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Abstract

In this paper, we propose a Bayesian Deep Collaborative
Matrix Factorization (BDCMF) algorithm for collaborative
filtering (CF). BDCMF is a novel Bayesian deep generative
model that learns user and item latent vectors from users’
social interactions, contents of items as the auxiliary infor-
mation and user-item rating (feedback) matrix. It alleviates
the problem of matrix sparsity by incorporating items’ auxil-
iary and users’ social information into the model. It can learn
more robust and dense latent representations by integrating
deep learning into Bayesian probabilistic framework. As be-
ing one of deep generative models, it has both non-linearity
and Bayesian nature. Additionally, in BDCMF, we derive an
efficient EM-style point estimation algorithm for parameter
learning. To further improve recommendation performance,
we also derive a full Bayesian posterior estimation algorithm
for inference. Experiments conducted on two sparse datasets
show that BDCMF can significantly outperform the state-of-
the-art CF methods.

Introduction
Social media, e.g., Facebook and Twitter, has greatly influ-
enced people’s daily lives, and thus building an effective
Recommender System (RS) for them has attracted many in-
terests in recent years. The most used technique in RS is col-
laborative filtering (CF), which makes use of users’ ratings
over items. Matrix factorization (MF) (Mnih and Salakhut-
dinov 2008) is one of the most commonly used CF methods
due to its effectiveness and scalability. The goal of MF is to
learn latent factors of both users and items from user-item
feedback matrix. However, traditional MF methods suffer
from the matrix sparsity problem – recommendation perfor-
mance drops dramatically when the user-item feedback ma-
trix is very sparse. In addition, traditional MF methods as-
sume users are independent and identically distributed, and
ignore the social connections among users.

To alleviate the matrix sparsity problem, many social
MF methods such as those in (Park, Kim, and Choi 2013;
Adams, Dahl, and Murray 2014) incorporate auxiliary infor-
mation, e.g., content information of items, into MF. How-
ever, these methods incorporate auxiliary information as a
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linear regularization term, resulting in the fact that learn-
ing latent representations of users and items is not effec-
tive when the auxiliary information is also sparse. Aiming
at learning more effective representations, many CF-based
models using different types of auxiliary information, such
as latent Dirichlet allocation (LDA) (Wang and Blei 2011),
stacked denoising autoencoder (SDAE) (Wang, Wang, and
Yeung 2015; Zhang et al. 2016), variational autoencoder(Li
and She 2017) and marginalized denoising autoencoder (Li,
Kawale, and Fu 2015), have been proposed to obtain items’
latent content representations. Nevertheless, all these mod-
els ignore social connections among users.

In order to jointly utilize item contents and social net-
work information, some hybrid MF methods have been pro-
posed, which can be roughly classified into two categories:
i.e., Collaborative Topic Regression (CTR)-based methods
(Wang and Blei 2011; Chen et al. 2014; Purushotham,
Liu, and Kuo 2012; Wang, Chen, and Li 2013; Xu et al.
2017) and Collaborative Deep Learning (CDL)-based meth-
ods (Wang, Wang, and Yeung 2015; Zhang et al. 2016;
Nguyen and Lauw 2017). Although CTR-based and CDL-
based methods have achieved great performance, the full
Bayesian posterior estimation is intractable in these mod-
els. All these models need to maximize a point estimation
for parameter learning. However, in this paper, we point
out that maximizing such a point estimation actually as-
sumes that the variation distributions are discrete from vari-
ational Bayesian perspective (will be discussed later), which
leads to a higher variance in prediction and ignores uncer-
tainty in the model parameters (Lim and Teh 2007). This
Bayesian estimation also leads to overly optimistic estimates
of test-set log-likelihood (Welling, Chemudugunta, and Sut-
ter 2008) and easily overfit the observed data, as shown
in the following experiments. These drawbacks limit CTR-
based and CDL-based methods to learn better latent repre-
sentations from sparse datasets.

To tackle the above problems, in this paper, we aim
to build a full Bayesian deep framework to jointly learn
latent factors of users and items from three source data,
i.e., item content, user-item feedback and user social ma-
trices. We propose a Bayesian Deep Collaborative Matrix
Factorization model, abbreviated as BDCMF, which inte-
grates item contents and user social information into prob-
abilistic matrix factorization (PMF). Different from CTR-
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based and CDL-based methods which utilize LDA and
SDAE to capture items’ latent content vectors, our BDCMF
is a full deep generative model and considers the various
item content information to be generated by items’ latent
content factors through a generative network. In addition,
with both item content and social information, BDCMF can
effectively tackle the matrix sparsity problem. In our BD-
CMF, to infer latent factors of users and items, we first pro-
pose a novel variational EM algorithm from a Bayesian point
estimation perspective. Due to the Bayesian nature of BD-
CMF and drawbacks of Bayesian point estimation, we also
propose Bayesian posterior estimation to infer the posterior
distributions of users’ and items’ latent factors. To sum up,
our main contributions are:

• We propose a novel deep generative model called BD-
CMF, which jointly learns latent factors of users and items
from content, feedback and social matrices.

• We derive an efficient parallel variational EM-style algo-
rithm from Bayesian point estimation perspective to infer
latent factors of users and items.

• To obtain high-quality latent factors, we derive a full
Bayesian variational posterior estimation algorithm that
can infer posterior distribution of latent factors.

• Comprehensive experiments conducted on two large real-
world datasets show BDCMF can significantly outper-
form state-of-the-art hybrid MF methods for CF.

Related Work
Matrix factorization (MF) is one of the most used ap-
proaches in collaborative filtering (CF) and other applica-
tions such as rank aggregation (Liang et al. 2014; 2018a).
Since the traditional MF suffers from matrix sparsity prob-
lem, some previous works explore items’ content informa-
tion to improve the performance. Ma et al. (2008) proposed
SocRec, which incorporates social information into proba-
bilistic MF. Wang and Blei (2011) proposed CTR, which
explores LDA to capture text topics, and integrates it into
probabilistic MF. Wang, Wang, and Yeung (2015) proposed
CDL which incorporates SDAE (Stack Denoising Auto-
Encoder) into MF framework. To consider both user social
information and item content information, many CTR-based
and CDL-based methods have been proposed. Purushotham,
Liu, and Kuo (2012) proposed CTR-SMF, which incorpo-
rates CTR and social matrix factorization to improve per-
formance. In C-CTR-SMF2 (Chen et al. 2014), social con-
text information was integrated into CTR. de Souza da Silva,
Langseth, and Ramampiaro (2017) proposed PoissonMF-
CS, which utilizes Poisson matrix factorization to model
users’ preferences and items’ contents. Ren et al. proposed
sCVR (Ren et al. 2017) to predict item ratings based on
user opinions and social relations. Recently, some previ-
ous works utilize neural networks to model latent factors of
users and items, due to their non-linear modelling abilities.
These include NeuMF (Neural Matrix factorization) (He
et al. 2017) and CDAE (Collaborative Denoising Auto-
Encoder) (Wu et al. 2016). However, the stacked neural net-
work structures of them make them difficult to train and in-

cur high computational cost. In contract, our BDCMF incor-
porates neural network into Bayesian generative framework,
which makes it have non-linear modelling abilities and to be
trained effectively.

Problem Definition and Notations
Let R ∈ {0, 1}N×M be a user-item matrix, where N and
M are the number of users and items, respectively. Rij = 1
denotes the implicit feedback from user i over item j is ob-
served and Rij = 0 otherwise. We use R·j to represent the
j-th column of R. Let S = {Sik}N×N denote the social
matrix of a social network graph G, where Sik = 1 if user i
is associated with user k and Sik = 0 otherwise. Let X =
[x1,x2, . . . ,xM ] ∈ RL×M represent item content matrix,
where L denotes the dimension of content vector xj , and xj
be the content information of item j. For example, if item j
is a product or a music, the content xj can be bag-of-word
representation of its tags. We use U = [u1,u2, . . . ,uN ] ∈
RD×N and V = [v1,v2, . . . ,vM ] ∈ RD×M to denote user
and item latent matrices, respectively, where D denotes the
latent dimension. G = [g1,g2, . . . ,gN ] ∈ RD×N denotes
the social factor latent matrix. ID represents identity matrix
with dimension D. The problem we aim to address is: given
a user-item matrix R, item content matrix X and social ma-
trix S, infer user latent matrix U, social factor latent matrix
G and item latent matrix V such that missing value Rij in
R can be effectively predicted.

Bayesian Deep Collaborative Matrix
Factorization

In this section, we propose a Bayesian Deep Collaborative
Matrix Factorization (BDCMF) for recommendation, the
goal of which is to infer user latent matrix U, social factor
latent matrix G, and item latent matrix V given item content
matrix X, user social matrix S, and feedback matrix R.

The Proposed Model
Similar to (Ma et al. 2008), we consider user-item and social
matrices, R and S, sharing the same user latent matrix U,
such that R is factorized by user and item latent matrices, U
and V, via probabilistic matrix factorization (PMF) (Mnih
and Salakhutdinov 2008), and S is factorized by user latent
and social factor latent matrices, U and G. For items’ con-
tent information, since it can be very complex and various,
we don’t know its real distribution. However, we know any
distribution can be generated by mapping simple Gaussian
through a sufficiently complicated function (Doersch 2016).
In our proposed model, we consider item contents to be gen-
erated by their latent content vector through a generative net-
work. The generative process of BDCMF is:
1. For each user i, draw user latent vector ui ∼ N (0, λuID).
2. For each social factor k, draw its latent vector, i.e., the
social latent vector gk ∼ N (0, λgID).
3. For each item j:

(a) Draw item content latent vector zj ∼ N (0, ID).
(b) Draw item content vector pθ(xj |zj).
(c) Draw item latent offset kj ∼ N (0, λvID) and set

the item latent vector as vj = zj + kj .
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4. For each user-item pair (i, j) in R, draw Rij :

Rij ∼ N (u>i vj , c
−1
ij ). (1)

5. For each user-social factor pair (i, k) in S, draw Sik:

Sik ∼ N (u>i gk, λ
−1
q e−1ik ). (2)

In the process, λv, λu, λg , and λq are the free parame-
ters, respectively. Specifically, λq is a trade-off between the
social matrix and user-item matrix for user latent factor
(will be discussed later). Similar to (Wang and Blei 2011;
Wang, Wang, and Yeung 2015), cij in Eq.1 and eik in Eq.2
serves as confident parameters forRij and Sik, respectively:

cij =

{
ϕ1 if Rij = 1,
ϕ2 if Rij = 0,

(3)

eik =

{
ϕ3 if Sik = 1,
ϕ4 if Sik = 0,

(4)

where ϕ1 > ϕ2 > 0 and ϕ3 > ϕ4 > 0 are free parameters.
In our model, we follow (Wang, Wang, and Yeung 2015;
Purushotham, Liu, and Kuo 2012) to set ϕ1 = ϕ3 = 1
and ϕ2 = ϕ4 = 0.1. pθ(xj |zj) represents item content
information and xj is generated from latent content vector
zi through a generative neural network parameterized by θ.
It should be noted that the specific form of the probability
pθ(xj |zj) depends on the type of the item content vector.
For instance, if xj is binary vector, pθ(xj |zj) can be a mul-
tivariate Bernoulli distribution Ber(Fθ(zj)) with Fθ(zj) be-
ing the highly no-linear function parameterized by θ.

According to the graphic model in Fig.1, the joint proba-
bility of R,S,X,U,V,G,Z can be represented as:

p(O,Z) =
∏N

i=1

∏M

j=1

∏N

k=1
p(Oijk,Zijk) =

∏N

i=1∏M

j=1

∏N

k=1
p(zj)p(gk)p(ui)pθ(xj |zj)p(vj |zj)

p(Rij |ui,vj)p(Sik|ui,gk), (5)

where O = {R,S,X} is the set of all observed variables,
Z = {U,V,G,Z} is the set of all latent variables needed
to be inferred, and Oijk = {Rij , Sik,xj} and Zijk =
{ui,vj ,gk, zj} for short.

Bayesian Point Estimation
Previous works (Wang, Wang, and Yeung 2015; Wang and
Blei 2011) have shown that using an EM-style algorithm en-
ables recommendation methods that integrate them to obtain
high-quality latent vectors (in our case, U and V). Inspired
by these work, in this section, we first derive an EM-style al-
gorithm called BDCMF-1 from the view of Bayesian point
estimation. The marginal log likelihood can be given by:

log p(O) = log

∫
p(O,Z)dZ ≥

∫
q(Z) log

p(O,Z)

q(Z)
dZ

=

∫
q(Z) log p(O,Z)−

∫
q(Z) log q(Z) ≡ L(q), (6)

where we apply Jensen’s inequality, and q(Z) and F(q)
are variational distribution and the evidence lower bound

λ𝑣

λu

𝐱j 𝐳j 𝐱j

𝐯j Rij

𝐮i Sik 𝐠k

j=1,...,M

i=1,...,N

k=1,...,N

λ𝑔

λ𝑞

Generative 
network

Inference  
network

𝑅·𝑗𝐑·j

Figure 1: Graphical model of our BDCMF. Solid and dashed
lines represent generative and inference process, respec-
tively. Shaded nodes represent observed variables.

(ELBO), respectively. For variational distribution q(Z), we
consider variational distributions in it to be matrix-wise in-
dependent:

q(Z) = q(U)q(V)q(G)q(Z) (7)

=
∏N

i=1
q(ui)

∏M

j=1
q(vj)

∏N

k=1
q(gk)

∏M

j=1
q(zj).

For Bayesian point estimation, we assume the variational
distribution of ui is:

q(ui) =
∏D

d=1
δ(Uid − Ûid), (8)

where {Ûid}Dd=1 are variational parameters and δ is a Dirac
delta function. Variational distributions of vj and gk are de-
fined similarly. When Uid is discrete (The continuous situ-
ation will be discussed in next section), the entropy of ui
is:

H(ui) = −
∫
q(ui) log q(ui) (9)

=
∑D

d=1

∑
Uid

δ(Uid − Ûid) log δ(Uid − Ûid) = 0.

Similarly, H(vj) and H(gk) are 0 when the elements are
discrete. Then the evidence lower bound L(q) (Eq. 6) can be
written as:

Lpoint(Û, V̂, Ĝ, θ, φ) = 〈log p(U)p(G)p(V|Z) (10)
p(X|Z)p(R|U,V)p(S|U,G)〉q − KL(qφ(Z|X)||p(Z)),

where 〈·〉 is the statistical expectation with respect to the
corresponding variational distribution. Û =

{
Ûid

}
, V̂ ={

V̂jd

}
and Ĝ =

{
Ĝkd

}
are variational parameters cor-

responding to the variational distribution q(U), q(V) and
q(G), respectively.

For latent variables Z, we use a generative network to rep-
resent the distribution pθ(X|Z). As discussed in (Kingma
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and Welling 2014), traditional variational-EM algorithm
(Neal and Hinton 1998) is intractable to infer the pos-
terior of Z. Consequently, similar to VAE (Kingma and
Welling 2014), we also introduce a variational distribution
qφ(Z|X,R) to approximate the true posterior distribution
p(Z|O). qφ(Z|X,R) is implemented by a inference neural
network parameterized by φ (see Fig.1). Specifically, for zj
we have:

q(zj) = qφ(zj |xj ,R·j) = N (µj , diag(δ2j )), (11)

where the mean µj and variance δj are the outputs of the
inference neural network.

Directly maximizing the ELBO (Eq. 10) involves solving
parameters Û, V̂ Ĝ, θ and φ, which is intractable. Thus, we
derive an iterative variational-EM (VEM) algorithm to max-
imize Lpoint(Û, V̂, Ĝ, θ, φ) , abbreviated Lpoint.
Variational E-step. We first keep θ and φ fixed, then opti-
mize evidence lower bound Lpoint with respect to Û, V̂ and
Ĝ. The updating rules of ûi, v̂j and ĝk are (we omit the
derivation due to space limitations):

ûi ← (V̂CiV̂
> + λqĜEiĜ

> + λuID)−1·
(V̂CiRi + λqĜEiSi), (12)

v̂j ← (ÛCjÛ
> + λvID)−1(ÛCjRj + λv〈zj〉), (13)

ĝk ← (λqÛEkÛ
> + λgID)−1(λqÛEkSk), (14)

where Ci = diag(ci1, ...ciM ), Ei = diag(ei1, ...eiN ), Ri =
[Ri1, ...RiM ] and Si = [Si1, ...SiN ]. For item latent vector
vj and social latent vector gk, Cj , Rj , Ek and Sk are de-
fined similarly. ûi = [Ûi1, ...ÛiD], v̂j = [V̂j1, ...V̂jD] and
ĝk = [Ĝk1, ...ĜkD]. For zj , its expectation is 〈zj〉 = µj ,
which is the output of the inference network.

It can be observed that λv governs how much the latent
item vector zj affects item latent vector vj . For example,
if λv = ∞, it indicates we direct use latent item vector
to represent item latent vector vj ; if λv = 0, it means we
do not embed any item content information into item latent
vector. λq serves as a balance parameter between social net-
work matrix and user-item matrix on user latent vector ui.
For example, if λq = ∞, it means we only use the social
network information to model user’s preference; if λq = 0,
we only use user-item matrix and item content information
for prediction. Thus, λv and λq are regarded as collaborative
parameters for item content, feedback and social matrices.
Variational M-step. Keep Û, V̂ and Ĝ fixed, we optimize
the following Lpoint w.r.t. φ and θ (we only focus on terms
containing φ and θ):

Lpoint = constant +
∑M

j=1
L(θ, φ; xj ,vj ,R·j) = constant

+
∑M

j=1
−λv

2
〈(vj − zj)

>(vj − zj)〉q(Z)+ (15)

〈log pθ(xj |zj)〉qφ(zj |xj ,R·j) − KL(qφ(zj |xj ,R·j)||p(zj)),
where M is the number of items and the constant term rep-
resents terms which do not contain θ and φ. For the expec-
tation term 〈pθ(xj |zj)〉qφ(zj |xj ,R·j), we can not solve it an-
alytically. To handle this problem, we approximate it by the

Monte Carlo sampling as follows:

〈log pθ(xj |zj)〉qφ(zj |xj ,R·j) =
1

L

∑L

l=1
pθ(xj |zlj), (16)

where L is the size of samplings, and zlj denotes the l-th
sample, which is reparameterized to zlj = εlj�diag(δ2j )+µj .
Here εlj is drawn from N (0, ID) and � is an element-wise
multiplication. By using this reparameterization trick and Eq
11, L(θ, φ; xj ,vj ,R·j) in Eq 15 can be estimated by:

L(θ, φ; xj ,vj ,R·j) ' L̃j(θ, φ) = −λv
2

(−2µ>j v̂j+

µ>j µj + tr(diag(δ2j ))) +
1

L

∑L

l=1
pθ(xj |zlj)

− KL(qφ(zj |xj ,R·j)||p(zj)) + constant. (17)

We can construct an estimator of Lpoint(φ, θ; X,V,R),
based on minibatches:

Lpoint(θ, φ) ' L̃P (θ, φ) =
M

P

∑P

j=1
L̃j(θ, φ). (18)

As discussed in (Kingma and Welling 2014), the number of
samplings L per item j can be set to 1 as long as the mini-
batch size P is large enough, e.g., P = 100. We can update
θ and φ by using the gradient∇θ,φL̃P (θ, φ).

We iteratively update U,V,G, θ, and φ until it converges.
Overview of our Bayesian point estimation is summarized in
algorithm 1.

Bayesian Posterior Estimation
We assume Û, V̂ and Ĝ are discrete variables. When
these variables are continuous, as discussed in pervi-
ous work (Welling, Chemudugunta, and Sutter 2008), the
Bayesian point estimation will lead overly to optimistic esti-
mates of test-set log-likelihood. This problem is exactly that
pervious well-known recommendation models such CTR-
based and CDL-based models (Wang, Wang, and Yeung
2015; Wang and Blei 2011; Purushotham, Liu, and Kuo
2012; Chen et al. 2014; Zhang et al. 2016) which use point
estimation algorithm suffer from. In addition, point estima-
tors leads to higher variance in prediction and ignore un-
certainty in the model parameters. Unlike CTR-based and
CDL-based recommendation methods, BDCMF can be eas-
ily estimated by a full Bayesian posterior estimator.

Here, we derived Bayesian posterior estimation learning
algorithm called BDCMF-2. For Bayesian posterior estima-
tion, we also assume variational distributions are matrix-
wise independent:

q(Z) = q(U)q(V)q(G)q(Z) (19)

=
∏N

i=1
q(ui)

∏M

j=1
q(vj)

∏N

k=1
q(gk)

∏M

j=1
q(zj),

For variational distributions p(zj), we also introduce a vari-
ational distribution qφ(Z|X) to approximate the true pos-
terior distribution p(Z|O) like Bayesian point estimation.
qφ(Z|X) is parameterized by φ, an inference neural network
(see Fig.1). For zj :

q(zj) = qφ(zj |xj ,R·j) = N (µj , diag(δ2j )). (20)

5477



It should be noted we do not assume the specific forms
of variational distributions for q(ui), q(vj) and q(gk) in
Bayesian posterior estimation. Our goal is also to maximize
the evidence lower bound L(q) (Eq. 6). The algorithm also
contains variational E-step and M-step.
Variational E-step. we fix θ and φ, then optimize evidence
lower bound (6) w.r.t ui, vj and gk. Taking the derivative of
lower bound (Eq. 6) w.r.t. q(ui) and setting it to zero, then
we can get:

q(ui) ∝ exp
{
〈log p(O,Z)〉q(Z\ui)

}
= N (ui,Λ

u
i ) , (21)

where the expectation is taken with respect to the variational
distributions over all latent variables excluding ui. Thus, the
updating rules of ui are:

q(U) =
∏M

i=1
N (ui,Λ

u
i ),where (22)

Λu
i ← (〈V〉Ci〈V〉> +

∑M

j=1
cijΛ

v
j + λq(〈G〉Ei〈G〉>

+
∑N

k=1
eikΛ

g
k) + λuID)−1, (23)

ui ← Λu
i (〈V〉CiRi + λq〈G〉EiSi). (24)

Similarly, the updating rules of V and G are:

q(V) =
∏M

j=1
N (vj ,Λ

v
j ),where (25)

Λv
j ← (〈U〉Cj〈U〉> +

∑N

i=1
cijΛ

u
i + λvID)−1, (26)

vj ← Λvj (〈U〉CjRj + λv〈zj〉). (27)

q(G) =
∏N

k=1
N (gk,Λ

g
k),where (28)

Λg
k ← (λq(〈U〉Ek〈U〉> +

∑N

i=1
eikΛ

u
i )

+ λgID)−1, (29)

gk ← Λg
k(λq〈U〉EkSk). (30)

Variational M-step. we only focus parameters θ and φ. The
M-step is as same as Bayesian point estimation. By using
the reparameterization trick as we did in Bayesian point es-
timation, the objection function w.r.t θ and φ is:

L(q) = constant +
∑M

j=1
L(θ, φ; xj ,vj ,R·j) = constant

+
∑M

j=1
−λv

2
〈(vj − zj)

>(vj − zj)〉q(Z)+ (31)

〈log pθ(xj |zj)〉qφ(zj |xj ,R·j) − KL(qφ(zj |xj ,R·j)||p(zj)) .

We can optimize it as the same as we did in Bayesian point
estimation.

Discussion
According to Algorithm 1, the time complexity of updat-
ing gk is O(ND2 + D3), where N is the number of users
and D is the dimension of latent space. The time complex-
ity of updating vj is O(ND2 + D3 + LP 2), where L is
the number of layers in neural network and P is the average
dimension of these layers. The time complexity of updat-
ing ui is O(MD2 + ND2 + D3), where M is the number

Algorithm 1 BDCMF-1 inference algorithm.

Require: user-item matrix R, item content matrix X, pa-
rameters λv , λu, λg , and λq , and P = 100 and L = 1.

1: Randomly initialize variational parameters ûi, v̂j , ĝk
and network parameters θ and φ.

2: while not converged do
3: for i = 1 to N do
4: update ûi using Eq.12.
5: end for
6: for j = 1 to M do
7: update v̂j using Eq.13.
8: end for
9: for k = 1 to N do

10: update ĝk using Eq.14.
11: end for
12: randomly draw P triples, i.e., {(xp,vp,R·p)}Pp=1

from the dataset.
13: ε← draw P samples from N (0, ID), with each for a

triple (xp,vp,R·p).
14: θ, φ← update θ, φ using the gradient ∇θ,φL̃P (θ, φ).
15: end while

of items. Because V̂CiV̂
> in Eq. 12 can be rewritten as

V̂(Ci−ϕ2I)V̂>+ϕ2V̂V̂>, the complexity of updating gk
decreases from O(ND2 + D3) to O(N0D

2 + D3) , where
N0 is observed rating numbers with respect to item j which
is relatively small in sparse matrix. ÛCjÛ

> and ÛEkÛ
>

can be rewritten, similarly. In fact, the latent dimensionsD is
also relatively small (<200). Therefore, our BDCMF can be
very efficient for large datasets. Additionally, our model is
flexible to handle different types of contents in different sce-
narios by replacing the architecture of neural networks for
inferring items’ latent content representations to the other
neural networks such as recurrent neural network.

Prediction
After Algorithm 1 is converged, we predict the missing value
Rij in R by using the learned latent features ui and vj :

R∗ij = 〈Rij〉 = (〈zj〉+ 〈kj〉)>〈ui〉 = 〈vj〉>〈ui〉 . (32)

For a new item that is not rated by any other users, the offset
εj is zero, and we can predict Rij by:

R∗ij = 〈Rij〉 = 〈zj〉>〈ui〉 . (33)

Experiments
Experimental Setup
Research Questions. The research questions guiding the
remainder of the paper are: (RQ1) How does our proposed
BDCMF-1 compare to state-of-the-art MF methods for
CF on sparsity matrix? (RQ2) How do different param-
eter settings (e.g., the social parameter λq and content
parameter λv) affect BDCMF-1? (RQ3) Does the Bayesian
posterior estimation outperform Bayesian point estimation?
Datasets. In order to answer our research questions, we
conduct experiments on two real-world datasets from
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Table 1: Statistics of the datasets.

Datasets lastfm-2k delicious-2k
users 01,892 001,876
items 17,632 069,226
tags 11,946 053,388

user-items relations 92,834 104,799
user-user relations 25,434 015,328

user-tags-items 186,479 437,593

Lastfm 1 (lastfm-2k) and Delicious2 (delicious-2k) collected
by Brusilovsky et al. (2010). Both of the datasets contain
user-item, user-user, and user-tag-item relations. We first
transform datasets as implicit feedback. For Lastfm dataset,
we consider the user-item feedback is 1 if the user has
listened to the artist (item); otherwise, it is 0. Similarly, for
the Delicious dataset, if the user has bookmarked a URL
(item), the user-item feedback is 1; otherwise, the feedback
is 0. After doing so, Lastfm and Delicious datasets only
contain 0.27% and 0.08% observed feedbacks, respectively,
and are extremely sparse. We use items bag-of-word tag
representations as their items content information.
Baselines. For fair comparisons, like that in our BDCMF-1
and BDCMF-2 (in what follows, we use BDCMF to refer to
these two models), most baselines we used also incorporate
user social information or item content information into
matrix factorization.
MF-based methods:
(1) PMF. This model (Mnih and Salakhutdinov 2008) is
a famous MF method, and only uses user-item feedback
matrix.
(2) SoRec. This model (Ma et al. 2008) jointly decomposes
user-user social matrix and user-item feedback matrix to
learn user and item latent representations.
Content-based methods:
(3) Collaborative topic regression (CTR). This model
(Wang and Blei 2011) utilizes topic model and matrix
factorization to learn latent representations of users and
items.
(4) Collaborative deep learning (CDL). This model
(Wang, Wang, and Yeung 2015) utilizes stack denoising au-
toencoder to learn latent items’ content representations, and
incorporates them into probabilistic matrix factorization.
Hybrid methods:
(5) CTR-SMF. This model (Purushotham, Liu, and Kuo
2012) incorporates topic modeling and probabilistic MF of
social networks.
(6) PoissonMF-CS This model(de Souza da Silva,
Langseth, and Ramampiaro 2017), jointly models use social
trust, item content and user’s preference using Poisson
matrix factorization framework. It is a state-of-the-art MF
method for Top-N recommendation on the Lastfm dataset.
Neural network-based method:
(7)Neural Matrix Factorization (NeuMF). This model
(He et al. 2017) is a state-of-the-art CF method, which

1http://www.lastfm.com.
2http://www.delicious.com.

utilizes neural network to model the interaction between
user and item features.
Settings. For fair comparisons, We first set the parameters
for PMF, SoRec, CTR, CTR-SMF, CDL, NeuMF via
five-fold cross validation. For PMF, we set D, λu and λv
as 50, 0.01 and 0.001, respectively. The parameter settings
for SoRec are λc = 10, λu = λv = λz = 0.001. For
CTR, we find it achieve best performance when D=50,
λu=0.1, λv=100, a=1 and b=0.01. CTR-SMF yields the
best performance when D=75, λu=0.1, λv=100, λq=100,
a=1 and b=0.01. For CDL, it achieves the best performance
when we set a = 1, b = 0.01, D = 50, λu=1, λv=10,
λn = 1000, and λw=0.0001. For NeuMF, we set D=50,
and the last hidden layer is 16. For PoissonMF-CS, we
set λc=0.1 and λs=0.1. For our model BDCMF, we set
D=50. We set λv=1, λq=10 for dataset Lastfm, and set
λv=0.1, λq=10 for dataset Delicious. To evaluate our model
performance on extreme sparse matrix, we use 90% of
dataset to train our model and the remainder for testing. The
dimensions of the layers of the network for BDCMF are
(L+N )-200-100(zj)-100-100-(L+N ), where L and N are
the dimension of xj and R·j . The ’-’ denotes the next layer
in neural networks.
Evaluation Metrics. The metrics we used are Re-
call@K, NDCG@K and MAP@K which are com-
mon metrics for recommendation and their definitions
can be found at (Croft, Metzler, and Strohman 2015;
Liang and de Rijke 2016). We report the average perfor-
mance over all users on the metrics.

Experimental Results and Discussions
Overall Performance (RQ1). Table 2 shows the perfor-
mance of our BDCMF-1 and the baselines using the two
datasets. According to Table 2, we have following find-
ings: a) BDCMF-1 outperforms the baselines in terms of
all matrices on Lastfm, which demonstrates the effective-
ness of our method of inferring the latent factors of users
and items. b) For more sparse dataset, Delicious, BDCMF-
1 also achieves the best performance, which demonstrates
our model can effectively handle matrix sparsity problem. c)
We can see both methods that utilize content and social in-
formation (BDCMF-1 and PoissonMF-CS) outperform the
others (CDL, CTR, SoRec and PMF), which demonstrates
incorporating content and social information can effectively
alleviate matrix sparse problem. d) Our BDCMF-1 out-
performs state-of-the-art PoissonMF-CS, though they are
both Bayesian generative model. The reason is that our
BDCMF-1 incorporates neural network into Bayesian gen-
erative model, which makes it have powerful non-linearity
to model item content’s latent representation.
Impact of Parameters (RQ2). Fig. 2(a) and 2(b) show the
contour of Recall@50 by varying content parameters λv and
social parameters λq on Lastfm and Delicious datasets. As
we can see, BDCMF-1 achieves the best recommendation
performance when λv=0.1 and λq=10 in Lastfm. We also
can see that the performance is worse when λv >10, as
λv can control how much item content information is in-
corporated into item latent vector, and Lastfm is a social
media dataset where people have similar preferences with
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Table 2: Recommendation performance of BDCMF-1 and the baselines. The best and the second best performance scores per
metric per dataset are marked with boldfaces and underlined, respectively.

Lastfm Dataset Delicious Dataset
Recall@20 Recall@50 NDCG@20 MAP@20 Recall@20 Recall@50 NDCG@20 MAP@20

PMF 0.0923 0.1328 0.0703 0.1083 0.0272 0.0561 0.0286 0.0312
SoRec 0.1088 0.1524 0.0721 0.1128 0.0384 0.0892 0.0323 0.0389
CTR 0.1192 0.1624 0.0799 0.1334 0.0563 0.1342 0.0487 0.0581

CTR-SMF 0.1232 0.1832 0.0823 0.1386 0.0781 0.1564 0.0534 0.0588
CDL 0.1346 0.2287 0.0928 0.1553 0.0861 0.1897 0.0726 0.0792

NeuMF 0.1517 0.2584 0.1036 0.1678 0.1078 0.2267 0.0769 0.0928
PoissonMF-CS 0.1482 0.2730 0.1089 0.1621 0.1012 0.2123 0.0742 0.0863

BDCMF-1(ours) 0.1625 0.3026 0.1174 0.1701 0.1121 0.2341 0.0826 0.1021

(a) Lastfm—Recall@50 (b) Delicious—Recall@50

Figure 2: The contour of Recall@50 by varying λv and λq
on datasets Lastfm and Delicious.

their friends. λq can control how much social information
is incorporated into user latent factor. Thus, our BDCMF-
1 is very sensitive to λv and λq . For Delicious dataset,
Fig. 2(b) shows BDCMF-1 achieves the best performance
on Recall@50 when λv =1 and λq =10. Fig. 2(a) and 2(b)
show that we can balance the content information and social
information by varying λv and λq , leading to better recom-
mendation performance.

To figure out the impact of the latent dimension D, we
vary D and see the performance. As shown in Fig. 3,
BDCMF-1 outperforms all the baselines with all dimen-
sions, which demonstrates BDCMF-1 can learn better latent
representations of users and items than the baselines regard-
less of their dimensional size.
The Effectiveness of Bayesian posterior estimation
(RQ3). To figure out the effectiveness of Bayesian posterior
estimation, we make comparison between BDCMF-1 and
BDCMF-2 on Lastfm dataset. Results on Delicious show
the same trend and thus we omit it here. Performance of
BDCMF-1 and BDCMF-2 over iterations on Lastfm is ob-
served as: a) With more iterations, the ELBO of BDCMF-
1 and BDCMF-2 gradually increases. BDCMF-2 achieves
bigger ELBO than BDCMF-1, which illustrates BDCMF-
2 can fit data better (the margin likelihood of data is more
higher). b) For recommendation performance, BDCMF-2
outperforms BDCMF-1 in terms of all metrics. Specifi-
cally, BDCMF-2 betters with a 10.4% relative improvement
on Recall@20. c) When the number of iterations > 30,
BDCMF-1 suffers severe overfitting problem (Recall@20
scores begin to decrease, although the EBLO keeps increas-
ing). In contrast, BDCMF-2 does not suffer this overfitting

Figure 3: Recommendation performance on Lastfm and De-
licious with various values of dimension D.

Figure 4: ELBO and recommendation performance of BD-
CMF methods w.r.t. the number of iterations on Lastfm
(D=50, λv = 0.1 and λq = 10).

problem. These observations demonstrate BDCMF-2 can
learn better latent representations than BDCMF-1.
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Conclusions
In this paper we studied the problem of inferring latent fac-
tors of users and items in the social recommender system.
We have proposed a novel Bayesian deep collaborative ma-
trix factorization model, BDCMF, which incorporates var-
ious item content information and user social relationship
into a full Bayesian framework. To model item’s latent con-
tent vector, we use a generative network to model the gen-
erative process of item content. To effectively infer latent
factors of users and items, we first derived a EM algorithm
from a Bayesian point estimation perspective. Due to the full
Bayesian nature of our proposed model and the drawbacks
of Bayesian point estimation, we have inferred the full pos-
terior distribution of the latent factors of users and items. We
have conducted several experiments on two public datasets.
Experimental results show that our BDCMF can effective
infer latent factors of users and items, and the Bayesian pos-
terior estimation is more robust than point estimation. In the
future, we will utilize the proposed model to deal with other
information retrieval task such as user profiling (Liang 2018;
Liang et al. 2018b; Liang, Yilmaz, and Kanoulas 2018) and
social network analysis.
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