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Abstract

To learn the underlying parent-child influence relationships
between nodes in a diffusion network, most existing ap-
proaches require timestamps that pinpoint the exact time
when node infections occur in historical diffusion processes.
In many real-world diffusion processes like the spread of
epidemics, monitoring such infection temporal information
is often expensive and difficult. In this work, we study how
to carry out diffusion network inference without infection
timestamps, using only the final infection statuses of nodes
in each historical diffusion process, which are more readily
accessible in practice. Our main result is a probabilistic
model that can find for each node an appropriate number
of most probable parent nodes, who are most likely to have
generated the historical infection results of the node. Exten-
sive experiments on both synthetic and real-world networks
are conducted, and the results verify the effectiveness and
efficiency of our approach.

Introduction
In real life, many underlying influence relationships among
people form various diffusion networks, spreading different
contents such as information, viewpoints, or even viruses.
Diffusion network inference aims to uncover these influ-
ence relationships based on the spread results observed
in historical diffusion processes. Therefore, this problem
is fundamental in many applications such as information
propagation (He et al. 2015), viral marketing (Leskovec,
Adamic, and Huberman 2007), and epidemic prevention
(Wallinga and Teunis 2004), in which the inferred influence
relationships can intuitively illustrate the latent diffusion
paths, and help users to better predict, promote or prevent
future diffusion events.

Most existing approaches to diffusion network inference
are based on the following basic ideas: nodes that are
infected sequentially within a time interval are assumed
to have influence relationships, and the previously infected
ones are regarded as potential parent nodes of the subse-
quently infected ones. Hence, these approaches require the
observed spread results used by them (known as cascades)
to include the exact infection timestamps of the infected
nodes in each diffusion process. To infer diffusion networks
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with given cascades, a major method is adopting a con-
vex optimization framework to find influence relationships
that maximize the likelihood of the cascades, and utiliz-
ing techniques, such as sequential quadratic programming
(Myers and Leskovec 2010; Gomez-Rodriguez, Balduzzi,
and Schölkopf 2011), block coordinate descent (Du et al.
2012), stochastic and proximal gradient methods (Gomez-
Rodriguez, Leskovec, and Schölkopf 2013b; Daneshmand et
al. 2014), survival theory (Gomez-Rodriguez, Leskovec, and
Schölkopf 2013a), EM algorithm (Wang et al. 2014; Rong,
Zhu, and Cheng 2016), and sparse recovery (Pouget-Abadie
and Horel 2015), to approximate the optimal solution. While
several other approaches adopt non-convex optimization
frameworks, each of them finally decouples the non-convex
problem into multiple smaller convex problems (Netrapalli
and Sanghavi 2012; Narasimhan, Parkes, and Singer 2015;
Kalimeris et al. 2018). Another effective method is trans-
forming the problem of diffusion network inference into that
of submodular optimization (Gomez-Rodriguez, Leskovec,
and Krause 2010; Gomez-Rodriguez and Schölkopf 2012)
by constructing a likelihood function of cascades with the
property of submodularity. Then, a near-optimal solution
of the submodular optimization problem can be achieved
by applying greedy algorithm. It has been validated that
with adequate amount of complete and correct cascades,
the influence relationships can be accurately recovered,
even using some simple inference approaches (Abrahao,
Chierichetti, and Kleinberg 2013). In addition, some more
sophisticated approaches are proposed to handle the case
that cascades have partial incorrect infection timestamps
(Sefer and Kingsford 2015) or miss partial snapshots of the
network (He et al. 2016; Lokhov 2016).

Although the cascade-based approaches have shown their
efficacy on diffusion network inference, acquiring the cas-
cades are often expensive in many real-world diffusion
processes, such as the spread of epidemics and the viral
marketing campaigns. This is because, unlike tracing the in-
fection timestamps of nodes in online social networks (e.g.,
Facebook and Weibo), monitoring the infections of nodes
to obtain the cascades through these real-world diffusion
processes is labor/resource demanding and time consuming.
Furthermore, due to a few unavoidable objective factors such
as a long incubation period (i.e., the time from infection
to illness), the observed cascades may not reflect the exact
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occurrence time of infections.
To avoid the limitation of cascade-based approaches,

new techniques are required to learn diffusions without the
infection timestamps. To the best of our knowledge, only
two existing works have partially addressed this problem
by learning either from path traces (referred to as PATH
henceforth) or from the seed and resulting sets of infected
nodes (referred to as S2R henceforth). In PATH (Gripon
and Rabbat 2013), the learner is assumed to have all path-
connected triples, i.e., three nodes that are activated along
a diffusion path through the network. Although PATH has
a solid mathematical foundation, the triples are not al-
ways naturally observable in practice. Even if complete
and correct cascades are available, inferring exact triples
is still challenging. S2R (Amin, Heidari, and Kearns 2014)
calculates the lifting effect of each seed node u to another
infected node v, which measures the increase in the proba-
bility of v’s infection on the condition that u is previously
infected. Then, S2R adds a directed edge (i.e., an influence
relationship) from u to v, if u has the greatest current
lifting effect to v. It’s worth noting that if there is no priori
knowledge on the number of edges in the network, S2R will
keep adding edges until all nodes are connected.

Aiming at a more general solution to diffusion learn-
ing, in this paper, we study the problem of how to infer
diffusion networks with only the final infection statuses
of the nodes in historical diffusion processes, which are
more readily accessible in practice. We propose an effective
and efficient algorithm called TWIND (Diffusion Network
Inference Without Timestamps) for this problem. TWIND
reveals potential parent-child influence relationships by find-
ing for each node a set of most probable parent nodes, who
are most likely to have generated the observed infection
results. To this end, we present a probabilistic model to
quantify the possibility of inferred influence relationships
given the observed final infection statuses. Based on the
model, we can also theoretically derive an upper limit on
the amount of most probable parent nodes for each node
in the network, which helps TWIND to prevent its inferred
diffusion network from containing too many low-probability
influence relationships not in the original diffusion net-
work. Furthermore, to reduce redundant computation during
the execution of TWIND, we disqualify the insignificant
candidate parent nodes whose infections have rather weak
correlations with the infections of the corresponding child
nodes, and exclude them from the selection of most probable
parent nodes.

In summary, our key contributions include the following:
(1) We propose a new infection timestamp-free approach
for diffusion network inference. To execute this approach,
there is no need to monitor the infection timestamps of
nodes through each diffusion process, or to worry about the
correctness of observed infection timestamps. Except for the
final infection statuses of nodes, the approach does not need
any other information of infections or priori knowledge on
the network. (2) We theoretically guarantee that TWIND
will find for each node an limited number of most probable
parent nodes, avoiding an overly complex inferred network.

In what follows, we first present our problem statement,

and then elaborate our proposed TWIND algorithm, fol-
lowed by reporting experimental results and our findings
before concluding the paper.

Problem Statement
A diffusion network can be represented as a directed graph
G = {V,E}, where V = {v1, v2, ..., vn} is the set of n
nodes in the network, and E is the set of m directed edges
(i.e., influence relationships) between the nodes. A directed
edge from a parent node vi to a child node vj indicates that
when vi is infected and vj is uninfected, vi will successfully
infect vj with a certain probability (which can be regarded
as the edge weight of this directed edge). As a few existing
approaches have presented how to calculate the edge weight
based on observed infection status results for a specified
edge (Yan et al. 2017), in this paper, we focus on inferring
the unknown directed edge set of the objective network. Our
problem can be formulated as follows.

Given: a set S = {S1, ..., Sβ} of infection status results
observed on a diffusion network G in β diffusion processes,
where Sℓ = {sℓ1, ..., sℓn} is a n-dimensional vector that
records the final infection status sℓi ∈ {0, 1} (1 for infected
status and 0 for uninfected status) of each node vi ∈ V
observed in the ℓ-th diffusion process (ℓ ∈ {1, . . . , β}).

Infer: the edge set E of the diffusion network G.

The TWIND Algorithm
In this section, we first introduce how to identify the most
probable parent nodes for each node in the network, fol-
lowed by a theoretical analysis of the upper limit on the
amount of most probable parent nodes, and then we present
how to reduce redundant computation during the identifica-
tion of most probable parent nodes before giving the detailed
steps of our TWIND algorithm. We conclude this section
with a complexity analysis on our approach.

Identification of Most Probable Parent Nodes
Let matrix A ∈ Rn×n be a network structure variable, of
which each element Aij ∈ {0, 1} (i, j ∈ {1, . . . , n}) indi-
cating whether there is a directed edge from node vi to node
vj (1 for yes, 0 for no), diffusion network inference using
infection status results S is equivalent to finding a optimal
A that maximizes the following conditional probability:

P (A | S) = P (A,S)∑
A′∈Q P (A′, S)

(1)

where set Q is the set of all possible matrices of A, and the
value of

∑
A′∈Q P (A′, S) is a certain constant. Maximizing

probability P (A | S) is equivalent to maximizing the joint
probability P (A,S), which can be calculated as follows.

P (A,S) =

∫
B

P (S|A,B)f(B|A)P (A)dB

= P (A)

∫
B

P (S|A,B)f(B|A)dB

(2)

where B is a n × n block matrix related to A. If Aij = 0,
then Bij is a 2 × 2 zero matrix; if Aij = 1, then Bij is a
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2× 2 nonnegative matrix, of which each element refers to a
conditional probability P (Xj | Xi) > 0, where Xi ∈ {0, 1}
and Xj ∈ {0, 1} are the infection status variables of nodes
vi and vj , respectively.

Since each historical diffusion process is independent to
each other, each Sℓ is generated independently. Moreover,
since the infection of each node can be only affected by its
parent nodes during each diffusion process, the relationship
P (X1, . . . , Xn) =

∏n
i=1 P (Xi | XFi

) holds, where Fi is
the parent node set of node vi, and XFi

is the infection status
variables of the parent nodes of vi. Then, we can reformulate
the probability P (S|A,B) in Eq. (2) as follows.

P (S|A,B) =
∏β

ℓ=1
P (Sℓ | A,B)

=
∏β

ℓ=1
P (X1 = sℓ1, . . . , Xn = sℓn | A,B)

=
∏β

ℓ=1

∏n

i=1
P (Xi = sℓi | XFi = πℓ

i , B)

=

n∏
i=1

2|Fi|∏
j=1

2∏
k=1

P (Xi = sk | XFi
= πij , B)Nijk

=

n∏
i=1

2|Fi|∏
j=1

2∏
k=1

θ
Nijk

ijk

(3)

where πℓ
i refers to the infection statuses of vi’s parent

nodes in the ℓ-th diffusion process, sk ∈ {0, 1} is the
k-th possible infection status of a node (without loss of
generality, s1 = 0, s2 = 1), 2|Fi| refers to the number of all
possible combinations of the infection statuses of vi’s parent
nodes, πij is the corresponding j-th possible combination,
Nijk is the number of times situation Xi = sk ∧XFi

= πij

appears in S, θijk is equal to P (Xi = sk | XFi
= πij , B),

and ∀vi,
∑2|Fi|

j=1

∑2
k=1 Nijk = β, θij1 + θij2 = 1.

Let f(θij1, θij2) denote the probability density function
of (θij1, θij2). Since there is no correlation between the
influences of different parent nodes to a same child node
(or a same parent node to different child nodes), relationship
f(B|A) =

∏n
i=1

∏2|Fi|

j=1 f(θij1, θij2) holds. Combining it
with Eq. (3), we can reformulate the calculation of probabil-
ity P (A,S) as follows.

P (A,S)

= P (A)

∫
B

⎛⎝ (∏n
i=1

∏2|Fi|

j=1

∏2
k=1 θ

Nijk

ijk

)
×
(∏n

i=1

∏2|Fi|

j=1 f(θij1, θij2)
) ⎞⎠dB

= P (A)

n∏
i=1

2|Fi|∏
j=1

∫∫
θij1,θij2

( ∏2
k=1 θ

Nijk

ijk

×f(θij1, θij2)

)
dθij1dθij2

(4)
As there is no prior knowledge on the value of θijk, we

are indifferent to regard every possible value of θijk. In other
words, we assume that distribution f(θij1, θij2) is uniform,
for 1 6 i 6 n, 1 6 j 6 2|Fi|. Then, the value of
f(θij1, θij2), denoted as cij , is a constant. According to the

property of probability density function, we have∫∫
θij1,θij2

f(θij1, θij2)dθij1dθij2

=

∫∫
θij1,θij2

cijdθij1dθij2 = 1

(5)

According to Dirichlet’s integral, we have∫∫
θij1,θij2

dθij1dθij2 =
1

(2− 1)!
= 1 (6)

∫∫
θij1,θij2

(
2∏

k=1

θ
Nijk

ijk

)
dθij1dθij2

=
Nij1! ·Nij2!

(Nij1 +Nij2 + 2− 1)!

(7)

Combining Eqs. (5) & (6), we have f(θij1, θij2) = cij =
1. Combining this conclusion with Eq. (7), we can finally
formulate the calculation of probability P (A,S) as follows.

P (A,S) = P (A)

n∏
i=1

2|Fi|∏
j=1

Nij1! ·Nij2!

(Nij1 +Nij2 + 1)!
(8)

To estimate P (A,S), we need a prior probability P (A)
for each possible network structure, and the numbers Nij1

and Nij2 determined by each node vi and its parent nodes
Fi in corresponding network structure. Nij1 and Nij2 can
be counted from the observed infection status results S,
while there is no prior knowledge on the network structure to
estimate P (A). Furthermore, as there are 2n(n−1) possible
network structures, it is not feasible to apply Eq. (8) for each
possible network structure when n is large. Therefore, we
equally treat each possible network structure by assuming
equal priors on A, i.e., the prior probability P (A) is equal
to a certain constant. Then, to maximize P (A,S), what we
need to do is finding for each node vi a optimal parent node
set Fi that maximizes the following scoring function.

g(vi, Fi) = log

2|Fi|∏
j=1

Nij1! ·Nij2!

(Nij1 +Nij2 + 1)!

=

2|Fi|∑
j=1

(
logNij1! + logNij2!
− log(Nij1 +Nij2 + 1)!

) (9)

where the base of log is 2. Then, the nodes in this optimal
Fi are regarded as the most probable parent nodes of vi.

Given the above scoring function, we can utilize greedy
search to find the most probable parent nodes for vi. It
starts from an empty parent node set Fi, and expands the
set Fi by incrementally adding a node combination (i.e., a
subset of V \{vi}) that can most increase the value of current
g(vi, Fi) until this value dose not increase. In this way, we
can efficiently achieve a local optimal solution of Fi. A
similar greedy-search strategy is commonly used in many
other applications, such as influence maximization (Tang,
Xiao, and Shi 2014) and classification (Huang et al. 2014),
due to its high efficiency and nice search performance.
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Upper Limit on Amount of Parent Nodes
At the beginning of the greedy search for most probable
parent nodes of a node vi, Fi = ∅ and current g(vi, Fi) can
be calculated as follows.

g(vi, ∅) =
∑2

k=1
logNik!− log(β + 1)! (10)

where Nik is the number of times situation Xi = sk appears
in S, and

∑2
k=1 Nik = β. Since (Ne )

N < N ! < e(N2 )
N

always holds for any positive integer N , we can deduce a
lower bound on the value of g(vi, ∅) as follows.

g(vi, ∅) >
2∑

k=1

log

(
Nik

e

)Nik

− log e

(
β + 1

2

)β+1

=

2∑
k=1

Nik log
Nik

e
− log e− (β + 1) log

β + 1

2

=

2∑
k=1

Nik log
β

e
+ β

2∑
k=1

Nik

β
log

Nik

β
− log e

− (β + 1) log
β + 1

2

= β log
β

e
− βH(Xi)− log e− (β + 1) log

β + 1

2

(11)

where H(Xi) is the entropy of variable Xi.
When the greedy search method adds a few nodes into set

Fi (i.e., Fi ̸= ∅), the following inequality should hold.

g(vi, Fi) > g(vi, ∅) (12)

Moreover, although there are 2|Fi| possible combinations
of the infection statuses of nodes in Fi, some combinations
may not have instances in the observed infection status
results S. We denote the number of these non-existent
combinations as δi. It can be obtained by checking how
many of the 2|Fi| possible combinations have instances in
S. As each of these existent combinations has at least one
instance in S, i.e., Nij1+Nij2 > 1, we can have relationship∑2|Fi|

j=1 log(Nij1 + Nij2 + 1) >
∑2|Fi|−δi

j=1 log(1 + 1). In
addition, given the fact that N ! 6 NN , we can deduce a
upper bound on the value of g(vi, Fi) as follows.

g(vi, Fi) 6
2|Fi|∑
j=1

(
2∑

k=1

logNijk
Nijk

)
−

2|Fi|−δi∑
j=1

log 2

=

2|Fi|∑
j=1

2∑
k=1

Nijk log

(
β
Nijk

β

)
− (2|Fi| − δi)

=

2|Fi|∑
j=1

2∑
k=1

Nijk log β − 2|Fi| + δi

−

⎛⎝−β

2|Fi|∑
j=1

2∑
k=1

Nijk

β
log

Nijk

β

⎞⎠
= β log β − 2|Fi| + δi − βH(Xi, XFi)

(13)

where H(Xi, XFi) is the entropy of variables Xi and XFi .
Combining Eqs. (11)–(13), we have relationship

β log β − βH(Xi, XFi
)− 2|Fi| + δi

> β log
β

e
− βH(Xi)− log e− (β + 1) log

β + 1

2

(14)

which can be translated as

2|Fi| < (β + 1) log

(
e
β + 1

2

)
+ δi − βH(XFi

|Xi)

(15)
where H(XFi

|Xi) = H(Xi, XFi
) −H(Xi) is the entropy

of XFi
conditioned on Xi . As relationship H(XFi

|Xi) > 0
always holds, we have

|Fi| < log

(
(β + 1) log

(
e
β + 1

2

)
+ δi

)
(16)

Therefore, by using the greedy search method to find a set Fi

of most probable parent nodes for a node vi, the upper limit
η for the set size of Fi is log

(
(β + 1) log

(
eβ+1

2

)
+ δi

)
. In

practice, if there is enough historical data logged in S, i.e.,
β ≫ δi, we can adopt a fast estimation on the value of η by
using η =

⌈
log
(
(β + 1) log

(
eβ+1

2

))⌉
.

Based on this η, each possible node combination that has
the chance to be added into current Fi should satisfy the
condition that when this node combination is added into
current Fi, the size of new Fi will not be greater than η.

Pruning of Candidate Parent Nodes
In a given diffusion network with a node set V , each node
vj ∈ V \{vi} could be a candidate parent node for node
vi ∈ V , resulting in

∑η
i=1

(
i

n−1

)
possible parent node

combinations for vi, where n is the number of nodes in V . To
avoid redundant computation, we should prune the candidate
parent nodes to reduce the number of possible parent node
combinations for each node vi in the network.

Given the fact that the infections of nodes are affected by
their parent nodes, the infection statuses of the parent nodes
and corresponding child nodes should have correlation. In
other words, if the infection statuses of two nodes are
independent or have extremely low correlation to each other,
there is a very low probability that these nodes have influ-
ence relationship between them. To quantify the correlation
between two variables, mutual information (abbreviated as
MI) is a commonly used criterion and can be calculated as

MI(Xi, Xj) = P (Xi, Xj) log
P (Xi, Xj)

P (Xi)P (Xj)
. (17)

A greater value of MI(Xi, Xj) indicates a stronger cor-
relation between the infection statuses of nodes vi and vj .
Furthermore, in a real-world diffusion network, each node
vi often has a finite number of parent nodes. Many other
nodes in this network do not have influence relationships to
vi, and their infection statuses often have no (or very low)
correlations to the infection status of vi, resulting in very
small MI values (close to 0). These very small MI values
form a compact cluster with a very small mean (close to 0).
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Algorithm 1: The TWIND Algorithm
Input : Node set V = {v1, . . . , vn}, infection status

results S = {S1, . . . , Sβ} observed on V .
Output: The diffusion network G = {V,E}.

1 E = ∅; // the set of directed edge
2 ∀vi ∈ V, vj ∈ V , calculate MI(Xi, Xj) by Eq. (17);
3 Partition all MI values into two groups by K-means

(with K = 2 and one mean fixed to 0), and set τ to
the greatest MI value in the group with mean closer
to 0;

4 η =
⌈
log
(
(β + 1) log

(
eβ+1

2

))⌉
; //|Fi|’s upper limit

5 for each vi ∈ V do
6 Fi = ∅; // inferred parent node set of vi
7 Pi = ∅; // candidate parent node set of vi
8 Ci = ∅; //set of possible parent node combinations
9 for each vj ∈ V (j ̸= i) do

10 if MI(Xi, Xj) > τ then
11 Pi = Pi

⋃
{vj}; // merge vj into Pi

12 for each W ⊆ Pi, |W | 6 η do
13 Calculate g (vi,W ) by Eq. (9);
14 Ci = {Ci,W}; // add a new element W to Ci

15 while Ci ̸= ∅ do
16 W ∗ = arg max

W∈Ci

g (vi,W );

17 if |Fi

⋃
W ∗| 6 η then

18 Fi = Fi

⋃
W ∗;

19 Ci = Ci\W ∗;
20 E = {(vj , vi)|vj ∈ Fi}

⋃
E; // (vj , vi) is directed

Inspired by this kind of situations, we can carry out a
heuristic pruning method to screen out insignificant candi-
date parent nodes for each node. As the very small MI
values form a compact cluster with a mean close to 0, we can
execute K-means with K = 2 and fix one of the two means
to 0 through all the iterations of K-means. This modified K-
means algorithm can efficiently partition all MI values into
two groups, in which one group has a mean very close to
0. Let τ be the greatest MI value in the group with a mean
closer to 0, then for each MI(Xi, Xj) 6 τ , we regard the
corresponding node vj as an insignificant candidate parent
node for vi, and exclude it from the candidate parent node
set of vi, since the very small MI value means that there is
a high probability that vj has no influence relationship to vi.

Algorithm
To infer a diffusion network with observed infection status
results S, we introduce how to identify the most probable
parent nodes for each node in the network, deduce an upper
limit on the amount of most probable parent nodes, and
present a heuristic pruning method to help avoid redundant
computation during the identification of most probable par-
ent nodes. Based on these preparing work, we propose an
algorithm called TWIND, which is outlined in Algorithm 1.

TWIND takes as inputs node set V of the objective

diffusion network G and a set S of infection status results
observed on V in β diffusion processes, and consists of
two main phases, i.e., (1) the phase of pruning candidate
parent nodes, which calculates the MI value for each
node pair by Eq. (17) (lines 2), and performs K-means
to select candidate parent nodes with greater MI values
(lines 3, 9–11), and (2) the phase of greedy search for
the parent node set Fi of each node vi (lines 12–20),
which first traverses all possible parent node combinations
and calculates corresponding scores by scoring function
proposed in Eq. (9) (lines 12–14), and then continuously
expands the parent node set Fi with the highest scored
parent node combinations until the size of Fi is equal to
the upper bound η or there is no more possible parent node
combination (lines 15–19). Finally, a directed edge from
each node in Fi to vi will be added into the inferred edge
set E of the objective diffusion network G (line 20).

Complexity Analysis
In TWIND, the most computationally expensive process
consists of the following two parts. (1) In the phase of
pruning candidate parent nodes, calculating MI values
requires O(βn2) time, and performing K-means on these
MI values takes O(tn2) time, where n is the number of
nodes in the network, β is the number of historical diffusion
processes, and t is the number of iterations of K-means
(t ≪ n). (2) Since there are at most

∑η
i=1

(
i
κ

)
6 ηκη

possible parent node combinations for each node, scoring
each possible parent node combination takes at most O(βη)
time, scoring all of them takes at most O(η2κηnβ) time,
where η ≪ n is the upper-bound of parent node set size,
and κ is the number of candidate parent nodes for each node.
As the candidate parent nodes are pruned by our proposed
heuristic method, κ is usually much less than n, i.e., κ ≪ n.

In summary, the overall time complexity of TWIND is
about O(βn2 + tn2 + η2κηnβ), where t ≪ n, η ≪ n, and
κ ≪ n. Therefore, the runtime of TWIND mainly depends
on the network size and the number of diffusion processes.

Experimental Evaluation
In this section, we first introduce the experimental setup, and
then verify the effectiveness and efficiency of our TWIND
algorithm on synthetic and real-world networks. To this end,
we investigate the effects of diffusion network size, diffusion
network’s average degree, initial infection ratio, and the
amount of diffusion processes on the accuracy performance
and runtime of TWIND. All algorithms in the experiments
are implemented in Java, running on a desktop PC with Intel
Core i3-6100 CPU at 3.70GHz and 8GB RAM.

Experimental Setup
Network. We adopt LFR benchmark graphs (Lancichinetti,
Fortunato, and Radicchi 2008) as the synthetic networks.
By setting different generation parameters, such as the
number of nodes and the average degree of each node,
we generate two series of LFR benchmark graphs with
properties summarized in Table 1. In addition, we adopt
two real-world networks, i.e., NetSci (Newman 2006) which
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Table 1: Properties of LFR benchmark graphs

Graphs Number of Nodes Average Degree
LFR1-5 100,150,200,250,300 4

LFR6-10 200 2,3,4,5,6

is a coauthorship network containing 379 scientists and
1602 coauthorships, and DUNF (Wang et al. 2014) which
is a microblogging network containing 750 users and 2974
following relationships.

Infection Data. The infection status results S can be
obtained by simulating β times of diffusion processes on
each network with randomly selected initially infected nodes
in each simulation (α denotes the initial infection ratio).
Corresponding cascades are also recorded for cascade-based
tested algorithms in the experiments. In each diffusion
process, each infected node tries to infect its uninfected child
nodes with a transmission rate, which subjects to a Gaussian
distribution with a mean of 0.3 and a standard deviation of
0.05, to make about 95% of transmission rate values are
within a range from 0.2 to 0.4.

Performance Criterion. To evaluate the accuracy perfor-
mance of TWIND algorithm, we report the F-score (i.e.,
the harmonic mean of precision and recall) of its inferred
directed edges, which can be calculated as follows.

Precision =
NTP

NTP +NFP
, Recall =

NTP

NTP +NFN
,

F -score =
2 · Precision ·Recall

Precision+Recall
,

where NTP refers to the number of true positives, i.e., the
true edges which are correctly inferred by the algorithm;
NFP refers to the number of false positives, i.e., the wrong
inferred edges which are not in the real network; and NFN

refers to the number of false negatives, i.e., the true edges
which are not correctly inferred by the algorithm.

Benchmark Algorithms. We compare our algorithm
with a classical convex programming-based approach
NetRate (Gomez-Rodriguez, Balduzzi, and Schölkopf
2011), a state-of-the-art non-convex programming-based
approach using hyper-parameters (referred to as Hyper
henceforth) (Kalimeris et al. 2018), a high performance
submodularity-based approach MulTree (Gomez-Rodriguez
and Schölkopf 2012), and an efficient infection timestamp-
free approach S2R (Amin, Heidari, and Kearns 2014)
for performance comparison. Since NetRate infers the
transmission rate between each two node in the network,
we give NetRate a privilege in accuracy performance
comparison, i.e., by calculating the F-score of edges whose
transmission rates are greater than a threshold, we use
different thresholds to find a highest F-score and report
this F-score as the final accuracy performance of NetRate.
Moreover, since MulTree and S2R need users to specify the
number of edges to be inferred, we use the real number m
of edges in the network as an input of these two algorithms.
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Figure 1: Effect of diffusion network size
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Figure 2: Effect of average degree of diffusion network

Effect of Diffusion Network Size
To study the effect of diffusion network size on algorithm
performance, we adopt five synthetic networks, i.e., LFR1–
5, of which the sizes vary from 100 to 300. We simulate 150
times of diffusion processes on each network (i.e., β = 150).
In each simulation, 0.15n nodes are randomly selected as the
initial infected nodes (i.e., α = 0.15).

Fig. 1 illustrates the F-score and runtime of each tested
algorithm, from which we can observe that (1) a greater
diffusion network size tends to degrade the accuracy per-
formance of NetRate, Hyper, MulTree and S2R, while the
accuracy performance of TWIND is reasonably insensitive
to diffusion network size and outperforms that of the others.
(2) The runtime of each tested algorithm increases with the
growth of diffusion network size. S2R executes the fastest
(but with a low accuracy performance), and TWIND is
reasonably more efficient than NetRate, Hyper and MulTree.

Effect of Average Degree of Diffusion Network
To study the effect of diffusion network’s average degree
on algorithm performance, we test the algorithms on five
synthetic networks, i.e., LFR6–10, of which the average
degrees vary from 2 to 6. We simulate 150 times of dif-
fusion processes on each network (i.e., β = 150). In each
simulation, 0.15n nodes are randomly selected as the initial
infected nodes (i.e., α = 0.15).

Fig. 2 illustrates the F-score and runtime of each al-
gorithm, from which we can observe that (1) diffusion
networks with greater average degrees degrade the accu-
racy performance of Hyper, MulTree, S2R and TWIND.
The accuracy performance of NetRate increases when the
average degree increases from 2 to 5, and decreases after the
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Figure 3: Effect of initial infection ratio on NetSci
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Figure 4: Effect of initial infection ratio on DUNF

average degree exceeds 5. Compared with the other tested
algorithms, our TWIND algorithm has a reasonably better
accuracy performance. (2) The runtimes of NetRate, Hyper,
MulTree, S2R and TWIND increase with the growth of av-
erage degree, and TWIND shows a significant advantage on
efficiency performance over NetRate, Hyper and MulTree.

Effect of Initial Infection Ratio
The ratio of initially infected nodes may affect the number
of final infected nodes. To study the effect of initial infection
ratio on algorithm performance, we test the algorithms on
two real-world networks NetSci and DUNF with different
initial infection ratios α (vary from 0.05 to 0.25). For each
initial infection ratio, we simulate 150 times of diffusion
processes on each network (i.e., β = 150).

Figs. 3 & 4 illustrate the F-score and runtime of each al-
gorithm on NetSci and DUNF, respectively. From the figures
we can observe that (1) a greater initial infection ratio tends
to improve the accuracy performance of MulTree, while
degrading the accuracy performance of NetRate, Hyper and
S2R. TWIND is reasonably insensitive to initial infection
ratio and has better accuracy performance. (2) The increase
of initial infection ratio has little effect on the runtime
of NetRate, Hyper, S2R and TWIND, but results in more
runtime for MulTree. Similar results can also be observed
on synthetic networks LRF1–10.

Effect of Amount of Diffusion Processes
The inference of diffusion network is based on the observed
diffusion results of diffusion processes. Hence, the amount
of diffusion processes may affect the accuracy performance
of diffusion network inference. Generally, more diffusion
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Figure 5: Effect of number of diffusion processes on NetSci
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Figure 6: Effect of number of diffusion processes on DUNF

processes will contain more information about diffusion net-
work, and help the diffusion network inference algorithms
to achieve more accurate inference results. To study the
effect of the amount of diffusion processes on algorithm
performance, we test the algorithms on two real-world
networks NetSci and DUNF with different number β of
diffusion processes (β varies from 50 to 250). In each
diffusion process, we randomly selected 0.15n nodes as the
initial infection nodes (α = 0.15).

Figs. 5 & 6 illustrate the F-score and runtime of each
algorithm on NetSci and DUNF, respectively. From the
figures we can observe that (1) a greater amount of diffusion
processes often helps the tested algorithms to achieve more
accurate results on diffusion network structure inference.
TWIND often has a better accuracy performance compared
with the other tested algorithms. (2) To analyze the infection
status results observed from more diffusion processes, the
tested algorithms often require more runtime. Compared
with NetRate, Hyper and MulTree, TWIND shows a signif-
icant advantage on efficiency performance. Similar results
can also be observed on synthetic networks LRF1–10.

Conclusion
In this paper, we have investigated the problem of how to
infer diffusion networks using only the infection statuses of
nodes observed in historical diffusion processes. Towards
this, we have proposed a probabilistic model to identify most
probable parent nodes for each node in the objective net-
work, and theoretically driven a upper limit on the amount
of each node’s most probable parent nodes. Furthermore,
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we have also presented a heuristic pruning method for
candidate parent nodes to reduce redundant computation
during the identification of the most probable parent nodes.
Extensive experiments on both synthetic and real-world
networks have been conducted, and the results have verified
the effectiveness and efficiency of our approach.
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