The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Training Deep Neural Networks in Generations:
A More Tolerant Teacher Educates Better Students

Chenglin Yang, Lingxi Xie® Siyuan Qiao, Alan L. Yuille
Johns Hopkins University
{chenglin.yangw,198808xc,joe.siyuan.qiao,alan.l.yuille} @ gmail.com

Abstract

We focus on the problem of training a deep neural network
in generations. The flowchart is that, in order to optimize the
target network (student), another network (teacher) with the
same architecture is first trained, and used to provide part of
supervision signals in the next stage. While this strategy leads
to a higher accuracy, many aspects (e.g., why teacher-student
optimization helps) still need further explorations.

This paper studies this problem from a perspective of con-
trolling the strictness in training the teacher network. Exist-
ing approaches mostly used a hard distribution (e.g., one-hot
vectors) in training, leading to a strict teacher which itself
has a high accuracy, but we argue that the teacher needs to
be more folerant, although this often implies a lower accu-
racy. The implementation is very easy, with merely an ex-
tra loss term added to the teacher network, facilitating a few
secondary classes to emerge and complement to the primary
class. Consequently, the teacher provides a milder supervi-
sion signal (a less peaked distribution), and makes it possi-
ble for the student to learn from inter-class similarity and po-
tentially lower the risk of over-fitting. Experiments are per-
formed on standard image classification tasks (CIFAR100
and ILSVRC2012). Although the teacher network behaves
less powerful, the students show a persistent ability growth
and eventually achieve higher classification accuracies than
other competitors. Model ensemble and transfer feature ex-
traction also verify the effectiveness of our approach.

Introduction

o “Indigo comes from blue, but it is bluer than blue.”
—AN OLD PROVERB

Deep learning, especially the convolutional neural net-
works, has been widely applied to computer vision prob-
lems. Among them, image classification has been consid-
ered the fundamental task which sets the backbones vision
systems for other problems (Krizhevsky, Sutskever, and Hin-
ton 2012)(Simonyan and Zisserman 2015)(Szegedy et al.
2015)(He et al. 2016), and the knowledge or features ex-
tracted from these modules are transferrable for generic im-
age representation purposes (Razavian et al. 2014) or other
vision tasks (Long, Shelhamer, and Darrell 2015)(Ren et al.
2015)(Xie and Tu 2015)(Newell, Yang, and Deng 2016).

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5628

A fundamental task in computer vision is to optimize
deep networks for image classification. Most existing work
achieved this goal by fitting the outputs of a model to one-
hot vectors. For each training sample (X, y,) where x,
is an image matrix and y, is the class label (out of C'
classes), the goal is to find network parameters 6, so that
f(x,:0) ~ [0,...,1,...,0]" € R, ie., only the y,-th di-
mension is 1 and all others are 0. Despite its effectiveness,
this is not necessarily the optimal target to fit, because except
for maximizing the confidence score of the primary class
(i.e., the ground-truth), allowing for some secondary classes
(i.e., those visually similar ones to the ground-truth) to be
preserved may help to alleviate the risk of over-fitting. Some
proposed to learn a class-level similarity matrix (Deng et al.
2010)(Verma et al. 2012)(Wu, Tygert, and LeCun 2017), but
these approaches are unable to capture inter-class similar-
ities at the image level, e.g., different cat images may be
visually similar to different classes.

We turn to an alternative solution, i.e., extracting knowl-
edge from a trained (feacher) network and guide another
(student) network in an individual training process. This al-
gorithm, known as knowledge distillation, was first used to
network compression (the student network is much smaller
than the teacher network, but can achieve a comparable
accuracy) (Hinton, Vinyals, and Dean 2015), but later it
was verified effective in the scenario that teacher and stu-
dent networks have the same architecture, in which the
student is expected to achieve a higher accuracy than the
teacher (Furlanello et al. 2018). Despite its effectiveness,
it remains unclear how teacher-student optimization works,
and if we can find some key factors to guide the design of
such optimization processes.

This paper provides an interesting perspective, focusing
on the strictness of the teacher. We argue that classification
accuracy is not the major goal of the teacher network; in-
stead, it is designed to be tolerant (i.e., producing less peaked
distributions of confidence) so that the students can learn
inter-class similarity and potentially prevent over-fitting. To
achieve this goal, we add an extra term to the standard cross-
entropy loss in training the teacher network, facilitating it to
distribute confidence to a few secondary classes. Although
this harms the accuracy of the teacher network, it indeed pro-
vides more room for the student network(s), and eventually,
the students are better than those educated by a strict teacher.

In standard image classification experiments on CIFAR100
and ILSVRC2012, our approach reports higher classifica-
tion accuracy than its competitors, regardless using a sin-
gle model, an ensemble of multiple models, or transferring
trained models for feature extraction.

The contribution of this work is three-fold. First, we pro-
pose a new perspective to interpret why teacher-student opti-
mization works. Second, we suggest an evaluation method to
quantize its impact. Third, we design an efficient “tolerant-
teacher” framework which achieves superior performance.

The reminder of this paper is organized as follows. We
first review related work in the next section, and then illus-
trate our approach. After experiments are shown, we con-
clude our work in the final section.

Related Work
Deep Learning and Neural Networks

Deep learning has been dominating the field of computer
vision. Powered by large-scale image datasets (Deng et al.
2009) and powerful computational resources, it is possi-
ble to train very deep networks for various computer vi-
sion tasks. The fundamental idea of deep learning is to
design a hierarchical structure containing multiple layers,
each of which contains a number of neurons having the
same or similar mathematical functions. Researchers be-
lieve that a sufficiently deep network is able to fit very
complicated distributions in the feature space. In a fun-
damental task known as image classification, deep neural
networks (Krizhevsky, Sutskever, and Hinton 2012) have
achieved much higher accuracy than conventional hand-
crafted features (Perronnin, Sanchez, and Mensink 2010).
Towards better recognition performance, researchers de-
signed deeper and deeper networks (Simonyan and Zisser-
man 2015)(Szegedy et al. 2015)(He et al. 2016)(Huang et
al. 2017b)(Hu, Shen, and Sun 2018), and even proposed to
automatically explore network architectures (Xie and Yuille
2017)(Zoph and Le 2017).

The rapid progress of deep learning has helped a lot of
computer vision tasks. Features extracted from trained clas-
sification networks can be transferred to small datasets for
image classification (Donahue et al. 2014), retrieval (Raza-
vian et al. 2014) or object detection (Girshick et al. 2014).
An even more effective way is to insert specified network
modules for these tasks, and initializing these models with
part of the weights learned for image classification. This
flowchart, often referred to as fine-tuning, works well in
a variety of problems, including object detection(Girshick
2015)(Ren et al. 2015), semantic segmentation (Long, Shel-
hamer, and Darrell 2015)(Chen et al. 2016), edge detec-
tion (Xie and Tu 2015), etc.

Training Very Deep Networks in Generations

Deep network optimization has become an important yet
challenging problem. Training very deep neural networks
(e.g., more than 100 layers) requires specifically designed
techniques to assist numerical stability, such as ReLU ac-
tivation (Nair and Hinton 2010), Dropout (Srivastava et al.
2014) and batch normalization (Ioffe and Szegedy 2015).

5629

However, as depth increases, the large number of parame-
ters makes neural networks easy to be over-fitted, especially
when the amount of training data is limited. Therefore, it is
often instructive to introduce extra priors to constrain the
training process and thus prevent over-fitting. A common
prior assumes that some classes are visually or semantically
similar (Deng et al. 2010), and adds a class-level similarity
matrix to the loss function (Verma et al. 2012)(Wu, Tygert,
and LeCun 2017), but it is unable to deal with per-image
similarity which is well noted in previous research (Wang et
al. 2014)(Akata et al. 2016)(Zhang, Cheng, and Tian 2018).
An effective way to solve this issue is teacher-student op-
timization, in which a teacher network is trained beforehand,
and then used to guide the optimization of a student network.
Thus, the output of the teacher network carries class-level
similarity in its confidence score for each image. Previously,
teacher-student optimization was used to distill knowledge
from a larger network and then compress it into a smaller
network (Hinton, Vinyals, and Dean 2015), or initialize a
deeper network with pre-trained weights of a shallower net-
work (Romero et al. 2014)(Chen, Goodfellow, and Shlens
2015)(Simonyan and Zisserman 2015). This basic idea was
then extended in many ways, including using various ways
of supervision (Szegedy et al. 2016)(Pereyra et al. 2017), us-
ing multiple teachers to provide a better guidance (Tarvainen
and Valpola 2017), adding supervision in intermediate neu-
ral responses (Yim et al. 2017), and allowing two networks
to help optimize each other (Zhang et al. 2017c). In a re-
cent work named the born-again network (Furlanello et al.
2018), this method was used to optimize the same network
in generations, in which the next generation was guided by
two terms, namely, the standard cross-entropy loss and the
KL-divergence between the teacher and student signals.

Our Approach

This section presents our approach. We first introduce a
framework of optimizing neural networks in generations,
and then provide an empirical analysis on the benefits of
such optimization methods, and suggest a quantitative way
of evaluating this process. Based on these, we finally design
a flowchart, which train a tolerant teacher network to im-
prove the overall performance of optimization.

Teacher-Student Optimization

We consider a standard network optimization task. Given a
model M which has a parameterized form of y = f(x;),
where x and y are input and output, and @ denotes learnable
parameters (e.g., convolutional weights). Given a training set
D ={(x1,¥1),---,(Xn,¥nN)} the goal is to determine the
parameter 6 that best fits these data.

One of the most popular optimization methods starts with
setting all weights as random noise 60”, and then applies
gradient descent to update them gradually. Each time, a sub-
set B is sampled from D, and a loss function computed ac-
cording to the difference between prediction and labels:

L(B;0) = 7% Z y, Inf(x,;0). (1)

(Xn,yn)EB

We can interpret this process as a heuristic way of searching
over the high-dimensional parameter space defined by the
network f(x; 8). However, due to the complicated network
design and limited dataset size, this training process often
suffers over-fitting, i.e., a @ is found to achieve a high ac-
curacy on the training set, but the testing accuracy is still far
below the training accuracy. This limits us from generalizing

the trained model to unobserved testing data.)
One way of softening supervision label signals is to per-
form teacher-student optimization. In this process, a teacher

model MT: f (x; OT) is first trained in the same dataset us-
ing Eqn (1), and then used the model obtained in the last iter-
ation (Hu et al. 2016) to train a student model M5: f (x; BS>
using a mixture loss (Furlanello et al. 2018):

1

18] (x'myzn)EB
(1= X) - KL[f(xn;07) [|f(xn;6%)] }.

£5(B;6%) = — {X -y, Inf(xn;05) +

@)
This is to say, the teacher network provides f (xn; HT), a
softened version of the one-hot vector y,,, so that the student
network can find a compromise between these two signals.
In the next subsection, we will show how this formulation
helps in training a better student.

A straightforward extension of teacher-student optimiza-
tion is to allow a network to be optimized in generations.
This requires training a patriarch model, denoted by M(©),
which is only supervised by the dataset. M more genera-
tions follow, in which the m-th generation trains a student
M(™) with the supervision of a teacher M(™~1) Most of-
ten (Furlanello et al. 2018), the recognition accuracy goes
up in the first few generations, but starts to saturate and go
down. We will analyze the reason in the following parts.

Preserving Secondary Information: An Important
Factor in Teacher-Student Optimization

Previously, teacher-student optimization was mostly ap-
plied to distill knowledge from a larger network, so that
it can be compressed into a smaller network with recogni-
tion accuracy largely preserved (Hinton, Vinyals, and Dean
2015), or applied to initializing a deeper network with pre-
trained weights from a shallower network (Romero et al.
2014)(Chen, Goodfellow, and Shlens 2015). As the first
work to train an identical network in generations, (Furlanello
et al. 2018) explained the benefit as a weighted balance be-
tween the ground-truth (one-hot) signal and the teacher sig-
nal, but it did not notice an important role of the teacher:
suggesting class-level similarity.

To reveal this, we investigate network training of a born-
again process (Furlanello et al. 2018), with a 110-layer
ResNet optimized on CIFAR100. In Table 1, we list the
training and testing accuracies in each generation. Guided
by softened distributions, the students achieve higher recog-
nition performance than the patriarch. We hence ask a ques-
tion: what is the key benefit of being trained by a soft-
ened label distribution? To answer it, we perform statistics
on the class with second highest confidence score, and plot

5630

\ | Top-1 | Top-2 | Top-3 | Top-4 || Train [Test |
Gen #0 99.28 0.57 0.09 0.03 99.74 | T1.55
Gen #1 98.68 1.00 0.18 0.06 99.63 | 71.41
Gen #2 98.42 1.13 0.23 0.09 99.60 | 72.30
Gen #3 98.33 1.19 0.24 0.09 99.62 | 72.26
Gen #4 98.28 1.24 0.25 0.09 99.59 | 72.52

Table 1: Confidence distribution (%) on top-4 classes (indi-
vidually determined for each training sample), obtained in a
born-again process (with one patriarch and 5 more genera-
tions), training a 110-layer ResNet on CIFAR100. We also
show training and testing accuracies (%) in the last columns.

Figure 1: The 100 x 100 confusion matrices produced by
the patriarch and the first student of a born-again process,
training a 110-layer ResNet on CIFAR100. See Table 1 for
quantitative numbers. The rows in these matrices indicate
the ground-truth class, and the columns indicate the class
with the second highest confidence score. The element e;; of
the matrix is the frequency that a sample which belongs to
class 7 has the the second highest probability at class j. The
color of a cell is closer to yellow when the corresponding
value is larger.

the results as a confusion matrix in Figure 1. We find that
a deep network is able to automatically learn semantically
similar classes for each image individually'. We name it as
secondary information, which corresponds to the primary
information provided by supervision. In addition, we ob-
serve that these two confusion matrices are similar, indicat-
ing that the secondary information has been passed on from
the teacher to the student. By taking these image-dependent
information, the student network can avoid being fit to un-
necessarily strict distributions and thus generalizes better.
This motivates us to design a mechanism to measure the
quality of secondary information and then try to construct
better teacher signals.

Towards High-Quality Secondary Information

First, we note that the key to finding secondary information
is to soften the output feature vector. We investigate three
ways to achieve this goal. The first two methods follows
two pieces of prior work named label smoothing regular-
ization (LSR) (Szegedy et al. 2016) and confidence penalty

! For example, cat images are often considered similar to dog, but
sometimes deer becomes the most similar class; automobile is
most similar to truck in 60% of time, but in another 19% and
7% of time, it is most similar to ship and airplane, respectively.

(CP) (Pereyra et al. 2017). Both of them added an extra term
to the original cross-entropy loss, pushing the score distri-
bution (after softmax) towards less peaked at the primary
class. In LSR, the added term is the KL-divergence between
the score distribution and the uniform distribution, while in
CP, it is the negative entropy gain. These two methods have
a common drawback: they facilitate the confidence scores
to distribute over all classes, regardless if these classes are

visually similar to the training sample.

As the third option, we propose a more reasonable ap-
proach Instead of computing an extra loss over all classes,

IE)ICk up a few classes which have been assigned with the
highest confidence scores, and assume that these classes are
more likely to be semantically similar to the input image.
We set a fixed integer K which stands for the number of se-
mantically reasonable classes for each image, including the

primary class?. Then, we compute the gap between the con-
fidence scores of the primary class and other K — 1 classes
with highest scores:

B2

(xn,yn)EB

ET(B;BT) = {777-y;Lr lnf(xn;BT)Jr

1 K
)
k=2

We name this method as top score difference (TSD), where

f(}; is short for the k-th largest element of f(x,,; o

7 is a hyper-parameter controlling the balance between the
ground-truth supervision and the score penalty term.

We evaluate these three options, as well as the baseline
(using one-hot vectors, Eqn (1)), on their ability of preserv-
ing secondary information. To this end, we train a 110-layer
ResNet on CIFAR100. Detailed settings can be found in the
Experiments section. We perform four individual training-
in-generation processes, with the only difference lying in the
patriarchs, i.e., four different options are applied. All the re-
maining generations follow Eqn (2) with A = 0.6. To maxi-
mally make fair comparison, we guarantee the same initial-
ization weights for each model.

According to our conjecture, a good patriarch should pre-
serve more secondary information, and thus is less discrim-
inative in fine-level classes. We measure this factor at the
class level. After these networks are trained, we analyze
their behavior on both training and testing sets. For each im-
age, the neural responses from the last residual block (8 x
8 x 64) are average-pooled to obtain a 64-dimensional vec-
tor. The training and testing sets of CIFAR100 has 50,000
and 10,000 images, which are uniformly distributed over
100 classes. These 100 classes are partitioned into 20 su-
perclasses, with 5 fine-level classes in each superclass S;.
We compute the mean vector for each class, denoted by vf,

= 1,2,...,100, and for each superclass, denoted by V]S,
J=1,2,...,20, respectively.

Based on these, we compute two statistics within each su-
perclass and among different superclasses, respectively. The

1-m)- |:fa1 -

), and

2 Using a fixed K may not be optimal, but it simplifies our ap-
proach and also works sufficiently well in either network train-
ing or transferring a trained network to other recognition tasks
(see experiments).

5631

Training Testing
Dist” | Dist Dist” | Dist® | Best Acc
[BL | 03813] 0.4202 [] 0.3234 | 0.3881 | 72.61% |
LSR 0.6182 | 0.5475 0.4875 | 0.4805 73.46%
CpP 0.3829 | 0.4114 0.3267 | 0.3815 72.86%
TSD-0.6 0.3461 | 0.5759 0.3153 | 0.5349 | 73.72%
TSD-0.7 || 0.3433 | 0.5274 || 0.3086 | 0.4894 73.18%
TSD-0.8 0.3499 | 0.4782 0.3097 | 0.4449 73.39%

Table 2: Statistics on different patriarchs. The definitions of
Dist® and Dist® are provided in Eqn (4). BL is for base-
line (as in (Furlanello et al. 2018)), LSR for label smoothing
regularization, CP for confidence penalty, and TSD-u(7) for
top-score difference with a parameter u(7). We also report
the best testing accuracy throughout 10 generations, which
reflect the potential of the patriarch model.

[Gen#0 [Gen#1 | Gen#2 [Gen#3 | Gen#4 [Gen#5 |

BAN 99.28% | 98.68% | 98.42% | 98.33% | 98.28% | 97.76%
LSR 89.41% | 92.09% | 93.78% | 94.89% | 95.73% | 95.91%
CpP 99.07% | 98.25% | 97.93% | 97.66% | 97.47% | 97.01%
TSD-0.6 || 66.51% | 76.27% | 82.58% | 87.08% | 89.89% | 91.72%

Table 3: Top-1 scores of different generations trained with
different patriarchs. The results are obtained by training a
110-layer ResNet on the CIFAR100 dateset. Gen #0 repre-
sents the patriarch (Gen #0 of BAN (Furlanello et al. 2018)
is trained by one-hot vectors), and we also report the results
of the first five students.

first one measures how much feature vector v{ differs from
the mean of its superclass, VJS where ¢ € S;. Similarly, the

second one measures the difference between each VJS and

50 E ; v . Mathematically,

the overall average vector v
these two metrics are:

o 1 100 <v2 ;Q;(i)>
Dist = X arccos ,
0 5 N
A
Dist® = xZarccos <:J7v >A @)
A REE

where j(i) denotes the superclass index for class 4.

Results are summarized in Table 2. Compared to the
baseline, LSR features are much more discriminative (both
Dist® and Dist® are much larger), while CP does not be-
have much differently. TSD-0.6 (u(n) is an intuitive way of
parameterizing 7 — see the next part for details) best satis-
fies our assumption: increasing Dist® so that coarse-level
classification becomes better, meanwhile decreasing Dist®
so that reasonable secondary information is preserved and
learned by students. Using TSD-0.7 or TSD-0.8 does not
heavily impact Dist®, but causes Dist® to be much smaller.
The best classification accuracy is obtained by TSD-0.6. In
Table3, we show the trends of top-1 scores for comparison.
In BAN and CP, the model’s confidence is getting lower
through generations, while in LSR and TSD-0.6, two “tol-
erant” patriarchs, the confidence is getting higher.

Based on these observations, we can conclude that: in
teacher-student optimization, the student learns best
from a teacher that preserves reasonable secondary in-
formation. Hence, we suggest a framework that starts with a
tolerant patriarch to optimize deep networks in generations.

Details of Training in Generations

We set Eqn (3) to be the loss function to train the pa-
triarch model M(®), Mathematically, to minimize Eqn (3),
f(xn;GT) shall satisfy 0 < T <1, ;Fz + ...+ ;FK =

al

1— ;rl , and all other entries are 0. We can derive the opti-
mal fg = u(n) = min {ﬁ B 1}, which is a mono-

tonically increasing function with respect to 7. Therefore, it
is equivalent to consider u(n) instead of 7). In experiments,
we shall see that a deeper network often requires a larger
u(n), or equivalently a larger 7, in order to get better trained.

Two side notes are made on Eqn (3) and the hyper-
parameter K. First, our formulation does not guarantee the
primary class a; corresponds to the true class. But as we
shall see in experiments, after a sufficient number of train-
ing epochs, the training accuracy is always close to 100%.
Second, K is often difficult to estimate, and may vary among
different primary classes. In practice, we fix K = 5 for sim-
plicity?.

Then, M generations follow the patriarch model. At
the m-th generation, M(™ learns from M("~1) using

Eqn (2), with models f(xn; HT) and f(xn; 08) replaced by
f (Xn; O(mfl)) and f(xn; H(m)) , respectively. Similarly,

the optimal f(xn;O(m)) to minimize £("™ shall satisfy

0 < S5 < 1L g8 4+ 00 = (1= 287), and al

other entries are 0. So, we have f,gf") = w(A, f(m=1)) which
is monotonically increasing with respect to \.

In summary, the entire optimization process is parame-
terized by K, n and \. We fix K = 5 and use u(n) to
equivalently replace 7, so that each process is denoted by
D(u(n),). As special cases of our approach, the conven-
tional network optimization process can be abbreviated as
©(1.0,0.0), and training a born-again network (Furlanello
et al. 2018) corresponds to ©(1.0,0.5).

Last but not least, given that the trained model f(-;6)

has a sufficient ability of fitting data, we have fa(ln) — 1
as m — oo, regardless of u(n) and \. Therefore, the
secondary information in teacher signals is gradually weak-
ened, and the effect of optimizing Eqn (2) is more and more
similar to optimizing Eqn (1). This implies that recognition
accuracy may saturate and start to descend after a few gen-
erations (see Figure 2 for experimental results).

3 This fits CIFAR100 well, because it contains 20 coarse groups
and each of them has 5 finer-level classes. This setting also
works well in ILSVRC2012, although there are different num-
bers of semantically similar classes for each class. We transfer
the trained models on ILSVRC2012 to other recognition tasks to
reveal the generalization properties. See experiments for details.

5632

Experiments
The CIFAR100 Dataset

e Setting and Baselines

We first evaluate our approach on the CIFAR100
dataset (Krizhevsky and Hinton 2009), which contains
60,000 tiny RGB images of a spatial resolution of 32 x 32.
These images are split into a training set of 50,000 sam-
ples and a testing set of 10,000 samples. Both training and
testing images are uniformly distributed over 100 classes.
We do not perform experiments on the CIFAR10 dataset be-
cause it does not contain fine-level classes, so that teacher-
student optimization does not bring significant benefits (this
was also observed in (Furlanello et al. 2018)).

We experiment on deep residual networks (He et al. 2016)
with 20, 56 and 110 layers, and densely connected convolu-
tional networks (DenseNets) (Huang et al. 2017b) with 100
and 190 layers. We follow the conventions to train these net-
works from scratch. We use the standard Stochastic Gradi-
ent Descent (SGD) with a weight decay of 0.0001 and a
Nesterov momentum of 0.9. In the ResNets, we train the
network for 164 epochs with mini-batch size of 128. The
base learning rate is 0.1, and is divided by 10 after 82 and
123 epochs. In the DenseNets, we train the network for 300
epochs with a mini-batch size of 64. The base learning rate
is 0.1, and is divided by 10 after 150 and 225 epochs. In the
training process, standard data-augmentation is used, i.e.,
each image is padded with a 4-pixel margin on each of the
four sides. In the enlarged 40 x 40 image, a subregion with
32 x 32 pixels is randomly cropped and flipped with a prob-
ability of 0.5. No augmentation is used at the testing stage.

Results

We first evaluate the performance with respect to differ-
ent hyper-parameters, namely, different parameterized pro-
cesses D(u(n),A). We fix K = 5 and u(n) = 0.6, and
diagnose the impact of A on deep residual networks (He et
al. 2016) with different numbers of layers. We also evalu-
ate the born-again networks (Furlanello et al. 2018) which
corresponds to (1.0, 0.5).

Results on deep ResNets are summarized in Figure 2.
We can observe several important properties of our al-
gorithm. First, a strict teacher (i.e., the born-again net-
work (Furlanello et al. 2018), ©(1.0,0.6)) is inferior to a
tolerant teacher (e.g., ©(0.6,0.6)). Although the latter of-
ten starts with a lower accuracy of the patriarch model,
it has the ability of gradually and persistently growing up
and outperforming the baseline after 1-3 generations. Mean-
while, recognition accuracy often saturates after a few gen-
erations, because eventually the teacher signal will converge
to the points that are dominated by the primary classes (i.e.,

51’” — 1), and the teacher will become strict again. How-
ever, the saturated accuracy is still much higher than the
baseline, which demonstrates the reliability of our approach,
i.e., even if we cannot terminate at the best generation, we
can still surpass the baseline.

In DenseNets with 100 and 190 layers, we report both

single-model and model-ensemble results in Table 4. We

5 github.com/bearpaw/pytorch-classification

_ ResNet20 _ ResNet56 _ ResNetl110
o 70.5 o . o .
e S 730 . S35 [.
g SR | e ~ .. 2 73, -+
>70.0 x s > P . .8 >
% g /,," M g 72.5 : §e e % E \\A»>""= e
5095 w7 baseline 5 o e \\x"""\/ 2730 ! 8 N
3 d 3720] &7 4 o S A =1 . o .
Y 69.0 - —-a- LSR-0.6 Y e -y] i ‘o e
O 69. i - O i O 725 L i .
< CP-0.6 <7is{ 7 < S . 4
C 685 ©(1.0.0.5) c 4 ; - ['
° i A O710 Ny O 72,04/
=] 68.0 —-4- 9(1.0,0.6) s H ¥ = i
o ©(0.6,0.6) ;

= L 705 D71,
& 67.5] o (0.7.0.6) = » S TSI
n /i @ ¥ = LN
 67.00 o ©(0.8,0.6) & 7001 @ v y
o] © @ 71.01
@] : @) H O i

6655 8 10 6955 10 0 8 10

2 4 6
Generation Index (m)

2 4 6 8
Generation Index (m)

2 4 6
Generation Index (m)

Figure 2: Classification accuracy (%) on CIFAR100, produced by different training-in-generation processes. The baseline ap-
proach (single generation) corresponds to ©(1.0,0.0), and ©(1.0,0.5) and ©(1.0, 0.6) are born-again networks. LSR-0.6 and
CP-0.6 indicate replacing the patriarch model with label smoothing regularization and confidence penalty, and use A = 0.6 in
generations. All three plots share the same legend (shown in the first plot).

\ I Gen #0 \ Gen #1 \ Gen #2 \ Gen #3 \ Gen #4 \ Gen #5 \
Baseline (100 layers) 22.20 (22.89) — — — — —
©(0.6,0.6) 23.96 (25.00) | 21.29(21.34) | 20.51(21.59) | 20.83(20.99) | 21.01(21.53) | 21.27 (21.61)
+Ensemble — 20.20 18.38 17.79 17.37 17.25
©(0.7,0.6) 22.98 (23.43) 21.24 (21.50) 21.48 (21.80) | 20.94 (21.47) 21.51 (21.69) 21.87 (22.28)
-+Ensemble — 19.63 18.83 17.70 17.56 17.23
Baseline (190 layers) 17.22 (17.62) — — — — —
©(0.6,0.6) 18.87 (19.40) 17.42 (17.99) 17.26 (18.00) 17.13 (17.52) 17.24 (17.75) | 17.01 (17.22)
+Ensemble — 16.83 15.94 15.43 15.18 15.21
©(0.7,0.6) 18.63 (19.12) 17.44 (17.78) | 16.72 (17.21) 16.89 (16.98) 17.39 (17.71) 17.24 (17.41)
+Ensemble — 16.37 15.20 15.11 14.93 14.47
(Zhang et al. 2017b) 19.25 || (Huang et al. 2017a) 17.40 || (Han, Kim, and Kim 2017) 17.01
(Zhang et al. 2017a) 16.80 || (Gastaldi 2017) 15.85 || (Furlanello et al. 2018) 14.90

Table 4: Classification error rates (%) by different models on CIFAR100. All networks in each group have the same depth. Gen
#0 stands for the patriarch. We use a GitHub repository® as our baseline, and our re-implementation results are comparable
to those reported originally (22.80% for DenseNet-100 and 17.17% for DenseNet-190). Following conventions, we report
accuracies from both the best epoch and the last epoch (numbers in parentheses), and all listed competitors reported the best
epoch. We perform model ensemble on the last epochs of all generations.

evaluate ©(0.6,0.6) and ©(0.7,0.6), and observe the
same phenomena as in ResNet experiments. In particu-
lar, in DenseNet-100, our single-model accuracy is 1%-—
2% higher, and our 5-model ensemble accuracy is more
than 5% higher, even getting close to a single DenseNet-
190 model. Considering DenseNet-190 requires around 30 x
FLOPs of DenseNet-100, this is quite an efficient method
to achieve high classification accuracy. In DenseNet-190,
our results are competitive among the state-of-the-arts. Note
that (Zhang et al. 2017a) and (Gastaldi 2017) applied com-
plicated data augmentation approaches to achieve high ac-
curacy, but we found a different way, which is to improve
the optimization algorithm.

The ILSVRC2012 Dataset

Setting and Baselines

With the knowledge and parameters learned from the CI-
FAR100 experiments, we now investigate the ILSVRC2012
dataset (Russakovsky et al. 2015), a popular subset of the
ImageNet database (Deng et al. 2009). There are 1,000

5633

classes in total. The training set and testing set contains
1.3M and 50K high-resolution images, with each class hav-
ing approximately the same number of training images and
exactly the same number of testing images.

We set the 18-layer residual network (He et al. 2016) as
our baseline. All networks are trained from scratch. We fol-
low (Hu, Shen, and Sun 2018) in configuring the following
parameters. Standard Stochastic Gradient Descent (SGD)
with a weight decay of 0.0001 and a Nesterov momentum
of 0.9 is used. There are a total of 100 epochs in the train-
ing process, and the mini-batch size is 1024. The learning
rate starts with 0.1, and is divided by 10 after 30, 60 and 90
epochs. In the training process, we apply a series of data-
augmentation techniques, including rescaling and cropping
the image, randomly mirroring and rotating (slightly) the im-
age, changing its aspect ratio and performing pixel jittering.
In the testing stage, the standard single-center-crop is used
on each image.

We inherit the best parameters learned from CIFAR100
experiments to ILSVRC2012 (the costly computation avoids

\ I Gen #0 [Gen #1 [Gen #2 [Gen #3 [Gen #4 [Gen #5 |
[Baseline [8050] 1tor] -1 -] -1 -1 -1 -1 -1 -1 -1 -1
@(0.6,0.6) 32.52 11.23 30.28 10.23 30.12 10.15 29.92 10.25 29.77 10.19 29.60 10.11
+Ensemble - - 30.01 9.98 28.94 9.53 28.51 9.36 28.23 9.28 | 28.08 9.23

Table 5: Classification error rates (top-1 and top-5, %) by different ResNet-18 models on ILSVRC2012.

us from tuning the hyper-parameters). We use ©(0.6,0.6),
as the basic network (18 layers) is not very deep).

Results

Following CIFAR100 experiments, we set K = 5, u (1)
0.6 and A = 0.6. Results are summarized in Table 5. One
can observe very similar results as in the previous experi-
ments, i.e., we start with a worse patriarch®, enjoy gradual
and persistent improvement from generation to generation,
and achieve saturation after several generations.

Limited by computational resources, we did not evaluate
deeper networks. Although the performance of ResNet-18 is
not directly comparable to deeper networks (e.g., ResNets
with 50, 101, 152 layers or DenseNet with 264 layers),
our approach achieves a larger accuracy gain (0.90% top-
1 and 0.96% top-5) than other two light-weighted modules
on ResNet-18, namely Squeeze-and-Excitation (SE) (Hu,
Shen, and Sun 2018) (0.72% top-1 and 0.80% top-5) and
Second-Order Response Transform (SORT) (Wang et al.
2017) (0.55% top-1 and 0.27% top-5). Compared to them,
our approach does not require any additional computation at
the testing stage, although the training stage is longer.

e Transfer Experiments

Finally, we transfer the trained models to feature ex-
traction. We consider two popular datasets, namely, Cal-
tech256 (Griffin, Holub, and Perona 2007) and MIT Indoor-
67 (Quattoni and Torralba 2009) for generic object clas-
sification and indoor scene classification, respectively. We
follow the conventional settings, i.e., extracting neural re-
sponses from the penultimate layer of the 18-layer ResNet,
and training a linear SVM to classify these 512-dimensional
vectors. We use the same training/testing split for all mod-
els, with 60 and 80 training images per class for Caltech256
and MIT Indoor-67, respectively.

Results are summarized in Table 6. We can find
that, besides achieving better recognition accuracy on
ILSVRC2012, the networks obtained by our approach in-
deed produce higher-quality transferrable features. These
transfer experiments also verify that setting K = 5 gener-
alizes well to other recognition tasks, i.e., the intrinsic bene-
fit comes from the secondary information, and our approach
does not rely on a specific K. We believe these models also
perform better in other transfer learning scenarios, e.g., be-
ing fine-tuned on the PascalVOC or MS-COCO datasets.

®It is interesting yet expected that the top-1 accuracy of the pa-
triarch is 1.98% lower than the baseline, but the top-5 accuracy
is merely 0.16% lower. This is because setting K = 5 hardly
impacts top-5 classification.

5634

ILSVRC2012 Transfer
Top-1 | Top-5 C256 | 167
| Baseline H 69.50 \ 88.93 H 75.94 \ 62.92 ‘

Gen #0 67.48 88.77 75.15 62.97
Gen #1 69.72 89.77 76.83 62.75
Gen #2 69.88 89.85 77.28 65.72
Gen #3 70.08 89.75 77.65 63.75
Gen #4 70.23 89.81 77.00 63.81
Gen #5 70.40 89.89 77.83 63.94

Table 6: Classification accuracies (%) by different models on
Caltech256 (C256) and MIT Indoor-67 (167 datasets. Top-1
and top-5 classification accuracies (%) on ILSVRC2012 are
also listed for reference.

Conclusions

In this work, we study the problem of optimizing deep net-
works in generations. This problem is meaningful, because
it allows us to explore network optimization in depth; it is
also useful, as we obtain better networks with the same ar-
chitecture — although training time becomes longer, testing
time (including in transfer experiments) remains unchanged.

Based on the existing works, we provide a new viewpoint
that teacher models should preserve secondary information,
so that the students become stronger. We quantify these in-
formation, and empirically verify its impact in image clas-
sification. We train some standard networks on image clas-
sification datasets, and then transfer them to other recogni-
tion tasks. Our approach surpasses the single-generation and
multi-generation baselines in every single case.

This research votes for the viewpoint that network opti-
mization is far from perfect at the current status. In the fu-
ture, we will investigate a more generalized model, includ-
ing using a variable function at each generation and allowing
K to vary from case to case. In addition, we will consider a
temperature term in Eqn (2) to adjust the KL-divergence.
Both are expected to achieve better optimization results.

Acknowledgements This paper is supported by NSF
award CCF-1317376 and ONR award N0O0014-15-1-2356.

References

Akata, Z.; Perronnin, F.; Harchaoui, Z.; and Schmid, C. 2016.
Label-embedding for image classification. TPAMI 38(7):1425—
1438.

Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille,
A. L. 2016. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs. In
ICLR.

Chen, T.; Goodfellow, 1.; and Shlens, J.
Accelerating learning via knowledge transfer.
arXiv:1511.05641.

Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; and Fei-Fei, L. 2009.
Imagenet: A large-scale hierarchical image database. In CVPR.
Deng, J.; Berg, A. C.; Li, K.; and Fei-Fei, L. 2010. What does
classifying more than 10,000 image categories tell us? In ECCV.
Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng,
E.; and Darrell, T. 2014. Decaf: A deep convolutional activation
feature for generic visual recognition. In JICML.

Furlanello, T.; Lipton, Z. C.; Itti, L.; and Anandkumar, A. 2018.
Born again neural networks. In JCML.

2015. Net2net:

arXiv preprint

Gastaldi, X. 2017. Shake-shake regularization. arXiv preprint
arXiv:1705.07485.

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014. Rich
feature hierarchies for accurate object detection and semantic seg-
mentation. In CVPR.

Girshick, R. 2015. Fast r-cnn. In CVPR.

Griffin, G.; Holub, A.; and Perona, P. 2007. Caltech-256 object
category dataset.

Han, D.; Kim, J.; and Kim, J. 2017. Deep pyramidal residual
networks. In CVPR.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In CVPR.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowl-
edge in a neural network. arXiv preprint arXiv:1503.02531.

Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. 2016. Harnessing
deep neural networks with logic rules. In ACL.

Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation net-
works. In CVPR.

Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J. E.; and Wein-
berger, K. Q. 2017a. Snapshot ensembles: Train 1, get m for free.
In ICLR.

Huang, G.; Liu, Z.; Weinberger, K. Q.; and van der Maaten, L.
2017b. Densely connected convolutional networks. In CVPR.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In
ICML.

Krizhevsky, A., and Hinton, G. 2009. Learning multiple layers of
features from tiny images.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolutional
networks for semantic segmentation. In CVPR.

Nair, V., and Hinton, G. E. 2010. Rectified linear units improve
restricted boltzmann machines. In ICML.

Newell, A.; Yang, K.; and Deng, J. 2016. Stacked hourglass net-
works for human pose estimation. In ECCV.

Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, L.; and Hinton, G.
2017. Regularizing neural networks by penalizing confident output
distributions. arXiv preprint arXiv:1701.06548.

Perronnin, F.; Sanchez, J.; and Mensink, T. 2010. Improving the
fisher kernel for large-scale image classification. In ECCV.
Quattoni, A., and Torralba, A. 2009. Recognizing indoor scenes.
In CVPR.

Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson, S. 2014.

Cnn features off-the-shelf: an astounding baseline for recognition.
In Computer Vision and Pattern Recognition.

5635

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks.
In NIPS.

Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and
Bengio, Y. 2014. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. 2015. Im-
agenet large scale visual recognition challenge. IJCV 115(3):211—
252.

Simonyan, K., and Zisserman, A. 2015. Very deep convolutional
networks for large-scale image recognition. In /CLR.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural
networks from overfitting. JMLR 15(1):1929-1958.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov,
D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; et al. 2015. Going
deeper with convolutions. In CVPR.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z.
2016. Rethinking the inception architecture for computer vision.
In Computer Vision and Pattern Recognition.

Tarvainen, A., and Valpola, H. 2017. Mean teachers are better
role models: Weight-averaged consistency targets improve semi-
supervised deep learning results. In NIPS.

Verma, N.; Mahajan, D.; Sellamanickam, S.; and Nair, V. 2012.
Learning hierarchical similarity metrics. In CVPR.

Wang, J.; Leung, T.; Rosenberg, C.; Wang, J.; Philbin, J.; Chen, B.;
Wu, Y.; et al. 2014. Learning fine-grained image similarity with
deep ranking. In CVPR.

Wang, Y.; Xie, L.; Liu, C.; Qiao, S.; Zhang, Y.; Zhang, W.; Tian,
Q.; and Yuille, A. 2017. Sort: Second-order response transform for
visual recognition. In ICCV.

Wu, C.; Tygert, M.; and LeCun, Y. 2017. Hierarchical loss for
classification. arXiv preprint arXiv:1709.01062.

Xie, S., and Tu, Z. 2015. Holistically-nested edge detection. In
ICCV.

Xie, L., and Yuille, A. 2017. Genetic cnn. In ICCV.

Yim, J.; Joo, D.; Bae, J.; and Kim, J. 2017. A gift from knowledge

distillation: Fast optimization, network minimization and transfer
learning. In CVPR.

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D. 2017a.
mixup: Beyond empirical risk minimization. arXiv preprint
arXiv:1710.09412.

Zhang, T.; Qi, G. J.; Xiao, B.; and Wang, J. 2017b. Interleaved
group convolutions. In CVPR.

Zhang, Y.; Xiang, T.; Hospedales, T. M.; and Lu, H. 2017c. Deep
mutual learning. arXiv preprint arXiv:1706.00384.

Zhang, C.; Cheng, J.; and Tian, Q. 2018. Image-level classification
by hierarchical structure learning with visual and semantic similar-
ities. Information Sciences 422:271-281.

Zoph, B., and Le, Q. V. 2017. Neural architecture search with
reinforcement learning. In /CLR.

