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Abstract

For unsupervised domain adaptation, the process of learning
domain-invariant representations could be dominated by the
labeled source data, such that the specific characteristics of
the target domain may be ignored. In order to improve the
performance in inferring target labels, we propose a target-
specific network which is capable of learning collaboratively
with a domain adaptation network, instead of directly min-
imizing domain discrepancy. A clustering regularization is
also utilized to improve the generalization capability of the
target-specific network by forcing target data points to be
close to accumulated class centers. As this network learns
and specializes to the target domain, its performance in in-
ferring target labels improves, which in turn facilitates the
learning process of the adaptation network. Therefore, there
is a mutually beneficial relationship between these two net-
works. We perform extensive experiments on multiple digit
and object datasets, and the effectiveness and superiority of
the proposed approach is presented and verified on multiple
visual adaptation benchmarks, e.g., we improve the state-of-
the-art on the task of MNIST→SVHN from 76.5% to 84.9%
without specific augmentation.

Introduction
Sufficient amount of labeled data is vital for machine learn-
ing applications. However, it may not always be feasible to
expend significant human effort for collecting and labeling
data in many tasks. The objective of domain adaptation is
to utilize the data in a label-rich (source) domain for in-
ferring the class labels in a label-scarce (target) domain. In
this domain adaptation setting, the source data may be sam-
pled from a related but different distribution. How to effec-
tively transfer knowledge learnt from source data is crucial
for facilitating learning tasks in the target domain. A suc-
cessful domain adaptation strategy is to learn cross-domain
representations in a common space, such that the instances
from different domains cannot be distinguished in the fea-
ture space. Impressive progress has been achieved, espe-
cially the adoption of deep convolutional neural networks
in recent years. To guide network learning, some measures
of distribution variance, e.g., Maximum Mean Discrepancy
(MMD) (Long et al. 2015), are used, and the domain dis-
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Figure 1: An example which illustrates that the training
process of unsupervised domain adaptation on VisDA-2017
may be dominated by the labeled source data. The learnt
representation is indiscriminative, and the resulting classi-
fier performs unsatisfactorily on the target data, although the
source samples of classes ‘bicycle’ and ’motorcycle’ can be
well distinguished.

crepancy can be effectively alleviated by optimizing the net-
works. Another way is to utilize adversarial training (Ganin
and Lempitsky 2015) in the form of a minimax game be-
tween domain classification and representation learning to
make domain labels as indistinguishable as possible. As a re-
sult, the classification model trained under supervision from
the source can also be applied to the target domain.

Most domain adaptation methods focus either on learn-
ing projection from one domain to the other, or on learning
representations that are invariant to different domains. The
methods are able to reduce, but not remove the discrepancy
between domains. On one hand, the distribution matching
constraint may become less useful when the networks for
domain-invariant feature learning have high capacities. On
the other hand, it is difficult to train a single classifier having
low generalization error in the target domain as well as the
source domain on challenging adaptation tasks (Shu et al.
2018). In this case, the specific characteristics of the target
domain is ignored due to the reason that the label informa-
tion available in the source domain only leads to its associ-
ated data dominating the process of learning the projection
or shared representation as illustrated in Figure 1. Since the

5450



final objective is to infer class labels as accurately as possi-
ble on the target data rather than the source data, we propose
to leverage the discriminative information from an adapta-
tion network, and softly label the target data for learning a
target-specific classification model.

In this work, we explore a collaborative learning frame-
work between a deep adaptation network and a target-
specific network for improving unsupervised domain adap-
tation. The proposed approach aims at training a model spe-
cialized to the target domain only, instead of directly reduc-
ing domain discrepancy. Since the labels in the target do-
main are unavailable, we employ a deep domain adaptation
network which is capable of inducing domain confusion as
a teacher for guiding a target-specific network. Specifically,
these two networks are jointly optimized by minimizing the
difference in class probability predictions for the same tar-
get instance. Furthermore, the discriminative capability of
the target-specific network can be improved by minimizing
the distances of target data points to a set of accumulated
class centers. This is based on the assumption that the data
points in a cluster should come from the same class. To avoid
degradation, an orthogonality constraint is included to make
the class centers dissimilar. Different from the existing dis-
tillation methods (Hinton, Vinyals, and Dean 2014), there is
a mutually beneficial relationship between the two networks
in our model. Since the target-specific network specializes to
the target domain, it is able to outperform the adaptation net-
work as it learns, and can in turn improve the performance
of the adaptation network. An overview of the proposed ap-
proach is shown in Figure 2. Extensive experimental results
demonstrate that collaborative learning and clustering reg-
ularization can lead to significant performance gains, and
the proposed approach can achieve state-of-the-art results on
multiple unsupervised domain adaptation benchmarks. This
work makes the following contributions:
� Instead of directly learning on both source and target data,

we exploit a deep adaptation network as a teacher to guide
the training of a target-specific network on the target data
only, such that the latter is able to specialize to the target
domain.

� To enhance the generalization capability of the target-
specific network, we introduce an effective clustering reg-
ularization to force the target data points to move to the
accumulated class centers in the latent feature space.

� The adaptation and target-specific networks are trained in
a collaborative learning fashion, and thus both networks
can learn from each other. It is observed that the target-
specific network outperforms the adaptation network in
most cases.

Related Work
Domain adaptation has shown to be effective for bridging
different domains (or tasks) while avoiding labor-intensive
manual labeling (Pan and Yang 2010). Recently, CNN-based
methods have become a mainstream technique for unsuper-
vised visual domain adaptation. Many works focus on re-
ducing the discrepancy between domains. Since the trans-
ferability of the learnt features reduce significantly in higher

layers, Long et al. (Long et al. 2015) applied multiple kernel-
based MMDs to regularizing the fully-connected layers of
the networks, such that the mean embedding of data from
different domains can be matched. Also based on MMD
for domain confusion, Venkateswara et al. (Venkateswara
et al. 2017) utilized both source and target data to learn
deep hash codes to classify unseen target data. In addition
to the distribution matching-based methods, reconstruction-
based methods have shown effectiveness in regularizing do-
mains. Ghifary et al. (Ghifary et al. 2016) proposed a deep
reconstruction-classification network, which jointly learns
supervised classification on source data and unsupervised
reconstruction on target data. Based on the private-shared
component hypothesis, Bousmalis et al. (Bousmalis et al.
2016) proposed domain separation networks for learning im-
age representations through two subspaces: one which is
private to each domain and another which is shared across
domains. Based on the two subspaces, the images from
both domains can be reconstructed. To learn a common fea-
ture space, French and Mackiewicz (French and Mackiewicz
2018) adopted a mutual learning strategy to train a student
network on both source and target data under the supervision
of a teacher network trained only on target data.

Maximizing domain confusion can also be achieved by
utilizing adversarial training to learn representations which
fool a domain classifier. Ganin et al. (Ganin and Lempit-
sky 2015) adopted a gradient reversal layer to train a do-
main classifier while learning domain-confusion representa-
tion. In (Pinheiro 2018), Pinheiro used an adversarial loss
to learn domain-invariant features, and simultaneously train
a similarity-based classifier by measuring the similarity of
each sample to categorical prototypes. Tzeng et al. (Tzeng
et al. 2017) proposed an adversarial discriminative domain
adaptation method, in which a source encoder is combined
with a target encoder for adversarial adaptation. To take into
account the category of instances during matching marginal
distributions, Saito et al. (Saito et al. 2018) utilized two task-
specific classifiers to ensure that target samples are close
to source samples by maximizing the classification discrep-
ancy. In (Shu et al. 2018), Shu et al. adopted a virtual adver-
sarial domain adaptation model to learn domain-confusion
representations in the first stage, and then refined decision
boundaries by minimizing the conditional entropy on target
instances. To learn data distributions and generate samples
across domains, Liu and Tuzel (Liu and Tuzel 2016) pro-
posed a coupled GAN to learn the joint distribution of multi-
domain data. Sankaranarayanan et al. (Sankaranarayanan et
al. 2018) adopted an adversarial image generation model to
address the domain-mismatch in the feature space learnt by
an encoder, such that the target embeddings can be used to
generate source-like images. In (Russo et al. 2018), Russo
et al. proposed a bi-directional GAN to generate target-like
images from the source and source-like images from the tar-
get.

In contrast to the methods above, we design a target-
specific network which specializes to the target domain and
learns from a domain adaptation network, instead of directly
reducing domain discrepancy. A clustering regularization is
formulated for improving the generalization capability of the
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Figure 2: Overview of the proposed approach to train a target-specific network via collaborative learning with a domain adapta-
tion network. The target-specific network learns to predict target labels only through the supervision of the adaptation network
output and the accumulated class centers, so that it is able to specialize to the target domain without directly minimizing the
domain discrepancy.

target-specific network. As the performance of this network
improves, it will in turn help the adaptation network through
collaborative learning.

Deep Adaptation Networks
Before describing the proposed collaborative learning
framework, we first introduce an adversarial domain adap-
tation network (Shu et al. 2018), which plays an important
role in our framework. For unsupervised domain adaptation,
there are labeled source data (xs, ys) ∈ Xs and unlabeled
target data xt ∈ Xt. For the purpose of low source classifi-
cation error and small feature divergence between domains,
the overall loss function of this domain adaptation model is
defined as follows:

LDA(θ;X) = LcrosEnt(θ;Xs) + LcondEnt(θ;Xt)

+ Ldomain(θ;X) + LV AT (θ;Xt),
(1)

where X = Xs ∪ Xt, θ denotes the parameters of the net-
work, LcrosEnt denotes the standard cross entropy function
on labeled source data, and LcondEnt denotes the condi-
tional entropy function on unlabeled target data. To learn
domain-confusion representations, the third term Ldomain
is formulated as follows:

Ldomain(θ;X) = λd sup
ω

( ∑
xs∈Xs

[ lnhω(fθ(xs))]

+
∑
xt∈Xt

[ ln(1− hω(fθ(xt)))]
)
,

(2)

where fθ(·) denotes the representations learnt by the net-
work, and hω(·) denotes a domain discriminator parame-
terized by ω. Domain adversarial training is to minimize
Ldomain via mini-max optimization, which enforces the net-
work to learn the representation which reduces the diver-
gence between source and target domains. In order to obtain
a reliable empirical estimate of conditional entropy, the term

LV AT for virtual adversarial training is defined as follows:

LV AT (θ;Xt) = λv
∑
xt∈Xt

(
max
‖γ‖≤ε

D(pθ(xt)‖pθ(xt + γ))

)
,

(3)
where pθ(·) denotes the predicted class probability distribu-
tion of the network, D denotes the Kullback-Leibler (KL) di-
vergence between two distributions, and ε is a hyperparam-
eter controlling the intensity of the adversarial perturbation
γ. As a result, adversarial samples are generated by includ-
ing small perturbations to the input in the direction sensitive
to the model prediction. Virtual adversarial training can be
applied on both source and target data. In Eqs.(2-3), λd and
λv are the weighting factors for achieving a balance among
the terms in LDA.

Training Target-Specific Networks

The optimal classification model for source data does not
often coincide with that for target data. Since the adaptation
network is trained under the main supervision from the cat-
egory information of the source data, we consider that a bet-
ter classification model is achievable by introducing another
network (target-specific network) specialized to the target
data. Since the labels of target instances are unavailable, we
adopt a collaborative learning framework to mutually rein-
force the consistency of the two network predictions.

Our adaptation network parameterized by θA is built
based on the model described in Section III, and the over-
all loss function LA is defined as the sum of the loss func-
tion defined in Eq.(1) and an additional regularization term
as follows:

LA(θA;X) = Lmutual(θA;Xt, θT ) +LDA(θA;X), (4)

where the target-specific network is parameterized by θT ,
and we define the term of mutual learning Lmutual as the
expected similarity between the predictions of the adaptation
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and target-specific networks as follows:

Lmutual(θA;Xt, θT ) = λm
∑
xt∈Xt

S(pθA(xt); pθT (xt)),

(5)
where S(·; ·) denotes a similarity measure between two dis-
tributions, such as the KL divergence, cross entropy, mean
square error, and so on.

The target-specific network is a separate network which
has the same architecture as the adaptation network. In or-
der to avoid error propagation during pseudo-labeling in
the target domain, the predictions produced by the adapta-
tion network are used as soft labels to guide the training of
the target-specific network. Adversarial training for domain-
confusion is no longer necessary due to the reason that this
network is trained on the target data only. More formally,
the loss function LT for the target-specific network can be
defined as follows:

LT (θT ;Xt) = Lmutual(θT ;Xt, θA)

+ Lcluster(θT , C;Xt) + LV AT (θT ;Xt),
(6)

where Lmutual(θT ;Xt, θA) denotes the mutual learning
term enforcing the target-specific network to learn from the
adaptation network by using its predictions as soft labels,
Lcluster denotes a clustering term encouraging the target
data points to be close to the class centers C, and the vir-
tual adversarial term LV AT helps to stabilize empirical es-
timates of class probabilities for target data. Specifically,
Lmutual(θT ;Xt, θA) is defined as follows:

Lmutual(θT ;Xt, θA) = λm
∑
xt∈Xt

S(pθT (xt); pθA(xt)).

(7)
Different from Lmutual(θA;Xt, θT ), the class probability
prediction pθT (·) in Lmutual(θT ;Xt, θA) will be improved
under fixed pθA(·). Also, different from minimization of the
conditional entropy which moves the decision boundaries
to low-density regions, our network encourages the unla-
beled target data points to form tighter clusters, because the
clustering assumption that the data points of the same class
should concentrate together hold in most cases. For this pur-
pose, the clustering regularization term is defined as follows:

Lcluster(θT , C;Xt) = λc

( ∑
xt∈Xt

K∑
k=1

δ(ŷAt , k)
∥∥fθT (xt)− ck

∥∥2
+ µ‖CT C − I‖2F

)
,

(8)

where

δ(ŷAt , k) =

{
1 if ŷAt = k,

0 if ŷAt 6= k,

ŷAt denotes the predicted class of sample xt by the adapta-
tion network, fθT denotes the learnt representation on the
middle hidden layer of the target-specific network, C =
[c1, c2, . . . , cK ] denotes a matrix with its columns corre-
sponding to the accumulated class centers, ‖ · ‖2F denotes

the squared Frobenius norm, and I denotes the identity ma-
trix. We require CTC to be close to I , such that the class
centers become orthogonal. Minimizing this clustering reg-
ularization term ensures that the class centers will be dis-
similar to each other and each target data point moves to a
specific class center. In each mini-batch based update step,
the accumulated class centers are also updated as follows:

ck ← αck +
1− α
mk

∑
xt∈Bt

δ(ŷAt , k)fθT (xt), (9)

where Bt denotes a mini-batch of target instances, and mk

denotes the number of the target instances predicted as class
k by the adaptation network. As a result, the target-specific
network is able to learn more discriminative representations
on the target data, due to the reason that the adaptation net-
work provides training targets as well as relationship infor-
mation among target instances for representing the underly-
ing structure.

The adaptation and target-specific networks are jointly
trained in our collaborative learning framework. These two
networks learn from each other to correctly predict the true
labels of target samples, as well as to match their predic-
tions. During this training process, the target-specific net-
work tends to produce more accurate results than the adap-
tation network because of its specialization to the target do-
main. In turn, we can take advantage of this improved ac-
curacy during collaborative learning to guide the adaptation
network by providing better targets. The implementation de-
tails are summarized in Algorithm 1.

Algorithm 1 Pseudo-code of collaborative learning between
adaptation and target-specific networks.

1: Input: Labeled source data Xs and unlabeled target
data Xt.

2: Initialize: Adaptation network θA and target-specific
network θT with different initial conditions, learning
rates ζA and ζT , and class centers C.

3: for n = 1 to N do
4: Sample mini-batches Bs from Xs and Bt from Xt.
5: for each mini-batch Bs and Bt do
6: Evaluate adaptation network predictions pθA(xs)

and pθA(xt), and target-specific network predic-
tions pθT (xs) and pθT (xt).

7: Update adaptation network:
θA ← Adam(∇θALA, θA, ζA).

8: Compute the mid-level representations fθT (xt).
9: Update class centers ck according to Eq.(9).

10: Update target-specific network:
θT ← Adam(∇θT LT , θT , ζT ).

11: end for
12: end for
13: Return θA and θT .

Experiments and Discussion
In the experiments, we focus on visual domain adapta-
tion tasks, and perform an extensive evaluation of the pro-
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Figure 3: The training curves of the baseline model and the
two networks in the proposed model on the MNIST→SVHN
(left) and STL→CIFAR (right) tasks. The adaptation and
target-specific networks have very similar performance, and
significantly outperform the baseline model due to collabo-
rative learning.

posed approach on multiple standard adaptation tasks by us-
ing the digit datasets: MNIST (LeCun et al. 1998), USPS
(Hull 1994), Syn-Digits (Ganin and Lempitsky 2015) and
SVHN (Netzer et al. 2011), the object datasets: CIFAR-10
(Krizhevsky and Hinton 2009) and STL-10 (Coates, Lee,
and Ng 2011), and the VisDA-2017 dataset (Peng et al.
2017). We use the standard evaluation protocol (Shu et al.
2018) for all the tasks, and report a comparison with state-
of-the-art unsupervised domain adaptation methods.

For adaptation between the digit and object datasets, we
adopt a relatively small CNN architecture, which is the same
as in (Shu et al. 2018). For the experiments on the VisDA-
2017 dataset, we use a larger CNN architecture, ResNet-50
(He et al. 2016), due to the high resolution of the training
images. In our collaborative learning framework, the adapta-
tion and target-specific networks have the same architecture
but with different initializations and dropout. At each train-
ing step, two mini-batches of source and target instances are
drawn from their respective datasets. We adopt the ADAM
optimization method (Kingma and Ba 2015) to update the
networks.

Results on Digit and Object Datasets
Comparison to Previous Work. We first compare the
proposed model with state-of-the-art unsupervised domain
adaptation methods in this sub-section. The results of the
competed methods are shown in Table 1. Most of the
competing methods were tested on three of the tasks:
MNIST→USPS, USPS→MNIST and SVHN→MNIST.
Since the discrepancy between MNIST and USPS is rela-
tively small and SVHN is more challenging than MNIST,
recent methods, such as ‘DIRT-T’ and ‘Self-Ensembling’,
have high accuracies on the three tasks. The proposed ap-
proach also achieves comparable results in these tasks.

Compared with the above three tasks, the remaining
tasks including SVHN→MNIST, DIGITS→SVHN and
STL→CIFAR are more difficult and important. A few of
the competing methods had been tested on these tasks.
The MNIST→SVHN adaptation performance of the pro-
posed approach is the best in the comparison. Specifi-
cally, the accuracy of our approach attains 84.9%, which
is higher than ‘DIRT-T’ and ‘Self-Ensembling’ by about

Figure 4: The t-SNE plots of the middle hidden layers of the
baseline network (left) and target-specific network (right) in
the proposed model on the task of MNIST→SVHN. In the
right subfigure, each black circle denotes an accumulated
class center, and the embedding of each class forms a rel-
atively tight cluster. We use this comparison with the base-
line network to highlight the improvement brought by the
clustering regularization to the target-specific network.

8.4 and 42.9 percentage points, respectively. On the task of
DIGITS→SVHN, we achieve an accuracy of 96.4%, which
is the highest in the comparison. In addition, the proposed
approach achieves an accuracy of 75.4% on the task of
STL→CIFAR, and outperforms ‘Self-Ensembling’ by about
6.2 percentage points. The main reason the proposed ap-
proach outperforms the competing methods on these diffi-
cult adaptation tasks is that the collaborative learning and
clustering regularization play an important role in training
the target-specific network by specializing the learning pro-
cess to the target domain.

Comparison to Baseline and Model Variants. We per-
form experimental analysis to better understand the pro-
posed approach. We report the performance of the ‘Source
Only’ model using the same network architecture as the pro-
posed approach but without adaptation. The ‘Source Only’
results, which are the accuracies obtained by training the
CNN in a supervised fashion on the source and being ap-
plied to the target data directly, serve as the lower bound.
In addition, we train the adaptation network separately, and
consider the resulting model as ‘Baseline’. To investigate the
performance improvements brought by the proposed collab-
orative learning, we build a variant of our model by disabling
the clustering regularization ‘Our Model w/o CR’. As ex-
pected, both ‘Baseline’ and ‘Our Model w/o CR’ outperform
the ‘Source Only’ model on all the adaptation tasks. When
adopting collaborative learning, ‘Our Model w/o CR’ per-
forms better than ‘Baseline’ in most cases. On the difficult
adaptation task of MNIST→SVHN, ‘Our Model w/o CR’
reaches an accuracy of 83.9%, which is much higher than
those of ‘Source Only’ and ‘Baseline’ by about 43.7 and
12.3 percentage points, respectively. The improvement mar-
gins over these two models are significant, which demon-
strates the effectiveness of our proposed collaborative learn-
ing. We consider that the target-specific network guided by
the adaptation network can achieve better performance. We
also investigate the relative contribution of the clustering
regularization in Table 1. For this purpose, we compare our
model with its variant ‘Our Model w/o CR’. When including
the clustering regularization term in the joint loss function,
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Table 1: Classification accuracy (%) of the proposed approach and previous works in the experiments of unsupervised domain
adaptation on the digit and object datasets. w/o CR indicates ‘without clustering regularization’.

Method MNIST→USPS USPS→MNIST SVHN→MNIST MNIST→SVHN DIGITS→SVHN STL→CIFAR

MMD(Long et al. 2015) 81.1 - 71.1 - 88.0 -
RevGrad(Ganin et al. 2016) 91.1 74.0 74.0 35.7 - 57.0
DANN(Ganin and Lempitsky 2015) 77.1 73.0 71.1 35.7 90.3 -
DRCN(Ghifary et al. 2016) 91.8±0.1 73.7±0.1 82.0±0.2 40.1±0.1 - 58.9±0.1
DSN(Bousmalis et al. 2016) 91.3 - 82.7 - 91.2 -
ADDA(Tzeng et al. 2017) 89.4±0.2 90.1±0.8 76.0±1.8 - - -
CoGAN(Liu and Tuzel 2016) 91.2±0.8 89.1±0.8 - - - -
ATT(Saito, Ushiku, and Harada 2017) - - 86.2 52.8 92.9 -
PixelDA(Bousmalis et al. 2017) 95.9 - - - - -
TRUDA(Sener et al. 2016) - - 78.8 40.3 - -
UNIT(Liu, Breuel, and Kautz 2017) 95.9 93.5 90.5 - - -
AssocDA(Haeusser et al. 2017) - - 95.7±1.5 - 91.3±0.2 -
GenToAdapt(Sankaranarayanan et al. 2018) 92.5±0.7 90.8±1.3 84.7±0.9 36.4±1.2 - -
CyCADA(Hoffman et al. 2018) 94.8±0.2 95.7±0.2 88.3±0.2 - - -
MCDUDA(Saito et al. 2018) 94.2±0.7 94.1±0.3 96.2±0.4 - - -
SimNet(Pinheiro 2018) 96.4 95.6 - - - -
SBADA-GAN(Russo et al. 2018) 97.6 95.0 76.1 61.1 - -
DIRT-T(Shu et al. 2018) - - 99.4 76.5 96.2 73.3
Self-Ensembling(French and Mackiewicz 2018) 98.3±0.1 99.5±0.1 99.2±0.3 42.0±5.7 96.0±0.1 69.2±0.4

Source Only 92.9±0.2 90.0±3.5 78.8±2.0 40.2±0.6 83.8±0.9 61.5±0.9
Baseline 97.7±0.1 98.8±0.4 97.2±1.3 71.6±0.5 95.5±0.4 71.9±0.5
Our Model w/o CR 97.7±0.1 99.2±0.1 99.0±0.3 83.9±0.6 96.3±0.1 74.5±0.9
Our Model 98.0±0.2 99.4±0.1 99.3±0.1 84.9±0.4 96.4±0.2 75.4±0.2

Figure 5: Visualization of the accumulated class cen-
ters learnt by the proposed model on the task of
SVHN→MNIST. One can observe that each center repre-
sents the prototype of a specific class, which confirms that
the clustering regularization is beneficial to exploring target
data structures.

the performance is improved in all the cases. On the tasks of
MNIST→SVHN and STL→CIFAR, the accuracies of the
proposed approach are increased to 84.9% and 75.4%, re-
spectively. We consider that the clustering regularization is
of benefit to improving the network generalization capabil-
ity.

Visualization. To further illustrate the process of col-
laborative learning, Figure 3 shows the accuracy curves
of the adaptation and target-specific networks during train-
ing, from which we can observe the relationship between
these two networks on the tasks of MNIST→SVHN and
STL→CIFAR. Compared to the baseline, the accuracies of
both adaptation and target-specific networks are improved as
collaborative learning proceeds. It is noted that collaborative
learning consistently improves the target-specific network.
Since only target data is fed to this network, it specializes to
the target domain and produces better predictions than the
adaptation network. This result confirms that specialization
to the target can lead to better adaptation.

In addition, we analyze the effectiveness of the cluster-
ing regularization by showing the t-SNE (Maaten and Hin-
ton 2008) embedding of the learnt features of our network
when adapting from MNIST to SVHN. Figure 4 visualizes
the features of the target instances on the middle hidden lay-
ers of the ‘Baseline’ network and the target-specific network
in our model, respectively. Each class is encoded by a color,
and the corresponding accumulated class center is shown as
a black circle. For the ‘Baseline’ network, the target data
points are not clustered strongly, due to the reason that this
network is trained without any clustering regularization. In
contrast, our target-specific network is able to improve clus-
tering of the target data points in the latent feature space.
As expected, the accumulated class centers lie in the center
regions of the clusters, and the target data points are better
separated.

To further demonstrate what accumulated class centers
represent, we visualize them via an auxiliary network map-
ping the data points in the latent space to the correspond-
ing original images. For simplicity, this network consists of
four deconvolution layers reconstructing a 32 × 32 grey-
scale images x, conditioned on the representation fθT (x).
Since the MNIST images have simple background facilitat-
ing visualization, we train this auxiliary network to visual-
ize the class centers learnt by the our model on the task of
SVHN→MNIST, and the result is shown in Figure 5. It is
noted that the resulting class centers represent a set of proto-
types for the classes. We consider that these visualized cen-
ters directly reveal the reason of the clustering regularization
stabilizing and improving the classification performance of
our model in the target domain.

Results on VisDA-2017
Comparison to Previous Work. Since the resolution of the
VisDA-2017 images is substantially higher than that of the
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Table 2: Classification accuracy (%) of the proposed approach and previous works in the experiment of unsupervised domain
adaptation on the VisDA-2017 dataset. w/o CR indicates ‘without clustering regularization’.

Method plane bcycl. bus car horse knife mcycl. person plant sktbrd. train truck mean
MMD(Long et al. 2015) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
RevGrad(Ganin et al. 2016) 75.9 70.5 65.3 17.3 72.8 38.6 58.0 77.2 72.5 40.4 70.4 44.7 58.6
DANN(Ganin and Lempitsky 2015) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
SimNet(Pinheiro 2018) 94.5 80.2 69.5 43.5 89.5 16.6 76.0 81.1 86.4 76.4 79.6 41.9 69.6
Self-Ensembling(French and Mackiewicz 2018) 94.9 84.1 71.1 40.9 88.9 43.6 64.6 73.2 87.1 64.5 83.7 47.9 70.4
MCDUDA(Saito et al. 2018) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

Source Only 78.8 57.5 54.4 52.5 79.9 21.9 82.7 58.8 86.5 51.6 86.5 36.9 62.3
Baseline 72.7 73.4 72.7 49.7 86.9 33.4 80.0 71.8 87.3 66.0 78.4 37.4 67.5
Our Model w/o CR 91.5 83.5 77.0 48.5 91.9 41.3 85.0 75.0 83.5 63.7 79.3 42.6 71.9
Our Model 91.5 80.4 82.3 59.2 90.1 62.9 85.3 75.0 87.3 70.6 78.5 28.4 74.3

images in the datasets used in the previous experiments, we
use a larger CNN architecture, ResNet-50, in our model, and
most competing methods are also based on the same back-
bone architecture in this experiment. Due to the high res-
olution, we reduce the batch size to 44. Table 2 shows the
performance of different unsupervised adaptation methods
tested on the VisDA-2017 task. The results reported are in
the form of the average per-class classification accuracy and
the corresponding mean over all the classes. In this com-
parison, we train the proposed model with the minimum
augmentation (French and Mackiewicz 2018), and present
the result achieved by the target-specific network in our
model as it outperforms the adaptation network. ‘SimNet’
and ‘Self-Ensembling’ perform better than the other com-
peting methods, and the proposed approach achieves the
best performance. In some difficult classes such as ‘knife’
and ‘sktbrd.’, ‘SimNet’, ‘Self-Ensembling’ and ‘MCDUDA’
perform less satisfactory, and the proposed model produces
more accurate prediction.

Comparison to Baseline and Model Variants. In addi-
tion, we also report the results of the variants of the proposed
model including ‘Source Only’, ‘Baseline’, and ‘Our Model
w/o CR’. As expected, ‘Baseline’, the proposed model and
its variant ‘Our Model w/o CR’ improve the ‘Source Only’
model and achieve higher classification accuracies on all the
class, and the overall average accuracy is improved by about
5.2, 12 and 9.6 percentage points, respectively. The signif-
icant performance gains are attributable to domain adapta-
tion. The proposed model also outperforms ‘Baseline’ and
‘Our Model w/o CR’ on most classes, since the collabora-
tive learning and clustering regularization lead to more ac-
curate classification in the target domain. Furthermore, we
compare the adaptation and target-specific networks of our
model in Figure 6. It is noted that the target-specific net-
work is able to achieve higher classification accuracies than
the adaptation network on most classes, which confirms that
the specialization of the target-specific network to the target
domain benefits unsupervised domain adaptation.

Conclusion
In this work, we explore how to improve unsupervised do-
main adaptation without directly reducing the discrepancy
between domains with different data distributions. To learn
a target-specific network, we exploit a separate adaptation

Figure 6: Per-class average classification accuracy and the
corresponding mean over all the classes of the adaptation
and target-specific networks of the proposed model in the
experiment on the VisDA-2017 dataset. The target-specific
network outperforms the adaptation network on most classes
due to its specialization to the target domain.

network to guide its training on the target data. The clus-
tering regularization, which enforces target data points to be
close to accumulated class centers in the latent feature space,
is applied to further improve the generalization capability of
the target-specific network. Since this network specializes to
the target domain, it captures the domain-specific informa-
tion to facilitate more effective inference of class labels on
the target data. In addition, we adopt a collaborative learn-
ing framework to mutually reinforce the performance of the
target-specific and adaptation networks. The effectiveness of
the proposed approach is verified by extensively evaluating
the performance improvement in inferring target labels on
multiple visual adaptation benchmarks.
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