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Abstract

Large-scale multi-label learning (LMLL) aims to annotate
relevant labels from a large number of candidates for unseen
data. Due to the high dimensionality in both feature and label
spaces in LMLL, the storage overheads of LMLL models are
often costly. This paper proposes a POP (joint label and feature
Parameter OPtimization) method. It tries to filter out redun-
dant model parameters to facilitate compact models. Our key
insights are as follows. First, we investigate labels that have lit-
tle impact on the commonly used LMLL performance metrics
and only preserve a small number of dominant parameters for
these labels. Second, for the remaining influential labels, we
reduce spurious feature parameters that have little contribution
to the generalization capability of models, and preserve pa-
rameters for only discriminative features. The overall problem
is formulated as a constrained optimization problem pursuing
minimal model size. In order to solve the resultant difficult op-
timization, we show that a relaxation of the optimization can
be efficiently solved using binary search and greedy strategies.
Experiments verify that the proposed method clearly reduces
the model size compared to state-of-the-art LMLL approaches,
in addition, achieves highly competitive performance.

Introduction
Large-scale multi-label learning (LMLL) (Zhang and Zhou
2014; Prabhu and Varma 2014) refers to annotate unseen data
with the most relevant subset of labels from a large number
of labels. It receives many applications recently. For exam-
ple, in web page categorization (Partalas et al. 2015), there
are thousands of labels (categories) from Wikipedia and one
needs to annotate a new web page with its relevant labels;
in image annotation (Deng et al. 2009), we have thousands
of tags in the repository and one wishes to annotate each
individual picture with its relevant tags. Similar observations
can be found in some other applications, such as recommen-
dation system (McAuley, Pandey, and Leskovec 2015), video
classification (Abu-El-Haija et al. 2016) and so on.

LMLL suffers from the curse of dimensionality in both
feature and label spaces (Jian et al. 2016; Niculescu-Mizil and
Abbasnejad 2017). Normally, in LMLL applications, such
as web page categorization and image annotation, data are
represented by feature vectors with high dimensionality. On
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Figure 1: (a): In practice, a popular approach is to train a
complete model for LMLL data with the usage of powerful
computational platform, and then compress the model which
is transmitted to edge devices to make inference. (b): The
main difficulty in model compression is to retain a compara-
ble performance while achieving a highly compressed model.
Function f measures the performance of the model.

the aspect of label space, data sets with thousands of labels
have widely appeared in domains like object recognition and
text classification (Zubiaga 2012).

The high dimensionality in both the feature and label
spaces significantly increases the memory storage require-
ments, limiting the deployment of LMLL algorithms in real-
world applications (Prabhu and Varma 2014). For example,
many effective approaches of traditional multi-label learning,
such as the popular binary relevance scheme (Tsoumakas,
Katakis, and Vlahavas 2009; Zhang and Zhou 2014; Babbar
and Schölkopf 2017; 2018), are hard to deal with modern
LMLL data sets, since they have to systematically train a
binary classifier for each label and thus the storage overhead
scales linear to the number of features and labels, which is
very expensive.

In this paper, we propose the POP (joint label and fea-
ture Parameter OPtimization) method to alleviate the storage
overhead problem. Given a pre-trained model M, the goal
of our proposal is to minimize its model size without sig-
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Figure 2: An illustration of our method. Given a pre-trained
model M, we perform joint label and feature parameter opti-
mization to facilitate a compact model M̃.

nificantly losing predictive performance (as demonstrated in
Figure 1a and Figure 1b). We illustrate the proposed model
compression method in Figure 2.

• In terms of label parameter optimization, ideally the most
influential label parameters in terms of LMLL metrics
(PSP@k and PSnDCG@k) are detected to facilitate com-
pact models, which unfortunately is a hard optimization
problem. Alternatively, we propose to detect the influential
labels by calculating the performance impact for com-
monly used LMLL metrics. The analyses show that the
performance impact of labels is closely related to the la-
bel importance and label frequency. Therefore, we only
preserve a small number of dominant parameters for the
labels that have little performance impact, which facilitates
the compactness and retains a comparable performance.

• In terms of feature parameter optimization, since the most
discriminative information is usually carried by only a sub-
set of relevant features (Liu and Motoda 2007), we elim-
inate the noisy, redundant and irrelevant features which
marginally affect the learning performance. Specifically,
the spurious feature parameters which have little contribu-
tion to the generalization capability are removed, so that
the model size is shrunk.

Generally, we formulate the above aspects as a constrained
optimization problem pursuing minimal model size. In order
to solve the resultant difficult optimization, we show that
a relaxation of the optimization can be efficiently solved
using binary search and greedy strategies. Experiments verify
that the proposed method clearly reduces the model size
compared to state-of-the-art LMLL approaches, in addition,
achieves highly competitive performance.

In the following, we first introduce related work and the
commonly used LMLL performance metrics, and then we
present the POP method, with the experimental results. Fi-
nally we conclude this work.

Related Work
This work is mostly related to three branches of studies.

LMLL Model Compression Previous studies on LMLL
model compression typically work on embedding approaches
that project label vectors onto a low dimensional space based
on the assumption that the label matrix is low-rank (Chen
and Lin 2012; Kapoor, Viswanathan, and Jain 2012; Lin et
al. 2014; Xu, Tao, and Xu 2016; Yeh et al. 2017). However,
these studies do not take the pre-trained ‘optimal’ model into
account and may lead to suboptimal performance. Recently,
there are a few studies that yield a sparse version of the pre-
trained ‘optimal’ model by filtering out spurious features
parameters (Babbar and Schölkopf 2017). However, they
assume that all the labels are equally important, which may
be not the case for LMLL performance metrics.

LMLL Feature Selection There are some studies about
multi-label feature selection. For example, Zhang, Peña, and
Robles (2009) adapted the classical naive Bayes classifiers.
Ma et al. (2012) proposed to learn a feature subspace that
is shared among multiple different classes. Jian et al. (2016)
introduced a principled way of exploiting label correlations
for feature selection in the presence of noisy and incomplete
label information. All these studies assume that features are
useful or useless for all labels. In many cases, however, one
feature which is useless to some labels may be critical to
some others. Direct multi-label feature selection typically
obtains a suboptimal solution.

LMLL Label Selection There are also some proposals on
label selection in LMLL. For example, Boutsidis, Mahoney,
and Drineas (2009) proposed to find approximate solutions
of the column subset selection problem efficiently. Bi and
Kwok (2013) selected a small subset of labels that can ap-
proximately span the original label space. Weston, Makadia,
and Yee (2013) partitioned the input space so that any given
example can be mapped to a partition or set of partitions.
Recently, Niculescu-Mizil and Abbasnejad (2017) proposed
a label filter method to reduce prediction time. Different from
above label selection methods, our proposal does not remove
any label so that it can make predictions for all labels.

To our best knowledge, this paper is the first proposal
on both label and feature parameter optimization for LMLL
model compression.

Common Performance Metrics in LMLL
In this section, we introduce two commonly used LMLL
performance metrics, PSP@k and PSnDCG@k (Babbar and
Schölkopf 2018; Jain, Prabhu, and Varma 2016).

PSP@k The first one is Propensity Scored Precision@k
(PSP@k) proposed in (Jain, Prabhu, and Varma 2016).
PSP@k is popularly used in LMLL applications, especially
for ranking tasks such as information retrieval. In PSP@k,
only a few top predictions of an instance will be considered.
For instance x ∈ Rd where d represents the feature dimen-
sionality, the PSP@k is defined for a predicted score vector
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ŷ ∈ RL and ground truth label vector y ∈ {0, 1}L as

PSP@k(y, ŷ) :=
1

k

∑
l∈rankk(ŷ)

yl
pl

where L is the size of label set and rankk(ŷ) returns the
indices of k largest value in ŷ ranked in descending order.
pl =

1
1+C(Nl+B)−A is the propensity score for the l-th label,

where A, B, C are set in a heuristic manner on different data
sets and Nl is the number of the positive training instances.

PSnDCG@k Propensity Scored nDCG@k (PSnDCG@k)
is another commonly used ranking based performance mea-
sure in LMLL and is defined as

PSnDCG@k(y, ŷ) :=
PSDCG@k∑min(k,||y||0)

l=1
1

log(l+1)

where PSDCG@k(y, ŷ) :=
∑

l∈rankk(ŷ)

yl
pl log(l + 1)

In particular, when setting pl = 1 to all labels, PSP@k
and PSnDCG@k reduce to another two popular LMLL per-
formance metrics P@k and nDCG@k, respectively.

Joint Label and Feature Parameter
Optimization (POP)

In this section, we present the proposed framework POP.
Given a pre-trained LMLL model, our goal is to minimize
the model size while retaining a comparable performance
with the pre-trained LMLL model.

Formally, given the pre-trained model M ∈ Rd×L and a
set of N samples D = {(xi,yi)}Ni=1 where xi ∈ Rd,yi ∈
{0, 1}L, the goal is to find a compact model M̃ with compa-
rable performance. Such objective can be formalized as,

min
M̃

size(M̃) (1)

s.t. f(M̃,D) ≥ q∗ − ε

where size(M̃) returns the model size of M̃, q∗ is the per-
formance of model M on D, ε controls the tolerance to per-
formance deterioration, and function f measures the perfor-
mance of model M̃ on data D. In this paper, the pre-trained
model M is realized by binary relevance approaches shown
state-of-the-art performance (Babbar and Schölkopf 2017;
2018; Niculescu-Mizil and Abbasnejad 2017).

More specifically, by formulating the model size of M̃ as
||M̃||0 and f(M̃,D) = perf(XM̃,Y), where perf refers to
commonly used LMLL performance metrics, i.e., PSP@k
and PSnDCG@k. Eq. (1) can be reformulated as

min
M̃
||M̃||0 (2)

s.t. perf(XM̃,Y) ≥ q∗ − ε
However, the resultant optimization problem in Eq. (2) is
difficult due to non-smoothness and non-convexity (Weston
et al. 2003). To conquer the resultant difficult optimization,
we propose to solve a relaxation of the problem, from label
and feature parameter optimization aspects jointly.

Parameter Optimization w.r.t. Label
When optimizing label parameter, ideally the most influential
labels with respect to LMLL metrics are located, meanwhile,
the model does not lose the predictive capability for the
remaining labels. Such ideal situation can be cast as the
following form,

min
M̃

L∑
j=1

∥∥∥‖M̃:,j‖0 − δ
∥∥∥
0

(3)

s.t. perf(XM̃,Y) ≥ q∗ − ε
||M̃:,j ||0 ≥ δ, j = 1, . . . , L

where M̃:,j indicates the j-th column of M̃, which corre-
sponds to the parameters for the j-th label, and δ is a small
constant indicating the least number of parameters need to
be preserved for each label. From Eq. (3), we maintain the
predictive capability for each label and meanwhile minimize
the number of performance-influential labels.

Eq. (3), however, is a difficult integer programming prob-
lem. Note that Eq. (3) can be viewed as selecting the most
performance-influential labels. Following such intuition, we
present to compute the performance impact of labels in terms
of LMLL metrics so as to derive an approximate solution.

To capture the performance impact of labels, we study how
labels affect the LMLL metrics under these two scenarios, i.e.,
missing labels and misclassified labels. The analysis shows
that the performance impact of labels is proportional to its
weight in LMLL metrics and its frequency in the observed
data, which consequently provides a guideline to select the
most influential labels.

Randomly Missing Labels Missing labels are commonly
occurred in LMLL (Bi and Kwok 2013; Lin et al. 2014;
Xu, Tao, and Xu 2016). In this section, we formally cap-
ture the impact of labels under the missing labels scenario,
that is, relevant labels are randomly missing with a proba-
bility π (Lim, McAuley, and Lanckriet 2015). Without loss
of generality, we let uj = ||Y:,j ||0 (j = 1, ..., L) denote the
number of instances that have the j-th label. We use wj = 1

pj

to denote the weight for the j-th label, and ci indicating the
number of relevant labels for instance xi.

Theorem 1. Suppose that relevant labels are randomly miss-
ing with probability π, the impact of the j-th label in terms of
PSP@k and PSnDCG@k is upper bounded by (1− π)wjuj .

Proof. For PSP@k, since k of ci relevant labels are selected
in the calculation of PSP@k, we have

(
ci
k

)
distinct ways. The

expected influence of the j-th label is computed as,

wj

k

N∑
i=1∧Yij=1

(
ci−1
k−1

)(
ci
k

) = (1− ε)

N∑
i=1∧Yij=1

wj

ci
≤ (1− π)wjuj

It can be seen that the impact of the j-th label is upper
bounded by the product of label weight wj , its frequency
uj and a constant.

For PSnDCG@k, note that every observed label has the
same rank, hence r = 1

log(l+1) , for l = {1, . . . , k}, is a
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constant and we have

PSnDCG@k =
PSDCG@k∑min(k,‖y‖0)

l=1
1

log(l+1)

=
r∑min(k,‖y‖0)

l=1 r

∑
l∈rankk(ŷ)

yl

Since L is large in LMLL and k ≤ 5, we usually have
||y||0 ≥ k and PSnDCG@k is cast as follows.

PSnDCG@k =
r∑k
l=1 r

∑
l∈rankk(ŷ)

yl

=
1

k

∑
l∈rankk(ŷ)

yl = PSP@k

As a result, the analysis for PSnDCG@k is reduced to the
one in PSP@k.

Randomly Misclassified Labels Another common sce-
nario is label misclassification (Schapire 1990; Wei and Li
2018). We also compute the impact of labels under the mis-
classified label scenario, that is, labels are randomly misclas-
sified with probability π.

Theorem 2. Suppose that labels are randomly misclassified
with probability π, the impact of the j-th label on PSP@k

and PSnDCG@k is upper bounded by (1−π)
(L−2)π+1wjuj .

Proof. For PSP@k, there are vi = (1 − π)ci + π(L − ci)
relevant labels in the predicted label vector. By choosing a
random subset of size k from vi labels, the influence of the
j-th label to PSP@k can be computed as

wj
k

N∑
i=1∧Yij=1

(
vi−1
k−1

)(
vi
k

) =

N∑
i=1∧Yij=1

wj
vi
≤ (1− π)wjuj

(L− 2)π + 1
(4)

Eq. (4) shows that the influence of the j-th label is upper
bounded by (1−π)

(L−2)π+1wjuj .
For PSnDCG@k, similar with the proof in Theorem 1, the

proof for PSnDCG@k is reduced to the one in PSP@k, and
we obtain same conclusive remark for PSnDCG@k.

According to the analyses, in both label-missing and label-
misclassified scenarios, we find that impact of labels in terms
of commonly LMLL metrics (PSP@k and PSnDCG@k) is
proportional to the product of label weights and label frequen-
cies. Therefore, we rank the labels according to the value of
wjuj , j = {1, . . . , L} in ascending order, and filter out pa-
rameters for labels with little performance-impact. Due to
the large number of labels, it is expensive to remove param-
eters label by label until the constraint is violated. To this
end, a binary search is developed to efficiently determine the
threshold based on the observation that the performance is
monotonically decreasing as the number of removed label
parameters increases. By doing this, the computational cost
is reduced from O(L) to O(logL). Algorithm 1 summarizes
the detailed procedure of binary search for label parameter
optimization.

Parameter Optimization w.r.t. Feature
We further locate the most important feature parameters for
the influential labels detected from label parameter optimiza-
tion, and consequently remove spurious feature parameters
to facilitate a compact model. Considering that Eq. (2) is
difficult to solve due to non-smoothness and non-convexity,
to this end, we propose to solve a relaxation of Eq. (2),

min
M̃
||Ỹ −Y∗||2F + λ||M̃||0 (5)

s.t. Ỹ = XM̃;Y∗ = XM

where the constraint perf(XM̃,Y) ≥ q∗ − ε in Eq. (2) is
relaxed as ||Y − Y∗||2F , which encourages the predicted
label matrix Ỹ of M̃ and Y∗ from the pre-trained model M
to be closely related. The second term in Eq. (5) minimizes
the number of non-zero entries in M̃, and the hyper-parameter
λ > 0 trades off the predictive accuracy and the model size.

The above optimization is difficult to solve. Inspired
by (Zhao and Yu 2006), an approximate solution can be
obtained by setting feature parameters that lie in range
[−
√
λ,
√
λ] to 0. The closed-form approximation is based on

the observation that each time a model parameter is weeded
out, the term λ||M̃||0 decreases by λ irrespective of its value.
Meanwhile, to minimize the reconstruction error ||Y−Y∗||2F ,
we filter out model parameters starting from the entries with
small absolute values to entries with large absolute values.
The procedure terminates when the absolute value of the en-
try that is to be removed in the next round is greater than

√
λ,

which results in an increase to the objective. The pseudocode
of the POP algorithm is summarized in Algorithm 2.

Algorithm 1 labelOptimization
Input: model M; data D; parameters ε, q∗, δ
Output: compressed model M̃

1: lowerBound = 0, upperBound = L
2: while upperBound - lowerBound > 1 do
3: middle = (lowerBound + upperBound) / 2
4: M̃ = M
5: preserve δ parameters with the largest absolute values

in M̃:,j for the j-th label, j = 1, . . . ,middle
6: if perf (XM̃, Y) ≥ q∗ − ε then
7: lowerBound = middle
8: else
9: upperBound = middle

10: end if
11: end while

Experiments
We carry out extensive experiments on LMLL benchmark
data sets to evaluate the effectiveness of our proposal.

Experimental Setup
Data sets Experiments are conduct on benchmark data sets
bibtex (text categorization, 159 labels), delicious (image an-
notation, 983 labels), eurlex (text categorization, 3993 labels)
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Algorithm 2 POP

Input: data D; hyper-parameters ε, λ, δ
Output: compact model M̃

1: sort labels according to wjuj , j = {1, . . . , L} in ascend-
ing order

2: train LMLL model M and obtain its performance q∗

3: M̃ = labelOptimization(M, D, ε, q∗, δ)
4: set entries of M̃ in range [−

√
λ,
√
λ] to 0 and at least δ

parameters preserved for each label

and wiki10 (web page categorization, 30K labels). We re-
port and compare the results using the same train/test splits
of data sets. All the data sets as well as the experimental
results of state-of-the-art LMLL methods are publicly avail-
able, and can be downloaded from the Extreme Classification
Repository1.

Compared Methods We compare our method to Binary
Relevance (BR) and six state-of-the-art LMLL baselines.
• Binary Relevance (Zhang and Zhou 2014) builds one-vs-

all SVM for each label using Liblinear (Fan et al. 2008).
• LEML (Yu et al. 2014) is an embedding method based on

low-rank empirical risk minimization.
• FastXML (Prabhu and Varma 2014) is a random forest

based LMLL approach.
• SLEEC (Bhatia et al. 2015) learns the embedding of labels

by preserving the pairwise distances between a few nearest
label neighbors.

• CoH (Shen et al. 2018) proposes a co-hashing method
which jointly compresses the input and output into compact
binary embeddings.

• DisMEC (Babbar and Schölkopf 2017) learns a 1vsA
linear-SVM in a distributed fashion.

• PD-Sparse (Yen et al. 2016) proposes to solve L1 regular-
ized multi-class loss using Frank-Wolfe based algorithm.

We use BR as the base classifier and build POP based on it.

Hyper-parameters In all of our experiments, we fix the
least number of preserved label parameters δ to 5. For LEML,
FastXML, SLEEC, and CoH, we use the default parameter
settings in the code.

Computational Device All experimental comparisons are
conducted on a same PC machine with an Intel i5-6500
3.20GHz CPU and 32GB RAM.

POP vs. Uncompressed Baseline
We first study how effective POP is at reducing the model size
in comparison with plain BR. The comparison results with
the plain binary relevance approach are depicted in Table 1.
On relatively small data set bibtex, POP improves above 50%
model size and loses no more than 0.5% performance in terms
of six different metrics. Considering the relatively balanced
label distribution due to the small label set and hence only a

1http://manikvarma.org/downloads/XC/XMLRepository.html

few label parameters can be pruned, otherwise resulting in
serious performance deterioration. On the other three larger
data sets with high dimensionality of feature and label space,
the model size is improved by more than 80%. As a result,
we obtain a significant reduction in model size with highly
comparable generalization performance.

POP vs. Compressed Baselines
We further compare the performance of POP with DiS-
MEC and PD-Saprse. We report the result from the Extreme
Classification Repository in Table 2. DiSMEC reduces the
model size by pruning spurious feature parameters as a post-
processing step, which can be viewed as a subprocedure
of POP. In terms of PSP@k and PSnDCG@k, DiSMEC
achieves similar performance with our method. However, for
model size, POP leads to as much as 10x reduction on wiki10
and about 4x reduction on eurlex, which shows the merit
of our proposal. For PD-Sparse, due to its linear nature, its
model size is small, but predictive accuracy is also limited by
the capacity of the model. For instance, POP gets more than
5% better performance than PD-Sparse in most cases. The
result shows that POP finds a proper balance between model
capacity and predictive accuracy.

POP vs. State-of-the-art Methods
In this experiment, we compare the performance of POP with
state-of-the-art methods: FastXML, LEML, SLEEC, and
CoH. As demonstrated in Table 2, although POP is built on
the binary relevance scheme, it achieves comparable or even
smaller model size compared to state-of-the-art approaches.
However, in terms of predictive performance, solvers relied
on structural assumptions such as FastXML (tree), LEML
(low-rank), SLEEC (piecewise-low-rank) do not perform as
well as POP in most cases. This may owe to the fact that low-
rank or tree assumption does not exactly hold in these data
sets. On the aspect of model size, we can see that POP gets
an order of magnitude smaller model size than FastXML and
SLEEC. Compared with CoH, we achieve better performance
with a large margin on all data sets and a smaller model size
in most cases.

Parameter Sensitivities Analysis
We further investigate the influence of ε and λ to the perfor-
mance of POP.

Impact of ε We study how different values of ε impact the
predictive accuracy and model size. Figure 3 demonstrates
that performance deteriorates as the value of ε grows because
it determines the fraction of removed parameters for labels
and in return, hurts the performance when informative label
parameters are pruned. On the aspect of model size, POP is
able to filter out more than 80% model parameters even
when ε = 1%. Although more significant reduction can be
gained with a larger value of ε, it comes at the cost of losing
generalization accuracy.

Impact of λ Figure 4 shows the performance and model
size is a function of the value of λwhich trades off model size
and the predictive performance. We can see that when λ is
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Table 1: Performance comparison between the proposed POP method and BR in terms of PSP@k (%), PSnDCG@k (%), and
Model size with λ = 0.01 and ε = 1%. The best results in terms of model size are in bold.

Data set PSP@1 PSP@3 PSP@5 PSnDCG@1 PSnDCG@3 PSnDCG@5 Model size

bibtex
BR 50.70 53.66 59.34 50.70 52.71 55.80 1.15 MB
POP 50.71 53.30 58.86 50.71 52.39 55.41 0.59 MB

delicious
BR 32.14 33.59 33.43 32.14 33.32 33.28 7.18 MB
POP 32.08 33.59 33.47 32.08 33.30 33.29 1.26 MB

eurlex
BR 39.93 45.86 49.74 39.93 44.24 46.83 156.38 MB
POP 40.06 46.02 49.91 40.06 44.42 47.01 20.18 MB

wiki10
BR 13.57 13.10 13.96 13.60 13.82 13.97 23.50 GB
POP 13.53 13.10 13.46 13.53 13.65 13.67 67.50 MB
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Figure 3: Study on different value of ε with λ set to 0.01. X-axis: value of ε (%). Y-axis (Left): percentage of model size reduction
compared to the plain BR. Y-axis (Right): P@k.
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Figure 4: Study on different value of λ with ε set to 1%. X-axis: value of λ. Y-axis (Left): percentage of model size reduction
compared to the plain BR. Y-axis (Right): P@k.

small, the model size is reduced by at least 80%. As the value
of λ slightly grows, the performance does not affect. How-
ever, when too large values of λ are used, the model becomes
excessively sparse and many discriminative parameters are
wrongly eliminated, deteriorating performance. Our empiri-
cal results show that POP performs well in a wide range of ε,

but is relatively sensitive to λ on some data sets.

Conclusion
In this work, we propose a simple and powerful approach to
compress model size for LMLL by the joint label and feature
parameter optimization. Our key insight is to weed out label
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Table 2: Comparison with state-of-the-art approaches in terms of model size, PSP@k (%) and PSnDCG@k (%). Results for
CoH are partially available due to the high computational cost. The best and the second best results are in bold.

Data set FastXML LEML SLEEC CoH DiSMEC PD-Sparse POP (ours)

bibtex

Model size 18.72 MB 0.76 MB 2.46 MB 4.70 MB 0.71 MB 20.00 KB 0.59 MB
PSP@1 48.54 47.97 51.12 36.53 50.20 48.34 50.71
PSP@3 52.30 51.42 53.95 28.20 52.20 48.77 53.30
PSP@5 58.28 57.53 59.56 25.59 58.60 52.93 58.86

PSnDCG@1 48.54 47.97 51.12 36.58 50.20 48.34 50.71
PSnDCG@3 51.11 50.25 52.99 30.62 52.00 48.49 52.39
PSnDCG@5 54.38 53.59 56.04 29.06 55.70 50.72 55.41

delicious

Model size 71.29 MB 2.26 MB 7.34 MB 10.92 MB - 0.25 MB 1.26 MB
PSP@1 32.35 30.73 32.11 20.43 - 25.22 32.08
PSP@3 34.51 32.43 33.21 22.76 - 24.63 33.59
PSP@5 35.43 33.26 33.83 24.11 - 23.85 33.47

PSnDCG@1 32.35 30.73 32.11 20.43 - 25.22 32.08
PSnDCG@3 34.00 32.01 32.93 22.16 - 24.80 33.30
PSnDCG@5 34.73 32.66 33.41 23.20 - 24.25 33.29

eurlex

Model size 194.40 MB 34.31 MB 245.49 MB 15.95 MB 79.86 MB 25.00 MB 20.18 MB
PSP@1 26.62 24.10 34.25 20.78 41.20 38.28 40.06
PSP@3 34.16 27.20 39.83 22.98 45.40 42.00 46.02
PSP@5 38.96 29.09 42.76 21.89 49.30 44.89 49.91

PSnDCG@1 26.62 24.10 34.25 20.78 41.20 38.28 40.06
PSnDCG@3 32.07 26.37 38.35 22.49 44.30 40.96 43.55
PSnDCG@5 35.23 27.62 40.30 21.92 46.90 42.84 47.01

wiki10

Model size 501.47 MB 506.88 MB 924.60 MB - 880.00 MB - 67.50 MB
PSP@1 9.80 9.41 11.14 - 13.60 - 13.53
PSP@3 10.17 10.07 11.86 - 13.10 - 13.10
PSP@5 10.54 10.55 12.40 - 13.80 - 13.46

PSnDCG@1 9.80 9.41 11.14 - 13.60 - 13.53
PSnDCG@3 10.08 9.90 11.68 - 13.20 - 13.65
PSnDCG@5 10.33 10.24 12.06 - 13.60 - 13.67

parameters which have little impact on the predictive accu-
racy, as well as to prune redundant feature parameters. We
formulate this as a constrained optimizing problem and solve
its relaxation form effectively with binary search and greedy
strategies. Empirical results demonstrate that the proposed
method is capable of reducing the model size, in addition,
achieves highly competitive performance. In future, we will
study how to improve the performance on few relevant in-
stances (Wei et al. 2018) and derive LMLL models with both
high performance and lightweight storage.
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