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Abstract

In modern e-commerce, the temporal order behind users’
transactions implies the importance of exploiting the tran-
sition dependency among items for better inferring what a
user prefers to interact in “near future”. The types of inter-
action among items are usually divided into individual-level
interaction that can stand out the transition order between a
pair of items, or union-level relation between a set of items
and single one. However, most of existing work only cap-
tures one of them from a single view, especially on mod-
eling the individual-level interaction. In this paper, we pro-
pose a Multi-order Attentive Ranking Model (MARank) to
unify both individual- and union-level item interaction into
preference inference model from multiple views. The idea
is to represent user’s short-term preference by embedding
user himself and a set of present items into multi-order fea-
tures from intermedia hidden status of a deep neural network.
With the help of attention mechanism, we can obtain a uni-
fied embedding to keep the individual-level interactions with
a linear combination of mapped items’ features. Then, we
feed the aggregated embedding to a designed residual neu-
ral network to capture union-level interaction. Thorough ex-
periments are conducted to show the features of MARank
under various component settings. Furthermore experimen-
tal results on several public datasets show that MARank sig-
nificantly outperforms the state-of-the-art baselines on dif-
ferent evaluation metrics. The source code can be found at
https://github.com/voladorlu/MARank.

Introduction
Modeling the complicated interactions behind users’ tem-
poral preferences over items is very essential for providing
personalization service in many domains like e-commerce,
social friend suggestion, news/article recommendation, etc.
In this work, we focus on exploring users’ sequential behav-
ior for predicting next item to visit/buy according to his/her
given sequential transaction. One typical example is which
book will Mike buy at future time t after ordering multiple
books? To answer this question, the proposed solution needs
to account for a balance between general (long-term) and
sequential (short-term) patterns.

As a representative solution, Markov chain based ap-
proaches (Chen et al. 2012; Rendle, Freudenthaler, and
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Figure 1: Toy example to illustrate individual- and union-
level item relevance model. Su denotes historical interaction
sequence of user u, Su

i represents a specific item.

Schmidt-Thieme 2010; He, Kang, and McAuley 2017; He
and McAuley 2016a) shine light on how to extend general
user preference by fusing individual-level item-item transi-
tion dependency, shown as Figure 1(a), where the arrows
indicate the individual-level dependency between a pair of
items that don’t need to be adjacent. Given a set of previous
interacted items (referred as query items), the dependency of
a target item on these query items is usually measured as the
average or weighted relevance value. Such individual-level
dependencies can result in better recommendations, how-
ever have limitations on capturing the collective influence
between items. For example, buying eggs, milk, and butter
together indicates a higher probability of buying flour than
eggs, milk or butter individually.

To tackle this limitation, Tang et al. (Tang and
Wang 2018) introduce to model union-level influence
shown as Figure 1(b), which can be measured with
the support-confidence for rule X → Y of the form
(xt−L, · · · , xt−2, xt−1) → xt. Such a rule can reflect that
purchase decisions are made based on what collocational
products have already been ordered. However, from the evi-
dences as shown in (Tang and Wang 2018), there is a serious
sparsity problem as L increases. That is, union-level item-
item relation is difficult to model, especially in sparse data.
Note that modeling individual-level relationship has no such
a problem since only a single pair of items are involved.
Despite the success of recent advances on applying recur-
rent neural network (RNN) or convolutional neural network
(CNN) (Hidasi et al. 2016; Loyola, Liu, and Hirate 2017;
Tang and Wang 2018; Wang et al. 2015) to model union-
level item dependency, they whittle the ability of discrimi-
nating the highly correlated item pairs for sequential recom-

5709



mendation. Therefore, we argue that individual- or union-
level influence can be complementary to tackle users’ tem-
poral preference learning problem. As we discussed in previ-
ous paragraph, pairwise item interaction can be more easily
extracted than union-to-single item interaction. In particular,
it’s more important to utilize individual influence between
query and target item when the large length of association
rule is not well supported in sparse data.

In this paper, we propose to unify individual- and union-
level item dependency into a Multi-order Attentive Ranking
model (MARank) towards top-N sequential recommenda-
tion. Modeling union-level influence can be conceptually
understood by estimating the probability of associate rule
X → Y , which could be measured by the matching score
between a distributional representation of an item set X and
single item Y. In this work, we design a model with the com-
bination of attention network and residual network to repre-
sent item set X . The abstractive framework is described in
Figure 2. To better understand users’ short-term preference
over items, we design a multi-order attention network to
highlight the contribution of the encoded sequential items’
multi-order features from the intermedia hidden status of a
feedforward residual neural network. The idea is inspired by
the method to understand an image with features extracted
from low to high layer, which act as object representation
from different views. Then, we feed the aggregated embed-
ding from the attention network as the input to a multilayer
perceptron (MLP) with residual structure (encoded union-
level features), and simultaneously construct a shortcut con-
nection from input vector to the output of MLP layer. To
keep weighted individual-level features, an element-wise ad-
dition operation is applied on the output from multi-order
attention network and MLP layer, then the obtained aggre-
gated contextual embedding can be used to capture item-
item relation from both individual- and union-level. From
experimental analysis on three large-scale real datasets, we
can see that the designed structure works very well to outper-
form the state-of-the-art baselines. The main contributions
of this paper can be summarized as:

- We propose to view user’s short-term preferences over
items from multiple perspectives, and design a corre-
sponding multi-order attentive neural model to extend
user’s general preference by fusing both individual- and
union-level temporal item-item correlations.

- The proposed attention model can learn the contribution
of encoded features of sequential items from different or-
der, which keeps the individual-level item-item interac-
tion by augmenting the contribution of relevant items, but
downplays the irrelevant ones. MLP encoder with resid-
ual structure can help to learn high-order sequential de-
pendency among items from union-level perspective.

- We conduct thorough experiments on studying the im-
pacts of different components on the performance of
MARank, and show that it outperforms state-of-the-art
baselines in terms of different ranking metrics.

Related Work
Recommendation without Temporal Dynamics: Item rec-
ommendation has become an integrated, even leading
function in enormous applications involved with prod-
ucts suggestion, hunting excellent musicians, etc. Early
works mainly focus on optimizing rating estimation through
neighborhood (Linden, Smith, and York 2003) and model
based (Koren, Bell, and Volinsky 2009; Salakhutdinov,
Mnih, and Hinton 2007) collaborative filtering approaches.
Differently hitting users’ interests by a short ranking list as
much as possible focuses on relative predicted score, other
than exact estimation error.

To express the above-mentioned idea, many factorization
models are proposed, ranging from point-wise (Hu, Koren,
and Volinsky 2008; He et al. 2016), pairwise (Rendle et al.
2009; Yu et al. 2018), to list-wise (Shi, Larson, and Han-
jalic 2010; Shi et al. 2012) ranking methods. Along with re-
cent advances on designing deep neural networks (DNNs)
for computer vision, text mining etc., Wu et al. (Wu et al.
2016) indicated out that factorization models can be repre-
sented as a shallow neural network, which makes factoriza-
tion models very flexible in incorporating encoded auxiliary
information by DNNs. He et al. (He et al. 2017) focused on
capturing highly nonlinear interactions between a user-item
pair by unifying factorization models with a multiple per-
ceptron layers.
Next-item Prediction: Temporal dynamics (Tavakol and
Brefeld 2014) in recommendation tasks have been demon-
strated very effectively in personalized item prediction. In a
seminal work for modeling temporal dynamics, Koren (Ko-
ren 2009) explored temporal drifting user preferences over
items for rating estimation problem. Subsequently several
works (Cheng et al. 2013; Yin et al. 2014) are inspired to
care about temporal drift effect. However, most of them
make use of explicit timestamp difference, and ignore an
important fact that users prefer visiting related items in a
short period. Chen et al. (Chen et al. 2012) utilized Markov
chains to explore the transition probability among items via
predicting next purchase depending on last actions. Such
an idea can reflect users’ short-term preferences, however,
personalization means beyond that. To better model tem-
poral dynamics, several recent works like FPMC (Rendle,
Freudenthaler, and Schmidt-Thieme 2010), HRM (Wang et
al. 2015), TranRec (He, Kang, and McAuley 2017), Fos-
sil (He and McAuley 2016b), combine users’ general (long-
term) tastes with Markov chains (short-term) based on fac-
torization methods. Despite the success of them, it may not
be sufficient to capture complicated interactions of user’s
dynamic transition behaviors via the choice of shallow rel-
evance metrics like inner-product (e.g., FPMC, HRM, Fos-
sil) or Euclidean (e.g., TranRec) of low-dimensional embed-
dings. Recently there are also some works based on recur-
rent neural networks. (Hidasi et al. 2016; Yu et al. 2016;
Li et al. 2018) proposed to use GRU unit to build session-
based recommender systems. However, they did not con-
sider users’ personalization, nor can tell the contribution
scale of each previous item to target one. Both (Chen et
al. 2017; Wang et al. 2018) explored the application of at-
tention method to weigh a set of historical items, however
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missing the sequential dependency among items.

Proposed Method
Let U and I represent the user and item set, respectively.
The whole transaction data can be described as S = {Su :
u ∈ U}. Each user u ∈ U is associated with a transaction
sequence Su = (Su

1 , S
u
2 , ..., S

u
|Su|), where Su

t ∈ I denotes
a user u ever interacted with an item at a specific time point.
Note that we only care about the relative orders like first,
second and so on, but ignore the absolute time point like 1st
May, 2018. Sequential recommendation aims at predicting
the next item that a user will be interested in with a given his-
torical transaction sequence. Usually, only a very short list
of items will be exposed to users. Therefore, hitting users’
requirement in a top-N recommendations is a non-trivial se-
quential prediction problem.

Modeling Long-term User Preference
Understanding the interactions between users and items is
the key to provide successful personalization service. Fac-
torization model has gained lots of attention, where prox-
imity between a user u and item j can be measured as an
inner-product of their embeddings:

ŷu,j = pT
u qj , (1)

where pu ∈ Rd and qj ∈ Rd denote a distributional rep-
resentation of user u and item j, respectively. The larger
prediction ŷu,j is, the more likely that user u will act on
item j in future. However, such definition of user-item rele-
vance only captures long-term preference, while discards an
important fact that human behaviors naturally come along
with temporal dependencies. In next section, we will dis-
cuss how to augment long-term user interests by unifying
both individual- and union-level item-item dependency.

Multi-order Attentive Ranking Model
The proposed model aims to express user interests over
items by decomposing user’s consuming behavior into long-
term and short-term motivations. In previous section, we
already show how to capture long-term preference by ex-
plicitly measuring user-item similarity with general embed-
ding. In this part, we will discuss how to extend general
user’s embedding with short-term interests over a small
set of the most n present items, which can be denoted as
Su
t−1,n = (Su

t−1, S
u
t−2, ..., S

u
t−n). Analogous to the objec-

tive scoring function of FPMC (Rendle, Freudenthaler, and
Schmidt-Thieme 2010), we formulate the MARank’s pre-
dictive model as:

ŷu,j = puqT
j + F(u, Su

t−1,n)m
T
j (2)

where mj ∈ Rd denotes additional item embedding to
model item-item transition dependency, and F(u, Su

t−1,n)
represents the designed multi-order attentive neural model,
including the components embedding lookup layer, multi-
order attention network, and residual network (ResNet), as
shown in Figure 2(a).
Embedding Lookup Layer. The input to the neural en-
coder F(u, Su

t−1,n) contains two parts: a user u, and a subset

Su
t−1,n including the most recent n items before time point t.

The embedding lookup operation retrieves previous n items’
embeddings, and stacked them together resulting in a matrix
E ∈ Rn×d:

E =


mSu

t−1

mSu
t−2

...
mSu

t−n

 . (3)

Along with item embeddings, we also obtain the user em-
bedding pu ∈ Rd to represent general user latent feature.
These embeddings are presented by corresponding symbols
of the output of embedding lookup layer in the Figure 2(a).
Residual Network (ResNet). From the Figure 2 we can see
that ResNet plays a key role on learning high-order non-
linear interactions among different elements of input vec-
tors. We initialize residual network with a fully connected
multilayer perceptron (MLP) but not CNN, considering the
explored problem does not have nature spatial patterns like
images. The definition of L-layer ResNet(L, x) is as follows:

h1 = ReLU(xW1 + b1 + x)
h2 = ReLU(h1W2 + b2 + h1)

· · · · · ·
hL = ReLU(hL−1WL + bL + hL−1)

(4)

where WL ∈ Rd×d,bL ∈ Rd represent weight matrix,
and bias vector, respectively. ReLU stands for the activa-
tion function rectifier linear unit. The hyper-parameter L
denotes the maximum number of residual layers. The out-
put of L-layer ResNet contains two parts that are a sequence
of hidden status HL={h1, · · · ,hL} and the last hidden unit
hL. In MARank, we instantiate three different residual net-
works, i.e. ResNetI , ResNetU and ResNetE . To capture
complicated personal characteristics, we propose to map raw
user and item embeddings into high-order features with the
help of multilayer ResNetU and ResNetI , respectively.
The idea is inspired by representing vision object with low-
to-high level features extracted by deep neural networks.
Analogously the sequence of hidden status from ResNetU

or ResNetI might capture potential high-order interactions
between partial fields in user or item embedding, which can
help us to discriminate the significance of items in different
levels with respect to a given user.
Multi-order Attention Network. With the input embed-
dings pu and E, the multi-order attention network is instanti-
ated with two k-layer residual network, i.e.ResNetU (k, pu)
and ResNetI(k,E), as shown in Figure 2(b). Since
ResNetU shares the same structure as ResNetI in Fig-
ure 2(b), we only present the feature transformation pro-
cess of ResNetI . Let HU

k = {p1
u, · · · ,pk

u} and HI
k =

{E1, · · · ,Ek} denote the output sequence of hidden statuses
of ResNetU and ResNetI , respectively. In order to distin-
guish the sources of hidden statuses, we use pk

u and Ek to
represent the high-order features generated at k-th layer of
ResNetU and ResNetI . Besides the high-order features,
we also keep the raw embeddings, resulting in an extended
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Figure 2: (a) Overall architecture of the proposed model MARank. pu and E denotes the retrieved user embedding and em-
beddings for prior items in Su

t−1,n, respectively. (b) Illustration of the multi-order attention network. As residual network for
encoding user and items share the same architecture, we only elaborate the specific structure of ResNetI .

set of encoded features, i.e. HU
k = {pl

u|l ∈ {0, 1, · · · , k}},
HI

k = {El|l ∈ {0, 1, · · · , k}}, where p0
u = pu and E0 = E.

To aggregate the embeddings of sequential items, we uti-
lize a soft attention method. When the high-order features
HU

k and HI
k for both input user u and all sequential items are

ready, we can apply the following attentive model to gener-
ate an integrated contextual embedding elc ∈ Rd at l-layer:

elc =
n∑

i=1

αl
ui ·ml

Su
t−i

;

n∑
i=1

αl
ui = 1 (5)

where weight scale αl
ui is normalized by a softmax layer on

the attention scores when given the embedding of user u and
the sequential item Su

t−i, and ml
Su
t−i

is the corresponding i-th

row of transformed matrix El. In this work, we use a two-
layer network to compute the attention score as follows:

αui = Wa
1g(p

l
uWa

u + ml
Su
t−i

Wa
i + c2) + c1

αui =
exp(αui)∑n
i=1 exp(αui)

,

where Wa
∗ are the shared weight matrices for attention layer.

g(x) is activation function and we use tanh activation unit
in this work. Let Ê = {elc|l ∈ {0, · · · , k}} represent the
set of aggregated high-order features depending the interac-
tions with given user’s features. Based on Ê, we have many
methods to obtain the final contextual embedding to repre-
sent user’s short-term interests with the most recent n items.
For example, we can employ multiple self-attention blocks
Transformer (Vaswani et al. 2017) to get much more com-
plicated feature interactions, or directly apply RNN. Though
they can provide flexibility to model rich interactions, in this
work, we prefer to using a simple soft attention network. The
reason is very straightforward that wrapping a attention layer
outside Ê can help to keep individual-level item-item simi-
larity. Specifically, we define the soft attention as follows:

ec = SoftAtt(Ê) = βÊ

β = softmax(Wb
1g(ÊWb

2 + batt
2 ) + batt

1 )
(6)

where Wb
∗ acts as the weight matrices for attention layer,

and β ∈ Rk+1 is the attention weight vector. We can see

that the output of multi-order attention network actually is
linear combination of the high-order features inside HI

k, that
is ec =

∑k
l=0

∑n
i=1 βl ·αl

uiml
Su
t−i

. If we define F(u, Su
t−1,n)

in Equation (2) as ec, then second term F(u, Su
t−1,n)mT

j =∑k
l=0

∑n
i=1 βl ·αl

uiml
Su
t−i

mT
j equals to weighted sum of rel-

evance value of item pairs, that is, individual-level item-
item interaction is captured. In order to model union-level
item dependency, we instantiate L-layer residual network
ResNetE(L, ec) and use the last hidden status hL as the
encoded feature to represent the set of short-tern interacted
items by the given user u. Then we have the final definition
F(u, Su

t−1,n) = ec + hL, and the full definition of the pre-
diction value for each item as:

ŷu,j = puqT
j︸ ︷︷ ︸

long−term

+

Individual−level︷ ︸︸ ︷
ecmT

j +

Union−level︷ ︸︸ ︷
hLmT

j︸ ︷︷ ︸
short−term

(7)

Ranking Optimization: To effectively learn the parameters
of the proposed MARank model, we define a pairwise rank-
ing loss based on the assumption that an item (positive sam-
ple) this user liked will have a relative larger value than other
items (negative samples) that he/she has no interest in. The
loss function is formulated as:

argmin
Θ

∑
u∈U

∑
j∈Su

∑
s/∈Su

− lnσ(ŷu,j,z)

+
λ

2
(
∑
u∈U
||pu||2F +

∑
j∈I
||mj ||2F + ||qj ||2F ),

(8)

where || · ||F denotes Frobenius norm, and ŷu,j,z = ŷu,j −
ŷu,z . Item j is an item liked by user u, in contrast with z that
s/he shows no interest. Function σ(x) = 1

1+exp(−x) denotes
the probability that a learned model gives a larger score to a
positive sample than a negative one. λ is a hyper-parameter
for L2 norm regularization on model parameters.

It’s intractable to directly do optimization on the objective
function (Eq. (8)) due to the enormous amount of positive-
negative sample pairs. Usually, we first uniformly sample a
user u from U . Then we can sample a positive item j from

5712



transaction sequence Su at time point t along with the most
n recent items Su

t−1,n. Negative item s /∈ Su will be uni-
formly sampled. In this work, we use Adam optimizer to
optimize the proposed model. Since each training sample
(u, j, z, Su

t−1,n) can be constructed independently, we can
apply mini-batch SGD to speed up the training efficiency.

Discussion
Temporal Order: One may argue that temporal order is
very important for sequential recommendation, in contrast,
attention network over items ignores the order. Generally we
canset size n as small as possible to present user’s short-term
demands, based on the assumption that user’s attention in
a small session window will display his/her target motiva-
tions or demands at that moment. Different from previous
works highlighting the temporal orders of observed interac-
tions, we argue that temporal order is not a must constraint
because user usually tend to hover between different items
in a small session (like the skip behavior modeled in (Tang
and Wang 2018)). The anchor items that drive user to make
final decision might not be the closest one, but those viewed
before. The experimental evaluations further support this ar-
gument, as we will show later. In MARank, we divide user’s
consuming behavior into long-term and short-term patterns.
The long-term preference can store user’s general tastes hid-
den in the whole transaction history, which make it possible
to represent short-term preference only with a set of small
size of prior interacted items.
Markov Chain (MC): We find that MARank can be viewed
as a generalization of classical MC-based models. Rendle
et al. introduced Factorized Personalized Markov Chains
(FPMC) based on the observation that users could con-
tinuously review two closely related items. The proposed
method MARank can be reduced to FPMC by keeping
only individual-level contextual embedding and replacing
the multi-order attention network with an average pooling
operation. Different from FPMC, MARank can automati-
cally weight the contribution of items through matching the
relation between user and items.

Experimental Evaluation
In this section, we present our experimental results, with
comparison to different kinds of baseline methods to answer
the following research questions:
RQ1: Can our proposed method outperform the state-of-the-
art baselines for sequential recommendation task?
RQ2: How does data sparsity influence MARank?
RQ3: How MARank is affected by each component?

Evaluation Protocol
To validate the proposed method MARank for top-N se-
quential recommendation, we use three publicly available
datasets, Yelp 1 and Amazon 2, with statistics information in
Table 1 after pre-processing. Amazon data (He, Kang, and
McAuley 2017) contains product purchase history ranging

1https://www.yelp.com/dataset/challenge
2https://www.amazon.com/

Table 1: Statistical information of datasets.
Data # Users # Items # Observation Sparsity

Yelp 25677 25815 731671 99.89%

Movies&TV 35168 51227 1070645 99.94%

CDs&Vinyl 26876 66820 770188 99.95%

from May 1996 - July 2014. We mainly conduct experiments
on two subsets, Movies&TV composing user review actions
on both movie and tv, and CDs&Vinyl for actions on CDs and
vinyl record. As the original datasets are too sparse, we fil-
ter out inactive users with fewer than 10 feedbacks. For each
dataset, we convert star-rating into binary feedback regard-
less of the specific rating values since we care more about
the applications without explicit user feedbacks like ratings,
following the evaluation in (He, Kang, and McAuley 2017;
He et al. 2016). We utilize a widely used evaluation setting,
fold-out (Tang and Wang 2018; Chen et al. 2018) that is, a
number of latest interactions of each user are hold-out as test
set and the remaining data is for training. Without special de-
scription, we use last 20% of each user’s feedbacks as test set.

Several types of state-of-the-art baselines are taken into
consideration, including BPR-MF (Rendle et al. 2009),
FPMC (Rendle, Freudenthaler, and Schmidt-Thieme 2010),
TranRec (He, Kang, and McAuley 2017), GRU4Rec (Hi-
dasi et al. 2016), NARM (Li et al. 2017), ACF (Chen
et al. 2017), Caser (Tang and Wang 2018). We eval-
uate all of algorithms at the following top-N ranking
metrics: Precision@N and Recall@N (Karypis 2001),
NDCG@N (Weimer et al. 2007) and MRR@N (Shi et
al. 2012; Yu et al. 2014). We implement TranRec 3,
GRU4Rec 4, Caser 5 with the code given by the authors.

Evaluation Setup : We use grid search to se-
lect the best parameter setting for different al-
gorithms. These include embedding size d from
{8, 16, 32, 64}, regularization hyper-parameter λ from
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. Since Adam
is employed to optimize all the algorithms except Tran-
Rec, we use Adam’s suggested default learning ratio
i.e., 0.001. Learning ratio for TranRec is selected from
{0.1, 0.05, 0.01, 0.005}. Besides the commonly shared
hyper-parameters, some algorithms have their own special
setting. For FPMC, we set the length of Markov chain to
one. We also tried other choices, however, the performance
does not improve much. Without special mention, we fix
the length N of ranked list as 20. The model is trained in
Tensorflow on a GeForce GTX 1080Ti GPU.
Reproductivity: We study MARank with different number
of previous items from {2, 4, 6, 8, 10}, while n = 6 gives the
best results. We also try different number of hidden layers L
or k from {0, 2, 4, 8}. From the experimental results, we find
that 2 or 4 layers are enough to ensure competitive results.
The dropout ratio and gradient clipping norm is set to 0.5

3https://sites.google.com/a/eng.ucsd.edu/ruining-he/
4https://github.com/hidasib/GRU4Rec
5https://github.com/graytowne/caser pytorch
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Table 2: Ranking performance comparison (the best results of baseline are marked as * along with underline). The last row
shows the improvement of MARank over the best baseline algorithm.

Methods Yelp Movies&Tv CDs&Vinyl

Measures@20 Rec Pre NDCG MRR Rec Pre NDCG MRR Rec Pre NDCG MRR

BPR-MF 0.0618 0.0156 0.0382 0.0132 0.0404 0.0095 0.0248 0.0089 0.0512 0.0121 0.0323 0.0119

GRU4Rec 0.0586 0.0151 0.0373 0.0131 0.0372 0.0098 0.0235 0.0081 0.0358 0.0093 0.023 0.0082

NARM 0.0616 0.0159 0.0401 0.0145 0.0429 0.0111 0.0273 0.0096 0.0426 0.0108 0.028 0.0104

GRU4Rec+ 0.0699 0.0179 0.0456 0.0166 0.0526 0.0138 0.0344 0.0124 0.0527 0.0138 0.0352 0.0129

NARM+ *0.0718 *0.0183 *0.0465 *0.0169 0.0587 *0.0145 0.0375 0.0136 0.0678 *0.0169 0.0449 0.0169

ACF 0.0661 0.0169 0.0425 0.0153 0.0458 0.0107 0.0286 0.0106 0.0554 0.0133 0.0357 0.0134

Caser 0.0653 0.0161 0.0415 0.0151 0.0494 0.0122 0.0318 0.0116 0.0495 0.0129 0.0346 0.0132

TranRec 0.0703 0.0176 0.0458 0.0169 0.0606 0.0135 0.0392 0.0155 *0.0704 0.0164 *0.0468 *0.0184

FPMC 0.0713 0.0178 0.0463 0.0169 *0.0608 0.0142 *0.0406 *0.0162 0.0646 0.0156 0.0450 0.0179

MARank 0.0791 0.0199 0.0509 0.0183 0.0680 0.0162 0.0444 0.0170 0.0817 0.0201 0.0552 0.0212
Improvement 10.1% 8.7% 9.4% 8.2% 11.8% 11.7% 9.3% 4.9% 16.0% 18.9% 17.8% 15.2%
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Figure 3: Top-N recommendation evaluation with different
values of N on NDCG and Recall.

and 5, respectively.

Overall Comparison (RQ1)
We begin with evaluating the performances of the proposed
MARank and all baselines. Results are shown in Table 2 and
we have the following observations.

It’s interesting that basic BPR-MF has competitive perfor-
mance with RNN based method, GRU4Rec or NARM. Here
BPR-MF considers user intrinsic preference over items,
while GRU4Rec or NARM only models union-level item
interaction. Such results may shine lights on the importance
of user’s general taste. To further validate the effectiveness
of RNN-based model, we extend GRU4Rec and NARM
to GRU4Rec+ and NARM+ via adding general user-item
interaction, and find that GRU4Rec+ or NARM+ can im-
prove BPR-MF after incorporating item’s temporal depen-
dency. Different from GRU4Rec+, NARM+ employs the at-
tention network over the sequence of hidden statuses out-
put by GRU. Comparing with GRU4Rec+, attention mech-
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Figure 4: Recommendation evaluation on different user
groups, which are separated according to the number of
feedbacks.

anism makes NRAM+ stand out. ACF also employs atten-
tion mechanism to aggregate user’s historical items without
taking the temporal order into account. Experimental results
show that both NARM+ and ACF have better performance
than BPR-MF. On considering that ACF and NARM+ share
common ideas on fusing item-item relation into prediction
function, the observation verifies that modeling item-item
dependency can significantly help to improve the recom-
mendation accuracy. Caser is a recently proposed model
to apply CNN instead of GRU to compress a sequence of
items’ embeddings into a low-dimension vector. It has much
better performance than GRU4Rec, which is consistent with
the performance tendency shown in recent work (Tang and
Wang 2018). Similar to NARM+, Caser considers not only
union-level item dependency, but also user-item general
preference. However, after extending GRU4Rec and NARM
with user’s general taste, Caser in contrast does not perform
as well as GRU-based models.
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Figure 5: Performance on sparse training set. x axis stands
for the proportion of training samples.

Instead of modeling union-level item interaction, Tran-
Rec and FPMC are two state-of-the-art approaches based
on individual-level item temporal dependency. Interestingly,
both of them outperform the other baselines. This obser-
vation suggests that keeping directed interaction between
a pair of items is essential for sequential recommendation.
Encouragingly, we can find that MARank always has better
performance than other baselines. In MARank, both union-
and individual-level item interaction are captured under the
design of attentive neural network with residual structure.
These results indicate that dealing with sequential recom-
mendation task has close connection to the fusion of item-
item interactions, especially temporal item dependency. Be-
sides overall evaluation of different algorithms, Figure 3
shows that MARank is stably superior to other baselines
with different length of recommendation list.

A Study on Data Sparsity (RQ2)
Performance on Different User Groups In real applica-
tions, the number of feedbacks contributed by a user has a
large variance. Most of users have a small number of feed-
backs, which will raise “cold-start” problem. To gain more
insight on the performance of each algorithm, we group
users into five classes (i.e. <10, [10,20), [20,50), [50,100),
>=100) based on the number of observed feedbacks. The
results are shown in Figure 4. Due to the limited space, we
only present evaluation results on Rec@20 and NDCG@20.
We find that recall ratio decreases as the growing num-
ber of observed feedbacks. Most of the algorithms perform
very well on user group with greater than 100 feedbacks,
in particular, GRU4Rec+ achieves very high NDCG score
on this group. It indicates that RNN-based methods favor
long transaction sequence, but not short sequence. The re-
sults also demonstrate that MARank can have overall supe-
rior performance over different user groups.

Ratio of Training Samples To further validate the capac-
ity of dealing with sparse dataset, we evaluate top-2 base-
lines (i.e. TranRec, FPMC) and MARank with different pro-

Table 3: Performance with different level of item-item inter-
actions. MARank-I or MARank-U represents MARank with
only individual- or union-level item-item dependency.

Methods Yelp Movies&TV

Metrics@20 Rec Pre NDCG MRR Rec Pre NDCG MRR

MARank-I 0.0755 0.0185 0.0475 0.0175 0.0635 0.0153 0.0405 0.0158

MARank-U 0.0731 0.0178 0.0456 0.0168 0.0616 0.0148 0.0374 0.0145

MARank 0.0785 0.0195 0.0509 0.0183 0.0680 0.0162 0.0441 0.0170
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Figure 6: The impact of Markov chain length.

portion of training samples. The results are shown in Fig-
ure 5. We can see that MARank still outperforms baselines
in both NDCG@20 and Rec@20 metrics. As increasing the
ratio, all of methods achieve better recall score. These ob-
servations verify that MARank can cope with data sparsity
problem very well.

Analyzing Components of MARank (RQ3)
In this section, we will do ablation study on the impact of
number of prior items and the contributions of individual-
and union-level item-item dependency. Due to the limited
space, we only explore the impact of different level item-
item relations and the order of Markov chain, i.e. hyper-
parameter n. In following experiments, the number of resid-
ual layers for ResNets are set to 2.

Individual- or Union-level We study the influence of dif-
ferent types of item-item transition dependency. From the
experimental results shown in Table 3, we can find that
keeping only individual- or union-level can reduce the rec-
ommendation performance. Comparing with MARank-U,
MARank-I has more stable ranking quality, which might
give a hint that individual-level item-item relevance has pos-
itive impact on forecasting user’s preference.

Orders of Markov chain From previous analysis, we
have demonstrated that modeling the Markov chain pat-
tern is very essential for next-item recommendation. Gener-
ally, MARank can achieve better and better performance on
most of dataset when increasing the number of prior items,
i.e. hyper-parameter n. In this study, we validate different
choices of n (from 2 to 10 in our experiments). With re-
sults shown in Figure 6, n = 6 gives the best performance.
Such observation happens, presumably, because sequential
pattern does not involve a very long sequence.

Conclusions
Building deep model for recommender systems still remains
a big challenge. In recommendation tasks, we usually deal
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with discrete user behavior data, rather than image data. In
this paper, we design a multi-order attentive ranking model,
MARank, for sequential recommendation by unifying gen-
eral and sequential patterns. We conduct extensive experi-
ments on multiple large scale datasets and find that MARank
significantly outperforms other baselines. In this work, we
only model the dynamic user-item interactions. In real appli-
cations, sequential prediction usually involves with hetero-
geneous information domains. However, exploring temporal
evolution of various types of information resources still re-
mains to be a big challenge. In future, we’d like to design
deep model to capture heterogeneous item relationship.
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