

(l)
i

}
and D(l)

O =
{
O

(l)
i

}
are coupled as data to train cGANs for

the lth level in the next step. It is noteworthy that although
1 ≤ l ≤ Ne, we assume that l = 0 goes back to the low-level
data, where F (0)

i = Fi and O(0)
i = Oi. Thus, our notations

of F (l)
i andO(l)

i imply 0 ≤ l ≤ Ne in all remaining sections.

3.2 Training Detectors

For each level of representations, we train two generative
networks: G(l)

F→O tries to generate the motion representation
O

(l)
i from a frame representation F (l)

i and the other G(l)
O→F

outputs F (l)
i from O

(l)
i . To that end, G(l)

F→O is jointly trained
with a discriminator on the input D(l)

F and the label data
D(l)
O in the adversarial learning as described in Sec. 2.2. For

G(l)
O→F , the input and label data are D(l)

O and D(l)
F respec-

tively. We follow the network architecture and the setting in
(Isola et al. 2017) to train these models using a learning rate
of 0.0002, λ = 100 and the batch size of 1. At the end of
training, all discriminators are discarded and we come up
with Ne pairs of generators

(
G(l)
F→O,G

(l)
O→F

)
at all abstract

levels and two generators
(

G(0)
F→O,G

(0)
O→F

)
at the low level,

all of which are used to detect irregularities in testing videos.
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Algorithm 1 Combining multilevel detection maps

Require: Detection maps
{
D(l)

}
, score maps

{
E(l)

}
, object

lists
{
C(l)

}
, anomaly threshold β and overlapping threshold

ρ
Ensure: Final detection D, E and C

1: D ← D(0); E ← E(0); C ← C(0)

2: for l← 1, . . . , Ne do
3: for c ∈ C and cl ∈ C(l) do
4: if L(c∩cl)/L(c) ≥ ρ then
5: D (c)← D (c) ∪D(l) (cl)

6: E (cl ∪ c)← max
(
E (cl ∪ c) , E(l) (cl ∪ c)

)
7: C (c)← C (c) ∪ C(l) (cl)

8: E ← min (E, 2β)

9: E ← E−min(E)
max(E)−min(E)

3.3 Anomaly Detection
Single level detection At testing time, MLAD inputs a se-
quence of frames Fi and computes the corresponding mo-
tion maps Oi, analogously in the training phase. Then, the
high-level features F

(l)
i and O

(l)
i are extracted by pass-

ing Fi and Oi into DAEF and DAEO respectively. For
every representation level, we run two trained cGANs on
these high-level features to gain the generated motion im-
age Ô(l)

i = G(l)
F→O

(
F

(l)
i , z

)
and generated frame F̂ (l)

i =

G(l)
O→F

(
O

(l)
i , z

)
. Since we assume that abnormality usually

occurs in regions with motion (static objects exist in every
frame and then they are regular objects), we set the values
of F (l)

i , O
(l)
i , F̂

(l)
i and Ô(l)

i to 0 at zero-optical flow loca-
tions. This assumption also helps to limit the search space
and speed up the detection.

Next, we compute generation error maps as the differ-
ence between the original features and the generated ones,
e
(l)
F,i = F

(l)
i − F̂

(l)
i and e

(l)
O,i = O

(l)
i − Ô

(l)
i . To con-

solidate these error maps, we firstly normalize them into

[0, 1] for each channel as ē(l)F,i =
[
e
(l)
F,i,j/mF,j

]N(l)
F

j=1
and

ē
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e
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O,i,j/mO,j

]N(l)
O

j=1
, wherein N (l)

F and N (l)
O are the

number of the channels of the error maps whilst mF,j =

maxi,x,y e
(l)
F,i,j (x, y) andmO,j = maxi,x,y e

(l)
O,i,j (x, y) are

the maximum errors across all locations in the video for the
jth channel. The channel-wise normalization is crucial to re-
duce the negative effect of false detections in one channel.
The combined error map at one level is obtained by sum-
ming these normalized maps ē(l)i = ē

(l)
F,i + αē

(l)
O,i, where

α is a coefficient to control the contribution of each fea-
ture type. We set α = 2, analogously to (Ravanbakhsh et
al. 2017a) in all experiments. The error maps of the whole
video E(l) =

{
ē
(l)
i

}
is smoothen by taking the average of

consecutive frames in a sliding frame window of 5. By com-
paring E(l) with a predefined anomaly threshold β, we ob-

tain a binary detection map as D(l)
i (x, y) = 1 for abnormal

pixels if ē(l)i (x, y) > β, otherwise D(l)
i (x, y) = 0, where

(x, y) is a pixel in the ith frame.
We adopt the connected-component-finding procedure in

(Vu et al. 2017) to filter out false detections and noise.
Specifically, we construct a sparse graph of vertices at
D

(l)
i (x, y) = 1 and edges that connect two vertices (i, x, y)

and (i+ t, x+ u, y + v), satisfying t, u, v ∈ (−1, 0, 1) and
|t| + |u| + |v| > 0. By finding all connected components
C(l) in this graph and discarding one c ∈ C(l) whose lifes-
pan L (c) (the number of frames in which c occurs) is less
than 30 contiguous frames, we obtain the refined detection
map D(l) and the corresponding object list C(l), where an
anomalous object is one connected component. Finally, we
apply dilation operations to the refined mapD(l) to fill noisy
holes inside detected regions. Fig. 1b summarizes all afore-
mentioned steps to compute D(l) at one level.

Multilevel detection combination Since detections at all
levels provide different views of anomaly objects, the re-
sult at one level can support and correct wrong detections
at the other levels and therefore combining these results can
improve the performance. Alg. 1 describes our proposal to
merge anomaly objects over levels. Starting with the object
list at the pixel-level C = C(0), we travel across all higher
levels and merge the abstract object list C(l) into the current
listC. In particular, given two objects c ∈ C and c(l) ∈ C(l),
if their intersection c ∩ c(l) is large enough (greater than an
overlapping threshold ρ) in terms of the lifespan ratio, we
update c and its corresponding score map E with anomaly
pixels in c(l)(lines 5− 7 in Alg. 1). Finally, E is normalized
into [0, 1] by clipping any values that are greater than 2β and
shifting and scaling E by its minimum and maximum. We
use 2β to balance the value ranges of regular and irregular
objects.

4 Experiments
In this section, we show that our proposal of multilevel de-
tection can improve the performance of localizing anomalies
in a video sequence.

4.1 Experimental settings
We compare our system with the state-of-the-art methods on
three datasets of UCSD Ped 1 (Li, Mahadevan, and Vascon-
celos 2014), USCD Ped 2 (Li, Mahadevan, and Vasconcelos
2014) and Avenue (Lu, Shi, and Jia 2013). Each dataset con-
sists of two sets of training videos and testing videos We re-
size all videos into the same size of 256× 256 pixels. Since
our method is completely unsupervised, we discard all label
information during training. We set the thresholds β = 0.8
and ρ = 0.75 in all experiments. These thresholds give the
best performance in all datasets.

To evaluate an anomaly detection system, we are based
on the criteria of frame-level, pixel-level in (Li, Mahadevan,
and Vasconcelos 2014) and dual-pixel level (Sabokrou et al.
2015). These metrics compute the pair of the true-positive
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UCSD Ped 1 UCSD Ped 1? UCSD Ped 2 Avenue
AUC↑ EER↓ AUC↑ EER↓ AUC↑ EER↓ AUC↑ EER↓

MLAD0 66.07 22.38 64.41 22.32 92.96 5.47 47.07 43.90
MLAD0+Alex 63.48 24.35 61.89 24.24 94.33 4.43 40.60 46.33
MLAD0+3 66.60 22.65 66.95 21.08 94.45 4.58 52.82 38.82

Table 1: Pixel-level evaluation (%) on three datasets and
new ground-truth of UCSD Ped 1 (denoted by ?). The
best/second best values are bold/underlined. ↑/↓ means
higher/lower is better.
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(d) (e) (f)

(g) (h) (i)

Figure 2: The pairs of filters and their activations learned by
our DAEF . The white values in activation images indicate
where the left filter is activated most.

rate (TPR) and the false-positive rate (FPR) that are TPR =
# of true-positive frames

# of positive frames and FPR = # of false-positive frames
# of negative frames .

At the frame-level evaluation, we do not care about find-
ing anomaly objects in the scene and therefore one frame
is true-positive if it contains abnormality in its ground-truth
and any pixel is detected as an anomaly. Meanwhile, the lo-
cations of detected objects are important in the pixel-level
evaluation; in particular, a frame is true-positive if at-least
40% of abnormal ground-truth pixels are detected by the
system. However, the drawback of the pixel-level is that
when 40% of the abnormal ground-truth are overlapped, all
false detected regions are ignored. As a result, the system
can give as many (false) detections as possible to have more
chance to cover the ground-truth. To address this problem,
the dual-pixel level metric adds one constraint to the pixel-
level conditions. In particular, at least ξ (i.e., 0.05 or 5%)
of detected regions are true abnormal pixels. Therefore, if a
large irrelevant region is detected, it is not considered as a
true positive by this metric.

For each criterion, a Receiver Operating Characteristic
(ROC) curve is drawn using pairs of TPR and FPR. Finally,
Area Under Curve (AUC) and Equal Error Rate (EER), that
is the ratio of misclassification at FPR = 1− TPR, are usu-
ally reported to compare methods.

4.2 Abstract feature representations
In our first experiment, we evaluate the effectiveness of
DAEs to represent the scene at different levels of abstract-
ness. Two DAE networks of 3 hidden layers are trained
separately on the pixel-intensity data and the optical flow
data. The numbers of the filters of convolutional layers are
32, 16 and 8 respectively and the stride is set to 2. We com-
pare three MLAD versions of using: a) low-level data only
(MLAD0) including raw frames and optical flow images; b)
low-level data combined with the top abstract representa-
tions extracted by DAEs (MLAD0+3) and c) combined with
Conv5 of AlexNet (Krizhevsky, Sutskever, and Hinton 2012)

Frame 135 (Test12) GT+Detection

Ground-truth (GT) MLAD

AlexNet MLAD (Layer 3)

0

1

0+30+Alex MLAD

(a) (b) (c) (d)

Figure 3: An example of detecting anomaly objects at
AlexNet-Conv5 and our MLAD’s layer 3 on UCSD Ped 2: a)
original frame and ground-truth; b) ground-truth and detec-
tion results on AlexNet-Conv5 and our DAEO’s layer 3; c-d)
optical flow error maps produced by detectors on AlexNet-
Conv5 and our DAEO’s layer 3. Best view in color.

(MLAD0+Alex). Table 1 shows that MLAD0+3 can improve
the detection performance but MLAD0+Alex cannot. This is
because AlexNet is trained on ImageNet (Russakovsky et al.
2015) for image classification problem, where the objects
are highly-distinctive at the global scale, whereas abnormal
objects in surveillance videos can appear in local and small
regions of the scene. As a result, scene-driven training for
abstract feature extraction is better than using a general net-
work like AlexNet.

To further understand the trained DAEs, we have a look
at their filters and activations (Fig. 2). The filters at the low
layer (the top row) usually describe colors and edges, for ex-
ample, the filter in Fig. 2a describes the pattern of two black
and white regions and it responses significantly at the bound-
aries of the footpath and pedestrians. Conv 2 and 3 encode
highly abstract levels of objects and their relationships in the
scene. Since these filters are trained on UCSD Ped 2, where
pedestrians move on a white footpath, the dark blobs in the
filters Fig. 2d-f represent pedestrians and therefore Conv 2
layer focuses on objects. Similarly, multiple dark blobs in
Conv 3’s filters (Fig. 2g-i) describe many objects and their
relative locations. It is noteworthy that our networks tend to
learn region/pattern-like filters rather than corner/edge filters
as shown in (Erhan et al. 2009) since the surveillance scene
contains more low-frequency features such as homogeneous
regions than high-frequency details in close-up object im-
ages of ImageNet. It also explains why Conv5 features of
AlexNet are not as effective as our learned features in this
anomaly detection problem.

Fig. 3 is the anomaly frame that fails to be detected by
AlexNet-Conv5. The frame contains an abnormal skater,
which is moving among a lot of pedestrians. Due to the
complexity of the crowded footpath, AlexNet-based detector
does not understand the scene comprehensively and there-
fore, it cannot distinguish between the true abnormality and
most of the pedestrians (many wrong detections in Fig. 3b
and c). Conversely, MLAD0+3 does the task very well and
isolates the skater correctly (Fig. 3b and d).

4.3 New UCSD Ped 1 ground-truth
The experimental results in Table 1 show that MLAD0+3

has better performance than MLAD0 in both UCSD Ped 2
and Avenue but there is marginal improvement in UCSD
Ped 1. This motivates us to investigate the results in this
dataset deeply. Surprisingly, we discover that MLAD0+3 can
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(a) (b) (c)

Test 028 - Frame 109 Test 036 - Frame 019 Test 032 - Frame 100

Figure 4: Some incorrect labels in UCSD Ped 1: a-b) mis-
labeled anomaly objects because of partial occlusion and c)
a complete abnormal biker missing from the ground-truth.
Best view in color.

Layers 3 4 5 0+3 0+4 0+5 0+all 0+≥3

Pe
d

1* (A) 57.01 68.36 63.14
(B) 42.60 62.20 57.76
(C) 36.87 53.98 63.23 64.61 56.89 64.13
(D) 38.14 46.88 33.49 64.24 63.46 64.67 62.60 63.47
MLAD0 : 64.41

Pe
d

2 (A) 59.83 94.45 92.51
(B) 47.04 93.06 92.78
(C) 63.25 66.20 96.12 93.69 96.87 96.98
(D) 58.68 78.65 64.73 97.22 96.67 97.36 97.61 98.28
MLAD0 : 92.96

Av
en

ue (A) 52.33 52.82 48.66
(B) 51.82 49.98 49.69
(C) 50.04 47.19 50.31 48.43 50.93 51.59
(D) 46.35 52.45 52.43 50.1 50.21 48.74 51.36 51.82
MLAD0 : 47.07

(A) 32/16/8 (B) 32/64/128 (C) 32/64/128/256
(D) 64/128/256/512/1024

Table 2: AUCs (%) at the pixel-level criterion are reported
on different networks and abstract layers. Ped1? is the re-
labeled UCSD Ped 1. The bold/underlined numbers are the
best/second best in each dataset. Italic values indicate im-
provement compared with MLAD0.

find a lot of correct anomaly frames, which were unfortu-
nately labeled as normal frames in the ground-truth. This
problem not only degrades its results but also counts the
false detections of MLAD0 as true-positives and therefore,
the power of multilevel detector is not evaluated properly
in UCSD Ped 1. We review the whole dataset and correct
its two main mistakes of mislabeling partially occluded ob-
jects (e.g., Fig. 4a and b) and missing some anomaly ob-
jects (e.g., Fig. 4c). Overall, 745 frames of 27 videos (out
of 36 videos in UCSD Ped 1) are re-annotated. The perfor-
mance in this new ground-truth (Ped 1?) is reported in Ta-
ble 1, where MLAD0+3 shows the improvements of 2.54%
in AUC at the pixel-level against MLAD0. This result con-
firms the benefit of multilevel detection and the effectiveness
of our proposed framework. It is worthy to note that since the
labeling problem does not take place in Ped 2, where all oc-
cluded objects are correctly labeled, we do not re-annotate
this dataset. Our new ground-truth is available online 1.

4.4 Abstract detector and combined detector
We test our framework on four different network structures
of (A) 32/16/8, (B) 32/64/128, (C) 32/64/128/256 and
(D) 64/128/256/512/1024, where (A) 32/16/8 indicates a
3-layer network (A) of 32, 16 and 8 filters in its convolu-
tional layers. For each network configuration, we evaluate

1https://github.com/SeaOtter/vad gan

the contribution of each abstract layer and their combination
with low-level data to the overall detection performance.

Table 2 shows that a single abstract-level detector does
not always outperform a low-level detector MLAD0. This is
because it also has its own false detections. For UCSD Ped 1
and 2, the detector at an abstract level can be fooled by the
diversity of human poses or different configurations of the
group of pedestrians (e.g., Fig. 5a). By contrast, for the Av-
enue dataset with large-size objects, MLAD0 makes more
mistakes (e.g., false and fragmented detections as shown in
Fig. 5c) and thus the abstract-level detector is better. How-
ever, since an abnormal object, if exists, should be present
in detection results at many levels and therefore, combining
both low and abstract-level detectors can help to highlight
this object more correctly and eliminate detection mistakes
at each level (Fig. 5a). As a result, the combined detector
boosts performance dramatically as shown in Table 2.

We also investigate different strategies to combine detec-
tors: MLAD0 cooperates with (I) one abstract-level detector,
(II) all abstract-level detectors and (III) detectors at the high-
est layers (≥ 3). For (III), we choose all layers from the 3rd

layer because it is the lowest layer, where MLAD0+3 shows
improvement in most of the datasets. We observe that (II)
and (III) do not increase the accuracy much but add more
computational cost to the entire system. For this reason, we
conclude that the strategy (I) is the best choice to balance
the accuracy and the speed.

For the network size, better detection usually comes with
larger networks. However, deeper layers do not always mean
better performance. This is because the depth of a layer is
related to object sizes in video frames. More specifically,
one unit at a high layer expresses the combination of vi-
sual elements (edges, parts, objects) of the previous layer
and then this implies that a deeper layer works on larger im-
age regions, whose areas are specified by the size of previ-
ous layers’ filters. As a result, abstract-level detectors work
less effectively in far-view scenes with small objects such as
UCSD Ped 1 and 2 than near-view scenes such as Avenue
as shown in Table 2 (some samples of these datasets can be
seen in Fig. 5). From this table, we choose the configuration
MLAD0+3 using the network (A) for our next experiments
because of its acceptable improvement in most cases.

4.5 Video anomaly detection
We compare our proposed framework with existing systems
that are based on conventional machine learning methods
and other state-of-the-art deep detectors. From the results in
Table 3, we can observe that our method MLAD0+3 (A) out-
performs all methods in UCSD Ped 2 at least 2.02% in AUC
and 4.22% in EER. It also achieves excellent results with the
highest dual-pixel value of 51.76% and has at least 9.76%
and 4.31% improvement in AUC and EER at the pixel-level
evaluation in the Avenue dataset. For UCSD Ped 1, although
the performance of our system is lower at the frame-level
evaluation, MLAD0+3 (A) is still better in dual-pixel level
criterion and has much lower EER and comparable AUC in
pixel-level evaluation. It is noteworthy that since the pixel-
level and dual-pixel level criteria consider object locations,
they can evaluate the detection task more precisely than the
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Ped 1 Ped 2 Avenue
Frame Pixel Dual Frame Pixel Dual Frame Pixel Dual

AUC↑ EER↓ AUC↑ EER↓ AUC↑ AUC↑ EER↓ AUC↑ EER↓ AUC↑ AUC↑ EER↓ AUC↑ EER↓ AUC↑
Machine learning methods
OC-SVM[1] 59.06 42.97 21.78 37.47 11.72 61.01 44.43 26.27 26.47 19.23 71.66 33.87 33.16 47.55 33.15
GMM[1] 60.33 38.88 36.64 35.07 13.60 75.20 30.95 51.93 18.46 40.33 67.27 35.84 43.06 43.13 41.64
MDT[2] 81.8 25.0 44.0 55.0 85.0 25.0 55.0
Deep models
ConvAE[3] 81.00 27.90 90.00 21.70 70.20 25.10
WTA+SVM[1x1][4] 81.3 27.9 56 46.8 96.6 8.9 89.3 16.9
AMDN[5] 92.1 16.0 67.2 40.1 90.8 17.0
DeepGMM[6] 92.5 15.1 69.9 64.9
Plug-and-Play CNN[7] 95.7 8.0 64.5 40.8 88.4 18.0
GAN/gen[8] 97.40 8.0 70.30 35.00 93.50 14.00
GAN/dis[9] 96.80 7.0 70.80 34.00 95.50 11.00
MLAD0+3(A) 82.34 23.50 66.60 22.65 60.79 97.52 4.68 94.45 4.58 93.99 71.54 36.38 52.82 38.82 51.76
MLAD (best for each
dataset) 82.34 23.50 66.60 22.65 60.79 99.21 2.49 97.22 1.74 96.75 71.54 36.38 52.82 38.82 51.76

MLAD0+3(A) MLAD0+3(D) MLAD0+3(A)
[1](Vu et al. 2017), [2](Mahadevan et al. 2010), [3](Hasan et al. 2016), [4](Tran and Hogg 2017), [5](Xu et al. 2015),
[6](Feng, Yuan, and Lu 2017), [7](Ravanbakhsh et al. 2018), [8](Ravanbakhsh et al. 2017a), [9](Ravanbakhsh et al. 2017b)

Table 3: Anomaly detection results at the frame-level, pixel-level and dual pixel-level (α = 5%) criteria. Higher AUC and
lower EER indicate better performance. Meanwhile, high dual-pixel values point out more accurate localization. We do not
report EER for dual-pixel level because this number does not always exist. The best scores are in bold whilst the next best is
underlined. A cell with “ ” indicates “value not reported”.

Methods AUC EER Methods AUC EER
WTA+SVM 25.3 18.9 Plug-and-Play CNN 31.2 32.8

AMDN 24.9 24.1 GAN/gen 27.1 27.0
DeepGMM 22.6 49.8 GAN/dis 26.0 27.0
Minimum 22.6 18.9 MLAD0+3(A) 15.74 -0.85

Table 4: The average AUC and EER gaps of existing deep
models and our MLAD0+3(A) in the UCSD Ped 1 dataset,
where AUC gap = AUC (frame-level) - AUC (pixel-level)
and EER gap = EER (pixel-level)-EER (frame-level).

frame-level evaluation. For this reason, although existing
models have higher frame-level values than our system, they
are only slightly higher (about 4.2% in AUC) at the other
criteria in UCSD Ped 1. This reveals that these models are
finding many wrong anomalous pixels in video frames.

This observation is also confirmed by considering the
gaps between the frame-level and pixel-level criteria in
UCSD Ped 1 (Table 4). The minimum AUC and EER gaps
of deep methods are 22.6% and 18.9%, whereas these gaps
are smaller for MLAD0+3(A), 15.74% and −0.85% respec-
tively. More interestingly, the negative value of our EER
gap indicates that our pixel-level EER is even better than
the frame-level EER. Furthermore, there is slight difference
between AUC of MLAD at the pixel-level criterion and its
stricter version of the dual-pixel level criterion, showing that
MLAD is focusing on object localization intensively and
thus it can highlight most anomalous objects correctly with
low false detections. Fig. 5 visualizes some cases detected
by MLAD0+3(A): a) filtering out false detections at the ab-
stract level; b) an anomaly object missed by the low-level de-
tector and c) fragmented and false detections at the low level.
Finally, we report the best performance and the optimal net-
work configuration for each dataset in Table 3 (the last row).
Overall, excellent performance in video anomaly detection
task proves that our proposed idea of multilevel detection is
useful to localize abnormality in surveillance videos.

Frame+GT Low 3rd Low + 3rd level

Pe
d

1
Pe

d
2

Av
en

ue

(a)

(b)

(c)

Figure 5: Some examples of detecting anomaly objects in
all datasets: (from left to right) original frames and ground-
truth (GT), detection results at low-level representations
MLAD0, at abstract-level representations MLAD3 (A) and
combined detections MLAD0+3 (A). Legends for colors: red
is ground-truth (GT), magenta is a single level detection,
green is the combined detection and yellow is the intersec-
tion of red and green regions. Best view in color.

5 Conclusion
We propose a multilevel video anomaly detector. By find-
ing unusual objects at high-level representations besides at
low level data and combining these detection results, our de-
tector can localize anomaly regions with high accuracy and
low false detections. Experiments on public datasets show
that our proposed method outperforms single level detec-
tors and other existing state-of-the-art systems on both the
UCSD Ped 2 and Avenue datasets, and is competitive on
UCSD Ped 1 dataset. The ground-truth of UCSD Ped 1 is
also corrected and published to the research community.
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