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Abstract

We address the problem of maritime traffic management in
busy waterways to increase the safety of navigation by re-
ducing congestion. We model maritime traffic as a large mul-
tiagent systems with individual vessels as agents, and VTS
authority as the regulatory agent. We develop a maritime
traffic simulator based on historical traffic data that incorpo-
rates realistic domain constraints such as uncertain and asyn-
chronous movement of vessels. We also develop a traffic co-
ordination approach that provides speed recommendation to
vessels in different zones. We exploit the nature of collec-
tive interactions among agents to develop a scalable policy
gradient approach that can scale up to real world problems.
Empirical results on synthetic and real world problems show
that our approach can significantly reduce congestion while
keeping the traffic throughput high.

1 Introduction

We address the problem of maritime traffic management in
busy waterways such as the Singapore Strait and Tokyo Bay.
The Singapore Strait is one of the busiest shipping lane in
the world connecting the Indian ocean and the South China
Sea. Vessel traffic in Strait has been consistently increas-
ing (Hand 2017) with approximately 2000 merchant vessels
(such as oil and gas tankers) crossing it daily (Liang and
Maye-E 2017). Increased traffic affects safety of navigation
as well as impacts the maritime ecosystem with oil and gas
spills (Lim 2017; Tan 2017). Congestion in narrow water-
ways critically affects the safety of navigation as it leads
to frequent evading maneuverer from vessels and increases
the cross traffic (Segar 2015). Therefore, the key research
question we address is how to coordinate maritime traffic in
heavily trafficked narrow waterways, such as the Singapore
Strait and Tokyo Bay, to increase the safety of navigation by
reducing traffic hotspots.

Figure 1 shows the e-navigation chart (ENC) of a strait.
The ENC is composed of several features such as anchor-
ages where vessels anchor and wait for services, berths, pilot
boarding grounds, and the traffic separation scheme or 7SS.
The TSS (figure 1) is the set of mandatory unidirectional
routes designed to reduce collision risk among vessels tran-
sitioning through or entering the Strait. The TSS is respon-
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Figure 1: Electronic navigation chart (ENC) of strait near a
large asian city with color-coded features (best viewed elec-
tronically)

sible for carrying the bulk of the maritime traffic. Therefore,
we focus on traffic coordination in the TSS.

Based on geographical features, the TSS can be further di-
vided into smaller zones (as shown in figure 1). Our goal is
to compute the recommended time taken to cross each zone
based on the current traffic in other zones such that (a) traffic
intensity is within some pre-defined limit (which increases
safety of navigation), and (b) maximize traffic throughput
while maintaining the safety of navigation. E.g., if the path
leading to berths is crowded (or the count of vessels is high),
we may slow down vessels entering TSS to regulate the traf-
fic. We develop both the maritime traffic simulator and traf-
fic control approaches.

Domain constraints: Our work is motivated by road
traffic light control using multiagent RL (Wiering 2000;
Bakker et al. 2010). However there are several differences
in the maritime domain that necessitate the development of
new methods for the maritime traffic control. First, vessels,
unlike cars, can never fully stop in the TSS. They always
have to maintain a minimum cruising speed, and have a max-
imum speed limit. Without the minimum speed, they risk
overturning due to their sheer size, and the effects of water
movement. Similarly, the TSS, although looks similar to a
road lane, there are major differences. Unlike road segments,
vessel traffic in a TSS zone cannot be neatly arranged in a
single queue. Vessels move dynamically, often sail in par-
allel to each other and overtake each other. Finally, vessel
movement is highly dynamic in the water, and is affected



by the ship condition, and weather conditions such as wind,
rain and tides. Therefore, even if we provide a recommenda-
tion to a vessel to cross a particular zone in 7" minutes, the
actual time taken to cross is stochastic. It is not clear apriori
how should we parameterize such uncertainty in the vessel
movement. Hence, a micro-level simulation of the maritime
traffic that simulates the precise position of each vessel is
very challenging. In our work, we accommodate such unique
maritime domain constraints in our traffic simulator and traf-
fic coordination techniques.

Related work in maritime traffic management: For mar-
itime traffic optimization, most current works either involve
high fidelity commercial simulation tools to model micro-
level navigation characteristics of vessels (Marin 2018),
and expert systems and rule-based approaches to model the
macro-level behavior of the traffic (Hasegawa et al. 2001;
Hasegawa 1993; Ince and Topuz 2004). However, enhancing
safety of navigation in a geographically constrained heavy
traffic area, requires statistical modeling and learning from
large amounts of historical data. Rule-based expert systems
are not sufficient to resolve every possible close quarter sit-
uation in the heavily trafficked Strait.

Related work in multiagent planning and learning: Our
work can be cast as a decentralized partially observable
MDP (Dec-POMDP) (Bernstein et al. 2002) which is a rich
framework for sequential multiagent decision making. How-
ever, solving even 2-agent Dec-POMDP is computationally
challenging, being NEXP-Hard (Bernstein et al. 2002). To
address scalability, previous works have explored several
restricted variations of Dec-POMDPs (Becker et al. 2004;
Spaan and Melo 2008; Witwicki and Durfee 2010). Re-
cent works have focused on models where agent interactions
are primarily dependent on agents’ “collective influence”
on each other rather than their identities (Varakantham,
Adulyasak, and Jaillet 2014; Sonu, Chen, and Doshi 2015;
Robbel, Oliehoek, and Kochenderfer 2016; Nguyen, Ku-
mar, and Lau 2017a; 2017b). In our work, we also explore
this direction as vessels in maritime traffic can be consid-
ered homogenous affecting each other only via their collec-
tive presence (such as congestion). Collective decentralized
POMDPs (CDec-POMDPs) have been proposed to model
such collective multiagent planning models (Nguyen, Ku-
mar, and Lau 2017a). Existing works in CDec-POMDPs
assume that all agents act in synchronous manner with
fixed duration actions (Nguyen, Kumar, and Lau 2017a;
2018). We extend the CDec-POMDP model to handle asyn-
chronous agent behavior with variable duration actions
which helps to model real word settings (e.g., navigation
to another zone has stochastic duration). There are multia-
gent planning models with variable durations actions (Am-
ato, Konidaris, and Kaelbling 2014). However they are lim-
ited in scalability to a few agents as opposed to thousands
of vessels or agents in the maritime domain. A determinis-
tic scheduling approach exists for maritime traffic manag-
ment (Agussurja, Kumar, and Lau 2018). However this ap-
proach addresses a deterministic setting where each vessel
follows the computed schedule exactly without any devi-
ation. In our model, we address a more realistic model of
vessel navigation based on stochastic duration actions.
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In our work, we contribute the design and develop-
ment of a maritime traffic simulator, and traffic control ap-
proaches. Our simulator addresses several maritime domain
constraints as highlighted earlier, and also allows for vari-
able duration actions. We have access to 4 month histor-
ical AIS (Automatic Identification System) data contain-
ing timestamped position, speed over ground, direction, and
navigation status (e.g., at anchor, not under command) of
each vessel roughly every 10 seconds. The total dataset con-
tains more than 9 million unique records. We process this
dataset and use it to learn and validate several parameters
of our simulation model. We also develop maritime traffic
control approaches using a policy gradient approach that ex-
ploits the collective nature of interactions among vessels. We
test on synthetic domains and using our historical data based
simulator to show that our approaches provide significant
improvement over baseline approaches.

2 Model Definition

We next describe our model. The navigable sea space where
traffic needs to be regulated (denoted as port waters) is di-
vided into multiple zones z € Z. We consider set of zones
Z = Z U {z4} including navigable zones z € Z, and a
dummy zone z4. The dummy zone indicates that the vessel is
outside the port waters. There are a total of M vessel agents.
An agent m can be present in one of these zones. Zones can
be arranged in the form of a directed acyclic graph in which
each zone is a node, and edges correspond to traffic flow
among zones. Such graph structure is typically determined
by a VTS authority to separate outbound, inbound and tran-
siting traffic. E.g., in figure 1, east-to-west and west-to-east
are separated in the TSS.

Traffic enters the port waters via a set of specified source
zones Zg. C Z (e.g., extreme east or extreme west zones in
figure 1). Agents terminate their journey at a set of termi-
nal zones Zio,CZ, which for example may represent berths,
anchorages or transiting out of port water boundary. Vessels
arrive in port waters over time; a vessel outside the port wa-
ter boundary is assumed to be in a dummy zone z4. We have
discrete time, finite plan horizon H.

Traffic control: At each time step ¢, to regulate the conges-

tion, a traffic control agent advises a speed vfz/ for vessels
moving from zone z to zone z’. We consider the speed rec-
ommendation as the output of a policy function parameter-
ized using 6, wg'zl (o), taking input as joint-state of vessels
currently in port water. The objective of the traffic control
agent is to optimize the parameters 6 of the policy func-
tion to optimize a congestion and delay based utility func-
tion (defined later).

Vessel Model: We model the behavior of each vessel as fol-
lows. Let s;* denote the state of vessel m at time ¢. Consider
a vessel m currently inside the port waters. As the naviga-
tion action has a variable duration, this vessel can be catego-
rized as newly arrived at some zone z at time t or in-transit
through z at £.

e In-transit: s}" = (2}, 2™, 7™) where 2z} € Z denotes
vessel’s current zone at time ¢, z,ﬁm € Z is the next zone



agent is heading to, and 7™ is the future time at which the
vessel reaches the next zone z;™.

e Newly arrived: When the vessel is newly arrived at zone
z", its next zone z’ and next arrival time 7 are not yet
determined, and its state s} is denoted as (2], (), ().

Direction decision: When a vessel is newly arrived at zone
z at time t (s} = (z, ¢, ¢)), it will decide the next zone 2’
from the distribution «(z’|z), and its action a}* =2z'. In sev-
eral ports, often the number of destinations vessels are head-
ing to are small (e.g., berths, anchorages, transiting through).
Often, there are only very few navigation routes to reach
such destinations which are decided by factors such as the
TSS, and hydrological features such as deep water routes
for deep draft vessels. Therefore, unlike routing in road net-
works, we model the average navigation behavior of vessels.
We learn the distribution «(z’|z) from historical data, and
consider it as a fixed input model parameter.

When a vessel is in-transit, its action is null or aj* = {).
Arrival distribution: To model the arrival time 7 of vessels
into the source zones zg..€ Zg; from outside the port waters,
we assume a distribution { P ({24, 2src, 7)) } 2., € Zure ,re[1:H] -
We estimate this distribution from historical data. The start-
ing state (zq4, zsrc, 7) implies that the vessel moves to the
source zone zg. at time 7. Before time 7, the vessel is out-
side the port waters. We assume that this arrival probability
cannot be controlled as it is often determined by exogenous
factors such as the schedule of the shipping line.

We have made the design choice to pre-sample the arrival
time 7 at the vessel’s next destination because vessels can
take variable amount of time to cross a zone. Therefore, at
any instant in time, we have to record how many vessels are
currently transiting through a zone to accurately compute the
reward, and determine future adjustments of vessel speeds
depending on the current traffic.

State transition function ¢: We define the state transition
function for a vessel as follows:

o If vessel m is currently outside the port waters or s}* =
<Zd> Zsres 7—>’ then ¢(5?—2&-1 - <Zsrc; o, ¢>|5;n) =lift+l=r,
otherwise zero. If (¢4 1) < 7, then vessels remains in the
same state (zq, zgre, T) With probability 1.

o If vessel m is inside the port waters, and has newly ar-
rived at a zone z at time t or s = (z,0,0), it would
choose next zone 2’ from the distribution «(2’|z), and
the arrival time 7 at 2’ is sampled from the distribution
P (7|2, 2'; 7%") where 37% is the speed control param-
eter for moving from z to 2’ at time ¢. We will show later
how [3 is determined, and the parametric form of distribu-
tion p"®v. Therefore, if s7* = (z,0,0); s\, = (2,2, 7),
then ¢(s7’L |s}"; B) =a(2'|z) - p"*V (72, 25 577).

If agent m is in-transit from zone z to 2’ at time ¢ or s}" =
(z,2',T), then two cases can happen. At time ¢ + 1, the
agent finally crosses zone z and reaches the starting point
of zone z’. This setting occurs when 7=t + 1 (recall that
7 denotes the arrival time at zone z’). Other case is the
agent is still in-transit through zone z at time ¢ 4 1. This
occurs when 7 > t+ 1. The case 7 < ¢+ 1 is inconsistent
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as it implies the agent reaches its destination in the past.

moom. g ST =(2,0,0)) iffr=t+1
¢(st+1‘st ’ﬁt)_{]l(s?}rlz<z’zl’7_>) 1ff7'>t—|—]_
(1)

where [ is the indicator function giving one or zero based
on its input logical condition being true or false.

For ease of exposition, we have not shown the transition
function for terminal zones zier € Zier. When the agent first
enters any zier, say at time ¢, its state is (zter, @, 0). It is an
absorbing state with zero reward, no outgoing transitions.
Count statistics: To summarize the joint activities of ves-
sels 8¢, ar = (si",al* YVm =1: M) at each time step t, we
consider the aggregate statistics as follows:
txn

w2, 2, 1) = M W5 =z, 2, 7)) Yz, 2 € 2,7 > 1,
It counts the vessels that are currently in-transit in zone 2
and will reach zone 2’ at time 7.

nT(z) Zi\f:l I(s7*={(z,0,0)) Vz € Z. It counts ves-
sels that newly arrived in zone z at time t.

0P (z,2') = M 1(sp = (2,0,0); 0 = 2') V2,2 €
Z. It counts vessels that newly arrived in zone z at the
current time ¢ and decided to go to zone z’. We also have
the consistency relation: n?"*(z) L (z,2)
(2,2, 7) o U7 = (2.6,0),a7" = 2,57, =
(2,2',7)) Vz,2" € Z,7 > t. Tt counts vessels that newly
arrived in zone z at the time ¢, decided to go to 2/, and
reaching 2’ at time 7 .

From the above counts, we can compute the total number
of agents present in each zone z at time ¢ which include
both newly arrived and in-transit agents as:

(2) >

z'eZ, r=t+1:H

tot

ny = n?rr(z) + n;xn(z’ Zl? T) (2)

We arrange the above counts in the form of tables. E.g.,

ni°t = (n{°*(z) Vz € Z). Analogously, we define
the count tables n¥* n?* n®** fi,. We denote n;, =
(nf™ 02T P>t 1) to be the count table vector at each time

t and n;.g to be joint tables from time ¢ = 1 to H.
Reward: The reward at time ¢ depends on the aggregate
count of agents in different zones. We treat each zone z as
a limited capacity resource. The reward function balances
the consumption of this resource and any potential delay
caused to vessels. The capacity cap(z) of this resource, for
example, indicates how many maximum number of vessels
can be safely present in the particular zone. For simplicity,
we assume that each vessel consumes one unit of resource.
When the capacity of the resource is violated, a penalty is
imposed on each involved vessel. To also ensure that vessel
reach their destination as soon as possible, there is a delay
penalty per vessel for each time step. Hence, the reward r}"
of a vessel m at zone z is computed as:

—C(z,n!") (2)—cap(z), O)+wd]

3)
where w, and wgy are positive weights; w, penalizes re-
source violation, and w,y penalizes delay for each vessel.

mo__ _ tot
Ty = ——[wr-max(nt
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Figure 2: Dynamics of Maritime Traffic Control

The overall reward r can be computed by aggregating local
rewards of vessels in different zones as follows:

Z ntot Z D:Ot) (4)

z€Z

Traffic control objective: Let s1.7, a1.7 = {s]i, aliy Vm}
denote the joint 7T-step trajectory of agents resulting in
counts n;.7. The objective function for the traffic control
agent is to maximize:
H
V(rg) = Y Baprarelr(nr)lar, soim)  (5)
T=1

Figure 2 shows the dynamic Bayesian net of our maritime
traffic model with the traffic control agent (TCA) provid-
ing speed guidance using the policy 7 at each time step.
The control policy 7 takes as input the joint counts n; at
each time step, and provides traffic control guidance 3, =
{B7*'Vz, '}, which regulates vessel navigation using the
distribution p™@v (-|z, 2’; ,szl)Vz, Z.
Modeling vessel navigation behavior (p"#", Bzz/): A cru-
cial aspect to address is modeling the navigation behavior of
vessels. If a vessel navigating (z — 2’) is given an recom-
mendation by the traffic control agent (TCA) to perform this
entire navigation in p time periods, then would this vessel
finish this action in exactly x4 time periods or require p+ 9
where ¢ is a random variable to take into account stochastic-
ity of real world navigation? Furthermore, we must impose
hard travel time limits %,,,;,, and ¢,,2x to model maximum and
minimum speeds. As there are currently no controlled exper-
iments with real vessels, there is no historical data to learn
from. To address this issue and avoid making any unneces-
sary assumptions, we use the principle of maximum entropy
(Maxent) (Jaynes 1957). The maxent principle advocates for
the distribution that respects given constraints on parame-
ters, but avoids making any other unnecessary assumption
to avoid overfitting. Such maxent distributions have been
used in computational sustainability to model dynamics of
endangered species given that their observations are sparse
and incomplete (Phillips, Anderson, and Schapire 2006).

We interpret the parameter 377 as specifying the travel

time A(3%*") recommended by the TCA to move from z to
2'. We assume that given this recommendation, the average

travel time of vessels would be A (8 == ). However, the actual
travel time of individual vessels can be different. Some may
cross in less time than A and some may take more. Notice
that our assumption is realistic. If on-an-average, vessels do
not follow traffic guidance, then it would be virtually impos-
sible to control the traffic. This is where the role of a VTS

authority comes in—as a traffic regulatory authority, it may
be possible to incentivise vessels to follow the navigation
recommendations. )

The travel time distribution p"® (7 |z, 2’; 87% ) is the max-
imum entropy distribution with mean A(3%*). It has been
shown that the maxent discrete probability distribution with
bounded positive support and a specified mean is the bi-
nomial distribution (Harremoes 2001). We incorporate hard
limits ¢,,;,, and t,,x on the output of p"®¥ as follow.

Let current time be ¢. For (z — 2’), the arrival time at
ZisT=t+ (t2% + A). We sample A from the binomial
distribution with (tﬁfax t‘zz1 ) trials and success probability
of each trial being ﬂt = (or the output of the TCA policy 7).
Thatis, A ~ B(tzZ — 12z i ) The average travel time

max n']lrl7
is A(B7) = t2% 4 (t27, — t2%)B7%, a standard result

for binomial distribution. In experiments, we provide empir-
ical support by using historical data, and showing that our
simulator built on the binomial distribution gives very close
vessel traffic distribution to the real historical data for mul-
tiple days over peak traffic hours.

3 Generative Model for Counts
While, we can optimize objective (5) by sampling joint state-
action trajectories of all the agents. This approach is not scal-
able as typically more than a thousand vessel cross the Strait
each day. Integrating sampling of individual agent trajecto-
ries within a reinforcement learning based simulator is com-
putationally intractable. Therefore, we reparameterize value
function using counts n;.z;, and show that counts are suffi-
cient statistic for planning in our traffic control model. Sam-
pling counts n;.g is highly scalable as even if the number
of vessels M increases, the dimensions of the count table re-
mains fixed. Only the count of vessels in different buckets of
count tables changes. As discussed in the previous section,
let ny = (0™, n?T P §i,) denote the count table vector.
We first show that n;.z are sufficient statistic for the joint
distribution over state-actions trajectories of agents.

Theorem 1. Count vector ny.y is the sufficient statistics for
the joint distribution P(s1.5,a1.5;7)

Proof. Notice that a vessel takes the action to move to an-
other zone 2’ and samples its travel duration from p"*¥ only
when it is in a newly arrived state (z, ¢, ¢) (for some z).
We can summarize this transition using the indicator func-
tion I(s}" = (z,0,¢),af" = 2/, s} = (2,2, 7)). Rest of
the state transitions are determlmsnc E.g., when a vessel is

in-transit, it moves to its destination 2" at time T with proba-
bility 1. We use this fact to aggregate vessels’ states into the
counts as follow:

P(s1.,a1.q) =

m__, m__ /! mo ’
% pﬂaV(T‘Z7zl7ﬁt _ ﬂ't(l’lt))}u(st =(z,¢,¢),a;"=2",s{ 1= (2,2 ,T))

=ITCTI o

z,2' T

(125" (7], ', B, =mi (o)) ) (6)

where we used the fact that 1i(z, 2/, ) 22% (s =

(2,0, 0),a" =2, s{t | = (2,2', 7)) from section 2. We can



see that counts n are the sufficient statistic as (6) only de-
pends on the counts generated by any (S1.p7, @1.57). O

Generating counts: We next show the generative model
for ny 1 = (0, 05, Ay, 0fY) given ny. Total ves-
sels newly arriving in zone 2 at time ¢+ 1, n{" (2'), is
given by the sum of vessels that were in-transit to 2z’ at time
t (or (2,2, 7 = t+1)), and newly arrived vessels in
a zone z with next destination 2’ reaching 2’ at t+1 (or
ne(z, 2/, T=t+1)).

ny (2') = Z[n%x“(z, 2o r=t+1)+1y(z, 2/, T=1+1)|V2

(N
nxt . arr

n¥i: Given nyl';, we can generate next zone counts
ni¥ (z, ) from a multinomial distribution with parameters
Dy = ( '|2)Vz" as below:

0¥ (2, 0) | 0y (2) ~ Mul(niy (2), po¥2') - (8)

nyy1: Next we sample the arrival time counts in destination
zones z’. That is, for all newly arrived vessels at z moving to
2, we sample the counts fi;11(z2, 2’,+). Given that vessels’
navigation time follows a binomial distribution (or p"®" is
binomial), we sample from a multinomial distribution with

parameters p, =p"® (1 | z,z'; 8721 )Vr

A (2,2 ) | 0 (2, 2) ~ Mul(nyys (2, 2), p-V7) (9)

where, 7 =t + 1 + 73, +A A0 A

min 7 max mln]

Based on above counts, we compute all vessels that are in-
transit to other zones z’ at time ¢ + 1. It includes all vessels
in-transit at time ¢ reaching their destination at time 7 > t+1,
and newly arrived vessels 0i;(z, 2/, 7) in-transit to 2.

txn

0t (2,2, 7) =0y (2,2, 1)+ 1y (2, 2/, 7)Vz, 2/ VT > t+1
(10)

Using above process, we can sample all counts nq.z with-
out sampling individual vessel trajectories. Sampling from
such multinomial distributions remains efficient even if the
vessel population increases. This makes such count-based
sampling significantly more scalable than sampling individ-
ual agent trajectories. We show in appendix the exact distri-
bution over counts or P(n;.g). We refer to constraints (7)-
(10) which every count table must satisfy as €2;.p.

4 Vessel-Based Value Function

As counts ny.z are sufficient statistic for the distribution of
joint state-action trajectories, and given the generative distri-
bution P(ny.x) over counts, we have (proof in appendix):

Theorem 2. The traffic control objective in (5) can be com-
puted by expectation over counts

H H
V(mg) =) Esiar[r(n)lac, s6;70] =) Eny, ey, [r(ne)|m]
t=1 t=1
We can directly optimize the above objective by com-
puting gradient V,V (my) using stochastic gradient ascent
and moving parameters 6 in the direction of the gradient.

This strategy is similar to the well known REINFORCE
policy gradient approach in RL (Williams 1992). How-
ever, we show empirically that this approach does not work
well. The reason is the problem of multiagent credit as-
signment (Chang, Ho, and Kaelbling 2004; Bagnell and Ng
2006). That is, from the global reward signal r it is not clear
which agent should get the credit or penalty for the overall
traffic state. Instead, we consider a vehicle-based value func-
tion framework (Wiering 2000; Bakker et al. 2010) to train
traffic control policy. Let m = (ﬁgz/Vz, z'). Each wzz outputs

the speed control parameter ﬂfz, at each time ¢. We assume
the crossing 2z’ is like a traffic light, and compute the to-
tal accumulated reward (from time ¢ till /), say V,** (73 ),
for those vessels that newly arrive at zone z at time ¢ and
decide to move to z’. Originally, in (Wiering 2000), vehicle-
based method requires the joint state-actions of all vehicles
at every time step.

M H

VeR () =E[ D Uls7=(2,0.0), a7 =] Y P |mo]
m=1 =

t'=t an

Under this vessel-based traffic control framework, we op-
timize each V;?* (7z*') in an iterative fashion, similar to
car-based value functions in (Wiering 2000). This is an ap-
proximate solution technique, but is known to produce good
road traffic control policies (Bakker et al. 2010), and empir-
ically, we observed it works significantly better than the RE-
INFORCE method as sz/ performs effective credit assign-
ment computing precisely the effectiveness of policy m3*
by filtering out the contributions from other zone pairs. In
our model, we work at the abstraction of counts, and thus
extracting joint state-action trajectories for each vessel is
expensive, and not scalable for large agent population. We
therefore develop a collective vessel-based value function
mechanism to compute this value using only the counts.

Theorem 3. The vehicle-based value function can be com-
puted by collective expectation over the counts as follows:

V7 (157) = B, E (2,2, 1)V,

T>t

(2,2, 7) |

(12)
in which V}*(z, 2’ , T) is the average accumulated reward of

newly arrived vessels at z at time t going to z' computed
based on the realized counts ny.p as follows:

(2,2,7) Z —C(z,n"0), V7 € [t + 125, t+t25] (13)

T"=1
V(2,2 1) = Re(2,2/,7) +7 - VP(Z) (14)
S VR 1) (2 T)
Vi, 2') = poe (15)
Zt+tn)ax TLt(Z, Zl, T)
T=t+t23),
, nxt yn , /
V() — Do ) VPG, 2) 06

Z , n?xt(z7 Z/) ’

where R (z,2',7) is the reward accumulated by a vessel
when it is still in zone z between time t and T; V(z,2') is



the average accumulated reward of a vessel which started
crossing z to z' from time t. V?*(2') is the average accumu-
lative reward of a vessel newly arrived at 2’ at time 7.

Proof is provided in the appendix. Such vessel-based
value function can be computed using a dynamic program-
ming approach. We next compute the gradient of this vessel-
based value function below (derivation in appendix):

Theorem 4. The vehicle-based policy gradient for 7 s

t+tzz/

max

Vgizl(ﬂgz/):IEnl:H[ Z Z ng(z, 2, T)X

=1 =ty
[(r =t —t77) - Volog(m™ (ny))
+ (tii — (T=1)) - Volog(1 =5 (1)) ]V (2, 2/, 7))
(17)

After computing above policy gradients, we can aggregate
all Vg sz/ and update the policy parameter 6 as follows:

grew eold + Z vevlzz'(ﬂ_gz/)

z,2'

(13)

where 7 is the learning rate. We call this approach as vessel-

based policy gradient (or Vessel-PG). Our results are devel-
oped for the general setting where traffic control policy i
takes as input all the count information n;. However, empir-
ically we observed that providing only total vessel counts in
zone z and 2/, (nf°*(z),ni°*(z’)), as input provided higher
quality solutions. Another benefit of such a policy is that it
is easily implementable in a decentralized setting. Vessels
have radars which can provide information about count of
other vessels in their current zone z, and their next destina-
tion zone 2’. Thus, vessels can query the policy 7 based on
their local observations to get their speed control input.

5 Experimental Results

We perform experiments on both synthetic and real-world
instances. Synthetic instances are for comparison against
different methods by varying problem sizes, while real-
world instances are used to evaluate effectiveness of our ap-
proach on mitigating hotspots within the strait. A detailed
description about all experimental setups (policy structure,
and other settings) are provided in the appendix.

Baselines : We compare our approach Vessel-PG with three
baselines—deep deterministic policy gradient (DDPG) (Lil-
licrap et al. 2015), policy gradient (PG) and MaxSpeed. As
DDPG is for MDPs, we first extend the DDPG algorithm to
our setting (details on this extension are in appendix). PG
is standard policy gradient (REINFORCE) approach where
we train with total empirical returns, and MaxSpeed policy
is to always travel a zone with maximum uniform speed cor-

responding to tfri;l travel time for the zone pair.

Synthetic Data : For each synthetic instance, we generate
a semi-random connected directed graph with edges repre-
senting zones, similar to (Agussurja, Kumar, and Lau 2018).
With each edge is associated a minimum and a maximum

time required to traverse the edge. Vessels arrive at traffic
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source edges with an arrival rate. The resources are the edge
capacities (or the maximum number of vessels on an edge at
any instant). Other problem settings are in the appendix.
Figures (3a-3c) show results with varying resource
penalty w,., 100 vessels and maximum capacity of each edge
as 5. In all three, a lower value is better, y-axis is in log-
scale. Figure 3b shows resource violations, figure 3c shows
the total average delay over the MaxSpeed policy (i.e., if all
vessels travel at the maximum speed ¢ i, delay is zero); and
figure 3a shows the overall objective we optimize in (3) (we
convert rewards to costs, therefore lower cost is better). The
resource violation value in figure 3b is sum of violations at
each time step for the whole horizon. In figure 3c, MaxSpeed
baseline is not shown as delay is 0. We also see similar be-
havior of close to 0 delay with Vessel-PG on w,. = 0, which
is also intuitive as w, = 0 ignores the resource violation
component in the objective; DDPG also achieves a close
to optimal policy, but has slightly higher resource violations
than Vessel-PG for this case. Delay increases with increas-
ing value of w, because optimization preference shifts more
towards violation. In all three settings of w,, Vessel-PG
achieves significantly better solution quality (i.e. lower de-
lay). Similar behavior is also observed in figure 3b as vio-
lation of MaxSpeed, Vessel-PG and DDPG are similar at
w, = 0 and violations decreases with increasing resource
penalty value. Crucially, Vessel-PG decreases resource vio-
lations faster than DDPG, and PG highlighting the effective-
ness of our approach. Figure 3a results are the actual objec-
tive value that we optimize for, which subsumes both viola-
tion and delay components. We observe Vessel-PG achieves
significantly better solution quality than rest of the baselines.
Figure 3d results are for 100 vessels, resource penalty
w, = 5 and wg = 1. We set a threshold capacity as 50 for
any edge (or 50% of total number of vessels), and vary ac-
tual resource capacity as a percentage of this threshold ca-
pacity. Y-axis shows the objective value (lower is better). In
all the four settings of capacity% we see Vessel-PG achiev-
ing better solution quality than the rest, quality gap among
all approaches reduces as the capacity% increases. This is
because problem instance becomes easier as resource viola-
tions go to zero with increased capacity%. Figures 3e shows
results with varying number of vessels, resource capacity
as 5 for each edge and w, = 5, wqg = 1. In this case also,
we see Vessel-PG performing significantly better than the
rest. Overall, results indicate that Vessel-PG performs best,
much better than DDPG, PG does not work well, the reason
being noisy empirical returns resulting in high variance gra-
dient update and the multi-agent credit assignment problem.
Real Data: For real-world instance, we use 4 months histor-
ical AIS data of vessels voyaging in the strait of a large asian
city. The AIS record contains a timestamp, vessel unique id,
lat-long position, speed over ground, direction and naviga-
tion status (anchored/sailing etc). We have data for every few
seconds for majority of vessel in the strait totaling about 9
million records. In this work we only consider tanker and
cargo vessels which are the largest type of vessels causing
hotspots. We tested our model on 20 busiest days, 10 days
results are presented here, rest are in appendix. A brief de-
scription on parameters—we estimate «(z’|z) and zone ca-
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Figure 3: (a-e) show results for synthetic instances (lower value is better). (f-i) show quality comparisons on historical data

pacities cap(z) over 4 months data, tfrfl;l and tfnz;X are also
estimated, resource penalty w,, = 50 (after some trial-and-
error this value worked best), delay penalty wy = 1. We
divide an hour period into 60 time steps (I minute inter-
vals); time step 0 is 12AM. Vessel’s arrival rate are com-
puted from data for each day. We experiment with 60% of
historical cap(z) to test how to reduce traffic intensity, and
its impact on travel time.

Simulator Accuracy: We wanted to show that our simu-
lator provides very similar peak traffic window and trend
as the real data. We have computed root mean square error
(RMSE) as a more concrete accuracy measure. For 12 (out
of a total of 27 zones) high traffic intensity zones for peak
hour window. On average over 4 months, the RMSE value
is around 1.8, which intuitively means that on average there
is a difference of 1.8 vessels between predicted count and
observed count at each time step. On an average, around 50
vessels cross any of these 12 zones during the peak hour;
thus the RMSE of 1.8 is relatively low. Figures are provided
in appendix section 3

Peak traffic intensity reduction: Figures (3f-3i) show real
data experiments. Figure 3f(top) shows traffic intensity for
the whole planning area averaged over 4 months period, y-
axis is number of unique vessels present in the planning area
for each hour period, x-axis shows hours of the day. We can
see that peak hours are at 4th, 5th and 6th. Therefore, for
each day we apply our method (Vessel-PG) to control for
this 3 hour window. Figures 3f(bottom)-3h(bottom) show
results for 4th-8th hours, y-axis shows the maximum vio-
lation for that hour, x-axis shows the day number, legend
Sch is our method and Unsch is the observed values from
data. As noted, we control only 4th-6th hour window; for

7th and 8th hour we use ﬁ;j;a to simulate future traffic for
our method. We have added these two additional hours to
show if there is any shift of peak hour, which would be unde-
sirable. Results show significant reduction in violations for

all 10 days on all hours except 8th hour (figure 3h(bottom)).
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Even though traffic intensity for 8th hour has increased by
our method, the increase is only marginal, significantly less
than the reduction in peak traffic intensity reduction for 4th-
7th hour. Therefore, our traffic control strategy is highly ef-
fective, and does not shift peak traffic intensity.

Next we assess how traffic throughput is impacted by our
traffic control method. Figure 3i shows average travel time
a vessel would take if it entered the planning zone between
4th - 8th hour window (starting of our traffic control) trav-
eling on the longest west-east route in TSS. We observe
that travel time reduces with our method for all days sig-
nificantly. Notice that our results imply that vessels should
move at a higher speed (within the defined thresholds im-
plied by tmin, tmax) Within TSS, which would lead to a re-
duction in resource violations (implying safer traffic), and
also would reduce travel time.

6 Conclusion

We addressed the problem of maritime traffic management
in busy waterways of strait near a large asian city. Based
on historical data, we have developed and validated a mar-
itime traffic simulator. Using this simulator, which models
aggregate behavior of vessels, we developed a policy gradi-
ent approach that provides speed guidance to vessels. Em-
pirically, our approach works much better than competing
approaches, and shows the potential of coordinating traffic
for better navigation safety with high traffic throughput.
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