
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Automated Rule Base Completion as Bayesian Concept Induction

Zied Bouraoui
CRIL - CNRS & Univ Artois, France

zied.bouraoui@cril.fr

Steven Schockaert
Cardiff University, UK

SchockaertS1@Cardiff.ac.uk

Abstract

Considerable attention has recently been devoted to the prob-
lem of automatically extending knowledge bases by applying
some form of inductive reasoning. While the vast majority of
existing work is centred around so-called knowledge graphs,
in this paper we consider a setting where the input consists
of a set of (existential) rules. To this end, we exploit a vec-
tor space representation of the considered concepts, which
is partly induced from the rule base itself and partly from a
pre-trained word embedding. Inspired by recent approaches
to concept induction, we then model rule templates in this
vector space embedding using Gaussian distributions. Unlike
many existing approaches, we learn rules by directly exploit-
ing regularities in the given rule base, and do not require that
a database with concept and relation instances is given. As
a result, our method can be applied to a wide variety of on-
tologies. We present experimental results that demonstrate the
effectiveness of our method.

1 Introduction
The problem of automated knowledge base completion has
received considerable attention in recent years (Pujara et al.
2017). Within the broad aim of knowledge base completion,
various strategies can be explored. One possible strategy is
to find missing facts by searching for relevant documents
on the Web, and analyzing their content (West et al. 2014).
Another strategy is to identify and exploit statistical regu-
larities among the facts in a given knowledge base (Lao,
Mitchell, and Cohen 2011; Bordes et al. 2013). Most ex-
isting approaches, however, focus on finding plausible miss-
ing facts. Our focus in this paper is instead to find missing
knowledge in a given ontology.

In particular, we propose an approach to find plausible
rules which is inspired by cognitive models for category
based induction (Osherson et al. 1990; Tenenbaum and Grif-
fiths 2001). The main aim of such induction models is to de-
termine which objects are likely to have some property P ,
knowing that the objects o1, ..., on have this property (but
knowing nothing else about property P). In other words,
inductive generalization in these models is based on our
knowledge of the semantic features of the objects. For ex-
ample, knowing that oranges, lemons and grapefruit have

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some unknown property P , we can plausibly derive that
limes have this property as well, simply because there are
very few natural properties which hold for oranges, lemons
and grapefruit, but not for lime. Similarly, suppose we have
a knowledge base containing rules of the following form:

r1(X) ∧ orange(X)→ r2(X)

r1(X) ∧ lemon(X)→ r2(X)

r1(X) ∧ grapefruit(X)→ r2(X)

Without knowing anything about the meaning of the rela-
tions r1 and r2, we can intuitively still derive that the fol-
lowing rule is plausible:

r1(X) ∧ lime(X)→ r2(X)

To implement this intuition, we rely on two types of vector
space representations of the considered relations. First, we
can use word embeddings (Mikolov, Yih, and Zweig 2013;
Pennington, Socher, and Manning 2014), which are vector
space representations of word meaning that are learned from
large text collections. Such representations have been found
to exhibit various interesting regularities, which means that
they can be regarded as a source of commonsense knowl-
edge (Levy, Goldberg, and Ramat-Gan 2014; Gupta et al.
2015). Most importantly for our purposes, words represent-
ing concepts with similar properties, such as different kinds
of citrus fruits, tend to be clustered together. Second, we
will also rely on a vector space representation that has been
learned from the ontology itself. The aim of this represen-
tation is to capture the intuition that relations which are as-
serted to have similar properties should also be considered
as similar for the purpose of inductive reasoning.

Similarly, by focusing on pairs of concepts, we can also
complete rule bases using a form of analogical reasoning.
Consider the following example:

r1(X,Y) ∧ bat(X)→ cave(Y)

r1(X,Y) ∧ duck(X)→ pond(Y)

r1(X,Y) ∧ dolphin(X)→ sea(Y)

Then we can plausible also derive the following rule, based
on the analogical relationship that holds between the pairs
(bat, cave), (duck, pond), (dolphin, sea) and (trout, river):

r1(X,Y) ∧ trout(X)→ river(Y)

6228

Such analogical relationships can again be effectively iden-
tified from word embeddings (Mikolov, Yih, and Zweig
2013), and other types of vector space representations.

To implement the aforementioned ideas for completing
sets of rules, we will consider rule templates, such as

τ(?) = r1(X) ∧ ?(X)→ r2(X)

These templates are second-order relations, whose instances
are the relations from the ontology. For example, the con-
cepts orange, lemon and grapefruit would be instances of
the template τ . This view will allow us to employ methods
for concept and relation induction to predict plausible rules
which are missing from a given ontology.

2 Related Work
Within the area of knowledge base completion, we can iden-
tify three classes of related work.
Methods for completing ABoxes and knowledge graphs.
This class of methods focuses on finding missing facts. For
example, a number of methods have been proposed that
learn latent soft clusters of predicates to predict missing facts
in relational data (Kok and Domingos 2007; Rocktäschel
and Riedel 2016; Sourek et al. 2016). Within the area of
knowledge graph completion, the most popular strategies
are based on embedding relations and entities in a low-
dimensional vector space, e.g. by modelling binary relations
as vector translations (Bordes et al. 2013), or on identify-
ing types of paths in the knowledge graph which are predic-
tive of a given relationship (Gardner et al. 2014). Another
possible strategy to find missing facts consists in extracting
them from natural language statements (Mintz et al. 2009;
Riedel, Yao, and McCallum 2010; West et al. 2014). Most
relevant for our work, some authors have also looked at pre-
dicting missing facts by modelling concepts in some under-
lying feature space. For example, Neelakantan and Chang
(2015) represent each Freebase entity using a combination
of features derived from Freebase itself and from Wikipedia,
and then use a max-margin model to identify missing types.
In (Bouraoui, Jameel, and Schockaert 2017), description
logic concepts were modelled as Gaussians in a vector space
embedding.
Methods for learning rules from instances. In this paper,
our focus is on predicting rules without using any database
of facts (e.g. ABox assertions), which is motivated by the
fact that for many useful ontologies no such database is
available. However, when a sufficiently large database of
facts is given, methods from Inductive Logic Programming
(Bühmann, Lehmann, and Westphal 2016), or based on For-
mal Concept Analysis (Baader et al. 2007) or Association
Rule Mining (Völker and Niepert 2011), can be used to con-
struct plausible rules. Such rules make explicit some of the
regularities that are observed among the given facts, beyond
those which are already encoded in the ontology.
Methods for completing rule bases. The problem of pre-
dicting plausible missing rules for a given rule base has
not yet received much attention. In (Schockaert and Prade
2013), methods for completing propositional rule bases have

been proposed, based on interpolation and analogical rea-
soning, but they were only studied from a theoretical point
of view. Moreover, the methods proposed there require back-
ground knowledge, such as a betweenness relation in the
case of interpolation, which is not readily available. In this
paper, we avoid this issue by relying on word embeddings.

The idea of similarity based reasoning, as a general strat-
egy for extending (the applicability of) rule bases, has been
explored in a number of ways. For example, (Beltagy et al.
2013) uses Markov logic to consider defeasible rules of the
form cucumber(X)→ zucchini(X), to encode the intuition
that many rules about cucumbers also apply to zucchinis.
Conceptually this achieves a kind of similarity-based rule
base completion (e.g. we may imagine adding a rule about
zucchinis for each rule we have about cucumbers), although
the extended knowledge base is not explicitly constructed.

Along similar lines, there have been a few proposals to
extend logic programming with a soft unification mecha-
nism, where a given rule is triggered, to some degree, if a
formula is satisfied which is similar to the body of that rule,
either based on a given similarity structure (Medina, Ojeda-
Aciego, and Vojtáš 2004) or by similarity degrees which are
induced from a vector space embedding (Rocktäschel and
Riedel 2017).

3 Background
Ontologies express structured knowledge about the con-
cepts, properties and relations of a given domain. Descrip-
tion logics and existential rules are the two main logical
frameworks underlying ontology languages. While descrip-
tion logics are most often used in practice, in this paper we
will consider existential rules, as this will simplify the pre-
sentation. Note however that the method we present in this
paper could be straightforwardly applied to description logic
axioms as well. Here we briefly recall the syntax of existen-
tial rules; for a comprehensive overview of this framework
we refer to (Baget et al. 2011).

The syntax of existential rules is defined over a vocabu-
lary of a finite set of relations (i.e. predicates) and an infinite
set of constants. An existential rule is a first-order rule of the
following form:

r1(x1) ∧ ... ∧ rn(xn)→ ∃y . s1(z1) ∧ ... ∧ sm(zm) (1)

Here x1, ...,xn,y, z1, ..., zm are tuples of variables and for
each i ∈ {1, ...,m} we have vars(zi) ⊆ vars(x1) ∪ ... ∪
vars(xn) ∪ vars(y), where we write vars(x) for the set
of variables appearing in the tuple x. An example of ex-
istential rule is sibling(x1, x2) → ∃y. parentOf(y, x1) ∧
parentOf(y, x2) where sibling and parentOf are predicates
and x1, x2 and y are variables. Note that the tuple y may be
empty, which means that rules without an existential quanti-
fier (e.g. sibling(x1, x2) → sibling(x2, x1)) are also special
cases of existential rules. In fact, the occurrence of existen-
tial quantifiers is quite rare in most real-world ontologies.
In line with terminology from logic programming, the an-
tecedent and consequent of an existential rule are sometimes
referred to as the body and head respectively. An existential
rule of the form > → r(x) is called a fact, and a set of facts
is sometimes called a database. An ontology is defined as a

6229

set of existential rules, which are usually assumed to be non-
fact rules. The variables in an existential rule are implicitly
assumed to be universally quantified. Standard notions such
as consistency and entailment are then defined in the usual
way.

4 A Model for Rule Induction
Throughout this section, we let R be a set of existential
rules. The problem we consider is to identify rules ρ which
are not entailed by R, but are nonetheless plausible. As al-
ready mentioned in the introduction, our strategy is to con-
sider rule templates, and to characterize the kind of relations
that fit these templates based on vector space representations
of these relations. In Section 4.1, we first explain what kind
of templates are considered. Subsequently, in Section 4.2,
we discuss in more detail how vector space representations
can be used to represent relations. Then Sections 4.3 and 4.4
explain our induction models, respectively for unary and for
binary templates. Finally, Section 4.5 discusses our overall
approach to making predictions.

4.1 Rule Templates
We will consider two kinds of templates, which respectively
replace one and two occurrences of relations by a second-
order variable. Specifically, let ρ be an existential rule of the
form (1). Then ρ induces the following unary templates:

?(x1) ∧ ... ∧ rn(xn)→ ∃y . s1(z1) ∧ ... ∧ sm(zm)

...

r1(x1) ∧ ... ∧ rn(xn)→ ∃y . s1(z1) ∧ ... ∧ ?(zm)

We will write τ(?), or simply τ , to denote a given unary
template, where τ(r) then corresponds to the rule that is ob-
tained when instantiating the second-order variable ? with
the relation r. Let us furthermore write T1(ρ) for the set of
all unary templates that can be obtained from the rule ρ, and
let T1(R) =

⋃
ρ∈R T1(ρ). Similarly, the rule ρ induces the

following binary templates:

? (x1)∧ • (x2)∧...∧rn(xn)→ ∃y.s1(z1)∧...∧sm(zm)

...

? (x1)∧...∧rn(xn)→ ∃y.s1(z1)∧...∧ • (zm)

...

r1(x1)∧...∧rn(xn)→ ∃y.s1(z1)∧...∧ ? (zm−1)∧ • (zm)

where ? and • are second-order variables. We write T2(ρ)
for the set of all binary templates that can be obtained from
ρ and T2(R) =

⋃
ρ∈R T2(ρ). Similar as for unary templates,

we write τ(?, •) to refer to a template, and τ(r, s) to the rule
that is obtained by instantiating the second-order variables ?
and • by r and s respectively.

For a given unary template τ , we write π(R, τ) for the set
of relations that satisfy the templates inR, i.e.:

r ∈ π(R, τ)⇔ τ(r) ∈ R

Note that all relations in π(R, τ) will have the same arity,
which we will also refer to as the arity of the template τ .

Similarly, for a binary template τ , π(R, τ) represents the set
of relation pairs that lead to a rule fromR, i.e.:

(r, s) ∈ π(R, τ)⇔ τ(r, s) ∈ R

We now illustrate these notions in the following example.
Example 1. Let us consider the following set of rulesR:

livesIn(X,Y) ∧ bat(X)→ cave(Y)

livesIn(X,Y) ∧ duck(X)→ pond(Y)

Then T1(R) contains the following unary templates:

τ1(?) = ?(X,Y) ∧ bat(X)→ cave(Y)

τ2(?) = ?(X,Y) ∧ dolphin(X)→ sea(Y)

τ3(?) = livesIn(X,Y) ∧ ?(X)→ cave(Y)

τ4(?) = livesIn(X,Y) ∧ bat(X)→ ?(Y)

τ5(?) = livesIn(X,Y) ∧ ?(X)→ pond(Y)

τ6(?) = livesIn(X,Y) ∧ duck(X)→ ?(Y)

while T2(R) contains the following binary templates:

τ7(?, •) = ?(X,Y) ∧ •(X)→ cave(Y)

τ8(?, •) = ?(X,Y) ∧ •(X)→ pond(Y)

τ9(?, •) = ?(X,Y) ∧ bat(X)→ •(Y)

τ10(?, •) = ?(X,Y) ∧ duck(X)→ •(Y)

τ11(?, •) = livesIn(X,Y) ∧ ?(X)→ •(Y)

Then we have e.g.:

π(R, τ1) = {livesIn}
π(R, τ7) = {(livesIn, bat)}
π(R, τ11) = {(bat, cave), (duck, pond)}

Our approach will be based on characterizing the com-
monalities of the relations in π(R, τ). However, in some
cases the templates we obtain might be too general for such
characterizations to be meaningful. A typical example are
subsumption rules such as orange(X) → citrusFruit(X),
which gives rise to the binary template τ(?, •) = ?(X) →
•(X). The instances of this template may have little or noth-
ing in common, hence it would not be effective as a basis
for induction. Therefore, we will also consider two kinds of
restricted templates.

First, we consider typed rule templates, in which the pos-
sible instantiations of the second-order variables are limited
to relations that are subsumed by a given relation. Let τ(?, •)
be a binary template, and let r and s be two relations. Then
τ(?↓r, •↓s) is a typed template, whose instances are defined
as follows: we have (r0, s0) ∈ π(R, τ(?↓r, •↓s)) if the fol-
lowing three conditions are satisfied:
1. (r0, s0) ∈ π(R, τ(?, •))
2. R |= r0(X1, ..., Xk)→ r(X1, ..., Xk)

3. R |= s0(X1, ..., Xl)→ s(X1, ..., Xl)

with k and l the arity of the relations r and s respectively.
The second kind of restricted templates we consider are

based on constraining the name of the relations. This is mo-
tivated by the fact that relations whose name has the same

6230

suffix or prefix often have something in common (e.g. rugby-
Player, tennisPlayer, baseballPlayer). If a naming conven-
tion is used which allows us to easily split relation names
into meaningful constituents, we can easily restrict tem-
plates to relations that have a name with a particular suf-
fix or prefix. In particular, we write τ(?−str1 , •−str2) for the
name-constrained restriction of τ(?, •) in which ? can only
be instantiated by relations whose name ends with str1 and •
can only be instantiated by relations whose name ends with
str2, and similar for prefixes.

4.2 Vector Space Representations
Given a template τ , and the knowledge that τ(r1), ..., τ(rn)
are valid rules, the main inference task we consider is to
identify relations s for which τ(s) is a plausible rule, and
similar for binary templates. To this end, we will use two
types of vector space representations.
Word embeddings. First, we will use a pre-trained word
embedding. Word embeddings allow us to exploit lexical
background knowledge, intuitively enabling us to make pre-
dictions based on the idea that relations with similar names
tend to have similar properties. To this end, we first tok-
enize the relation name using a small set of simple heuris-
tics, based on standard ontology naming conventions. For
instance, ProfessionalRugbyPlayer would be converted into
a list of three words: professional, rugby and player. A rela-
tion r corresponding to the list of words w1, ..., wn is then
represented as the vector vw

r = 1
n (w1 + ... + wn), where

we write wi for the vector representation of word wi in the
word embedding. While simply averaging the word vectors
might seem naive, this strategy is known to be surprisingly
effective for short texts (Hill, Cho, and Korhonen 2016).
Matrix factorization for unary templates. In addition to
using the relation names, we can also derive information
about the similarity of relations from the given rule base it-
self. Here the intuition is that relations which already ap-
pear in similar rules from the rule base should be consid-
ered to be similar. To implement this intuition, we will ap-
ply the idea from the AnalogySpace model (Speer, Havasi,
and Lieberman 2008). The aim of that model is to learn
low-dimensional vector space representation of the concepts
in the ConceptNet knowledge graph, by factorizing a ma-
trix whose rows are concepts and whose columns are prop-
erties of these concepts. Adapted to our context, we start
with a matrix M1 whose rows are the unary templates from
T1(R), possibly extended by some of their typed or name-
constrained variants. For efficiency reasons, we only include
those templates τ for which |π(R, τ)| ≥ 2. The columns of
M1 correspond to the relations from R. There is a 1 in the
row for τ and column for r iff r ∈ π(R, τ), and a 0 other-
wise.

The AnalogySpace method is based on the Singular Value
Decomposition (SVD) of M1 = UΣV T . In particular, the
diagonal matrix Σ is replaced by the matrix Σk, in which
all but the first k diagonal elements are replaced by 0. Using
Σk, we can compute the approximation1 M ′1 = UΣkV

T of
1A well-known property of SVD is that M ′

1 is the rank-k matrix
which is most similar to M1, in terms of the Frobenius norm.

Figure 1: Modelling templates as ellipsoidal regions.

the matrixM1. Entries inM ′1 which are close to 1, but which
were 0 in M1 then correspond to plausible rules which are
missing fromR, i.e. if the entry on the row of template τ and
the column of relation r is close to 1, then we may conclude
that τ(r) is a plausible rule. This strategy was empirically
found to work well in (Speer, Havasi, and Lieberman 2008)
for finding plausible missing links in ConceptNet, but has
not yet been considered for finding plausible rules. We will
evaluate this strategy as one of our baselines in Section 5.

In our model, we will use the SVD decomposition of M1

in another way. In particular, we can use Principal Compo-
nent Analysis (PCA) to obtain a low-dimensional represen-
tation of the relations which maximally preserves the infor-
mation encoded in M1. To this end, we represent each re-
lation r as the k-dimensional vector which is obtained by
taking the first k columns of the row corresponding to r in
the matrix V Σ. Let us denote this k-dimensional vector by
vRr . In our model, we will use the vectors vw

r and vRr as two
alternative representations of the relation r.

Matrix factorization for binary templates. We can also
obtain a vector space representation of relation pairs, by ap-
plying PCA to the matrix M2, whose rows are the binary
templates (with at least two instances) and whose columns
are relation pairs (which are instances of at least one tem-
plate). Let us write uRr,s for the resulting k-dimensional vec-
tor representation of the relation pair (r, s). Similar as for
unary templates, we will also use SVD to obtain a rank-k
approximation of the matrix M2 as a baseline strategy.

4.3 Unary Template Model
Intuition. Let us write vr for the vector space represen-
tation of relation r (i.e. one of the two types of represen-
tations discussed in Section 4.2). Our main assumption is
that the relations which satisfy some template τ are clus-
tered together in the vector space. Whether this assumption
is reasonable (for a given type of vector space) is an empiri-
cal question, which we will attempt to answer in our experi-
mental evaluation below. However, a similar assumption was
found to lead to good performance in (Bouraoui, Jameel, and
Schockaert 2017) for the task of ABox completion.

The most straightforward way to implement this assump-
tion would be to learn a vector vτ for the given template,
and to assume that the probability that τ(r) is a valid rule
can be expressed as a function of the similarity between vτ

6231

and vr. This closely corresponds to the strategy that was
adopted in (Rocktäschel and Riedel 2017), although in a dif-
ferent setting. Note that the representation of a template in
the vector space can then be viewed as a sequence of con-
centric spheres, containing the vectors of increasingly less
similar relations. However, this relies on the rather unre-
alistic assumption that all dimensions of the vector space
are equally important. For example, it was found in (Mu,
Bhat, and Viswanath 2017) that some dimensions in pop-
ular word embedding models are far less informative than
others. More generally, what typically matters is whether re-
lations are similar with respect to particular facets. For ex-
ample, lemon and lime are similar in most respects, but they
have a different color. Accordingly, in some contexts, we
may actually have to consider that lime is more similar to
frog (because they are both green) than to lemon. To take
this context-dependent nature of similarity into account, we
will model templates using ellipsoidal regions in the vector
space, instead of spheres. To illustrate this, Figure 1 shows
a toy example with one dimension along which concepts
are organized by color and one dimension along which con-
cepts are organized by type. When modelling the template
?(X) → fruit(X), only the latter really matters, leading to
the ellipse shown in the figure.

To find a suitable (soft) ellipsoidal region for a given
unary template τ , we will estimate a Gaussian distribution
from the vector representations of the relations in π(R, τ).
This allows us to use the standard Bayesian machinery for
estimating Gaussians, based on conjugate priors, which of-
fers a convenient and principled way of avoiding overfit-
ting. Conceptually, the resulting method for predicting plau-
sible rules can be seen as the implementation of a form of
commonsense reasoning which is known as interpolation
(Schockaert and Prade 2013). In particular, the Gaussian
modelling the template τ will offer us a convenient way of
deciding whether a given relation r is sufficiently “between”
the relations which are known to satisfy τ , to plausibly con-
clude that r satisfies τ as well.
Model description. Our aim is to evaluate the probability
that a given template τ satisfies a relation r, knowing that
it satisfies the relations r1, ..., rn. Using Bayes’ rule we can
express this as follows:

P (τ(r) | vr) = λτ ·
f(vr | τ(r))

f(vr)
(2)

Here f(. | τ(r)) is a Gaussian distribution modelling the re-
lations satisfying the template τ . This distribution will be
estimated from the vector representations of the relations
r1, ..., rn. The distribution f(.) expresses how likely the vec-
tor representation vr itself is. It will be estimated as a Gaus-
sian from the vector representations of the overall set of re-
lations. In case the template τ is typed, however, f(vr) is
estimated from the relations that have the correct type only,
and similar for name-constrained templates. Finally, λτ is
the prior probability that a given relation satisfies the tem-
plate. It will act as a scaling factor.
Estimating Gaussians. Since f(. | τ(r)) typically has to be
modelled from a very small number of examples, we need to

make some drastic regularity assumptions. In particular, we
will make the common assumption that this Gaussian distri-
bution has a diagonal covariance matrix (Vilnis and McCal-
lum 2015). This means that we can evaluate this probability
using a product of univariate Gaussians:

f(vr | τ(r)) =

m∏
i=1

G(xri ;µi, σ
2
i)

wherem is the number of dimensions in the vector space and
we write xri for the ith coordinate of vr. To estimate the pa-
rameters µi and σ2

i of these univariate Gaussians, we follow
a Bayesian approach, i.e. rather than taking a single estimate,
we take a weighted average based on a probability distribu-
tion over plausible values for these parameters. Compared
to using maximum likelihood estimates, Bayesian estima-
tion is more cautious and less prone to overfitting. A par-
ticular consequence is that templates with few instances are
penalized, which will help our method to focus on the most
reliable templates. Formally, the probabilityG(xri ;µi, σ

2
i) is

then estimated as:∫
G(xri ;µ, σ

2)NIχ2(µ, σ2|µ0, κ0, ν0, σ
2
0)dµdσ

where NIχ2 is the normal inverse χ2 distribution, which is
the standard conjugate prior of the Gaussian distribution. It
encodes which values of the parameters µ and σ2 are likely,
given that the ith coordinate of the vectors v1, ..., vn is as-
sumed to have been generated from that distribution, and
possibly some prior information. In our setting, we will not
assume that any prior information is given, in which case a
flat prior can be used. It can be shown that the integral then
evaluates to (Murphy 2007):

tn−1

(
xi,

(n+ 1)
∑n
j=1(x

rj
i − xi)2

n(n− 1)

)
where xi = 1

n

∑n
j=1 x

rj
i and tn−1 is the Student t-

distribution with n−1 degrees of freedom. We refer to (Mur-
phy 2007) for more details on the Bayesian estimation of
Gaussian distributions. The probability f(vr) is estimated
in the same way, but based on the set of all relations (of the
considered type), rather than only those in π(R, τ).
Estimating the prior. The prior λτ is estimated by maxi-
mizing the log-likelihood of the rules in R. Let the arity of
the template τ be a, and let Ra be the set of all relations of
arity a. We then choose the value of λτ that maximizes:∑
r∈π(R,τ)

logP (τ(r)|vr) +
∑

r∈Ra\π(R,τ)

log(1−P (τ(r)|vr))

where P (τ | vr), for a given choice of λτ , is evaluated as in
(2). Note that this estimation of λτ relies on a closed world
assumption, i.e. it is based on the assumption that τ only ap-
plies to the relations in π(R, τ). Clearly this is not realistic.
In fact, our rule completion method is motivated by the fact
that some rules in R are missing. However, this simplifying
assumption is needed because we do not have negative ex-
amples (i.e. relations for which it is given that the template

6232

does not apply). As a consequence, the value of λτ may be
lower than it should be. However, this is typically not a prob-
lem, as it simply means that the predictions we make might
be more cautious then they need to be. As a second simplifi-
cation, in the case of large rule bases, the second summation
will be restricted to a sample of Ra \ π(R, τ) for computa-
tional reasons. A close approximation to this summation can
be obtained by selecting the elements from Ra \ π(R, τ)
whose vector representation is closest to the mean of the
Gaussian f(. | τ(r)) (e.g. using a k-d tree).

4.4 Binary Template Model

Intuition. Like the unary templates, binary templates will
also be modelled using Gaussian distributions. In the case of
binary templates, however, there will be several Gaussians
that are used in combination. In particular, we will learn (i)
a Gaussian to model the kind of relations that may instanti-
ate ? (ii) a Gaussian to model the kind of relations that many
instantiate •, (iii) a Gaussian over the set of vector transla-
tions vs − vr of valid instances (r, s) of the template, and,
in case the SVD based vector representations are used, (iv)
a Gaussian in the vector space of relation pairs. A model
based on (i)–(iii) was already found to perform well for the
task of relation induction in (Bouraoui, Jameel, and Schock-
aert 2018), but it will here be adapted for the task of rule
induction.

Model description. The probability P (τ(r, s) | vr, vs, ur,s)
that a relation pair (r, s) satisfies the binary template τ is
estimated as follows:

λτ ·
f(vr|τ(r, •))

f(vr)
· f(vs|τ(?, s))

f(vs)

· f(vs − vr|τ(r, s))

f(vs − vr|τ(r, •), τ(?, s))
· f(ur,s|τ(r, s))

The scaling parameter λτ and the probabilities f(vr) and
f(vs) are estimated similarly as in the unary template model.
The probability f(vr|τ(r, •)) represents how likely the vec-
tor representation vr is, given that there exists some rela-
tion t such that τ(r, t) is a valid rule. It is estimated simi-
larly to how we estimated f(vr | τ(r)) in the unary template
model. The probability f(vs|τ(?, s)) is also estimated in a
similar way, but based on the second arguments of the ele-
ments in π(R, τ). The probability f(vs−vr|τ(r, s)) is again
estimated similarly, but now based on the vector differences
vs1 − vr1 of the elements (r1, s1) of π(R, τ). Finally, the
probability f(vs − vr|τ(r, •), τ(?, s)) is estimated as fol-
lows. Let A = {r1, ..., rk} and B = {s1, ..., sl} respec-
tively be the relations that occur as a first and as a second
argument in the elements of π(R, τ). Each ri is paired with
a randomly selected element s′i from B. Then we estimate
f(vs − vr|τ(r, •), τ(?, s)) like f(vs − vr|τ(r, s)), but by
using the vector differences s′1 − r1, ..., s′k − rk instead.

Note that the vectors ur,s are only available when using
the vector representations obtained by PCA. In the variant
of this model where we use vectors from word embeddings
instead, the factor f(ur,s|τ(r, s)) is simply dropped.

4.5 Making Predictions
To estimate the probability that a rule ρ is valid, we first de-
termine the corresponding set of unary templates T1(ρ) =
{τ1, ..., τk} and binary templates T2(ρ) = {τk+1, ..., τl}.
For each unary template τi let ri be the relation for which
ρ = τi(yi), 1 ≤ i ≤ k. Similarly, for a binary template τi
we write ρ = τi(ri, si), k+ 1 ≤ i ≤ l. The overall probabil-
ity is then obtained by aggregating the probabilities obtained
from both vector space representations, for each template,
and then maximizing the resulting probabilities:

P (ρ |R) = max
(

max
1≤i≤k

P (τi(ri)|vw
ri , v

R
ri),

max
k+1≤i≤l

P (τi(ri, si)|vw
ri , v

w
si , v

R
ri , v

R
si , u

R
ri,si)

)
where P (τi(ri)|vw

ri , v
R
ri) is evaluated as:

µP (τi(ri)|vRri) + (1− µ)P (τi(ri)|vw
ri)

with µ ∈ [0, 1] a parameter controlling the relative impor-
tance of the two types of vector space representations. Sim-
ilarly P (τi(ri, si)|vw

ri , v
w
si , v

R
ri , v

R
si , u

R
ri,si) is evaluated as:

µP (τi(ri, si)|vRri , v
R
si , u

R
ri,si) + (1−µ)P (τi(ri, si)|vw

ri , v
w
si)

5 Experimental Results
In this section, we experimentally analyze the performance
of our method. As knowledge bases we consider several
well-known OWL ontologies, which we converted to exis-
tential rule bases. In particular, we consider two large-scale
open-domain ontologies: SUMO and OpenCyc. We also test
the performance on a number of smaller domain-specific on-
tologies: Wine ontology, Economy, Transport and Vicodi.
Before converting each OWL ontology to a rule base R,
we use the pellet reasoner to compute the set of inferred
axioms (subclasses, equivalent classes, sub-object proper-
ties and equivalent object properties), and we add the corre-
sponding rules to R as well. As word embedding, We used
a standard pre-trained 300-dimensional, which was learned
using Skip-gram on the 100B words Google News corpus.

To evaluate the performance of different methods, we split
the considered rule base into training and test sets. After
splitting the rule base, we remove from the test set all rules
that can be deduced from the training set. To evaluate our
model, we will also need negative examples, in addition to
the positive examples from the test set. Following a com-
mon practice in the context of knowledge base completion,
we will generate a number of synthetic negative examples,
which we will call distractor rules. In particular, following
the strategy used in (Vylomova et al. 2016) for evaluating
relation induction models, for each correct test rule body→
head, we first add head → body as a distractor. Second, we
also add one distractor rule of the form body → head′ and
one distractor rule of the form body′ → head, where body′

and head′ are randomly selected from the heads and bodies
that occur in the ontology. Before adding the distractor rules
to the test set, we verify that they do not occur in the training
or test set. While this does not guarantee that all distractors
are invalid rules, we can expect this to be the case for the

6233

Table 1: Overview of experimental results.

SUMO Cyc Wine Vico Trans Eco
AS F1 0.43 0.45 0.49 0.42 0.43 0.46
AS P@10 0.51 0.54 0.53 0.46 0.49 0.51
AS P@100 0.42 0.43 n/a n/a n/a n/a
VS-R F1 0.40 0.43 0.47 0.46 0.48 0.50
VS-R P@10 0.47 0.46 0.50 0.49 0.51 0.54
VS-R P@100 0.41 0.39 n/a n/a n/a n/a
VS-w F1 0.42 0.45 0.49 0.49 0.50 0.48
VS-w P@10 0.50 0.49 0.52 0.51 0.54 0.52
VS-w P@100 0.43 0.42 n/a n/a n/a n/a
VS F1 0.47 0.50 0.55 0.52 0.53 0.51
VS P@10 0.54 0.52 0.59 0.53 0.56 0.58
VS P@100 0.46 0.47 n/a n/a n/a n/a
RI-R F1 0.51 0.51 0.57 0.51 0.55 0.56
RI-R P@10 0.57 0.61 0.68 0.56 0.63 0.62
RI-R P@100 0.49 0.50 n/a n/a n/a n/a
RI-w F1 0.53 0.52 0.58 0.52 0.54 0.58
RI-w P@10 0.60 0.62 0.67 0.59 0.61 0.62
RI-w P@100 0.51 0.53 n/a n/a n/a n/a
RI-UT F1 0.51 0.52 0.53 0.54 0.58 0.57
RI-UT P@10 0.54 0.54 0.60 0.58 0.61 0.62
RI-UT P@100 0.49 0.51 n/a n/a n/a n/a
RI-BT F1 0.43 0.47 0.50 0.48 0.52 0.52
RI-BT P@10 0.51 0.51 0.53 0.52 0.57 0.59
RI-BT P@100 0.45 0.43 n/a n/a n/a n/a
RI-WT F1 0.50 0.48 0.51 0.50 0.52 0.53
RI-WT P@10 0.53 0.50 0.58 0.53 0.57 0.59
RI-WT P@100 0.47 0.49 n/a n/a n/a n/a
RI F1 0.56 0.54 0.61 0.58 0.62 0.63
RI P@10 0.62 0.63 0.72 0.67 0.68 0.68
RI P@100 0.54 0.55 n/a n/a n/a n/a

vast majority of them. To split the rule bases into training
and test rules, we use 10-fold cross validation.

The considered task can be evaluated as a ranking task
or as a classification task. When we consider it as a rank-
ing task, the aim is to rank the correct test rules higher than
the distractor rules. To evaluate the quality of the rankings
produced by the different methods, we use precision at n
(P@n), which is simply the percentage of the n highest
ranked rules that correspond to correct test rules. We can
also consider a classification task, i.e. for each rule in the
test data decide whether it is a correct test rule or a distrac-
tor, where we report the F1 score.

To set the parameters of our model (and the baselines), we
select 10% of the training data as validation data, and only
use the remaining 90% for training the model. This valida-
tion data is used for selecting the parameter µ and for choos-
ing the number of dimensions in the vector space representa-
tions vRr (chosen from {10, 25, 50, 100}). For the classifica-
tion experiments, we also tune a threshold on the probability
for a rule to be predicted as valid.

In the following we will refer to our model as RI (for Rule
Induction). To better understand the impact of each com-
ponent, we will also consider the following variants: RI-R
only uses the vector representations obtained using PCA and
RI-w only uses vector representations from the word embed-
ding, RI-UT only uses unary templates, RI-BT only uses
binary templates, and RI-WT is our full model but with-
out using restricted templates. We will also show results for
two baselines. First, we will use the AnalogySpace model
applied to unary rule templates, as described in Section 4.2
(AS). When used in a classification setting, we tune a thresh-

old on the values of entries from M ′1 above which the cor-
responding rule is considered valid. Second, we will use a
similarity based model (VS). Given a template τ , we then
learn a template vector vτ which is the average of the vec-
tors of the relations that satisfy this template, and then we
tune a threshold on the similarity between this vector and
the relation vectors to make predictions. To make the results
comparable to those for RI, we represent each relation using
the concatenation of its representation from the word em-
bedding and from the PCA space. We also consider the vari-
ants VS-R and VS-w, which respectively only use the PCA
space and the word embedding. This baseline will allow us
to assess the benefit of using elliptical rather than spherical
regions for characterizing templates.

An overview of the experimental results is presented in
Table 1; note that no P@100 results are shown for the
smaller ontologies, as the number of test rules is less than
100 in these cases. A number of conclusions can be drawn
from the results. First, the proposed model clearly and con-
sistently outperforms the baselines. Second, the PCA vec-
tor space and the word embedding space perform similarly,
when used in isolation, but using the full model offers sub-
stantial further improvements. This illustrates the fact that
both spaces effectively capture complementary information.
Third, the RI-UT and RI-BT both perform clearly worse
than the full model, showing that both types of templates
are indeed necessary to achieve optimal results. Finally, the
relatively poor performance of RI-WT is largely due the fact
that most of the binary templates are very general, and there-
fore only become informative when we restrict them in a
suitable way.

To illustrate how our model can outperform the similarity
based strategy of VS, we give examples of rules that our
model was able to predict, which go beyond similarity based
reasoning. From the SUMO ontology, for instance, the unary
template model correctly2 predicts:

Pipeline(X)→ Transitway(X)

The template τ1(?) = ?(X)→Transitway(X) was
used to predict this rule, with π(R, τ1) = {Airway,
LandTransitway,Waterway,AirTransitway}. Another exam-
ple is the rule Sand(X) → Soil(X) which was predicted
from τ2(?) = ?(X)→ Soil(X) and π(R, τ2) = {Loam, Silt,
Clay}.

6 Conclusions
We have proposed a method for predicting plausible miss-
ing rules from a given ontology (i.e. a set of existential
rules). The main underlying idea is to consider rule tem-
plates, which are second-order predicates whose instances
correspond to rules. These templates allow us to approach
the considered problem of rule induction as a particular kind
of concept or relation induction problem. By considering
both unary and binary rule templates, our method is able
to implement several well-known commonsense reasoning

2Correctly here means that this rule is included in the test data,
but not in the training fragment of SUMO that was used for making
the prediction.

6234

strategies, including interpolation, similarity-based reason-
ing and analogical reasoning. From an application point of
view, our method is easy to use, as the only required input is
a rule base and a standard pre-trained word embedding.

Acknowledgments
Steven Schockaert was supported by ERC Starting Grant
637277.

References
Baader, F.; Ganter, B.; Sertkaya, B.; and Sattler, U. 2007.
Completing description logic knowledge bases using formal
concept analysis. In Proc. IJCAI, volume 7, 230–235.
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artif. Intell. 175(9-10):1620–1654.
Beltagy, I.; Chau, C.; Boleda, G.; Garrette, D.; Erk, K.; and
Mooney, R. 2013. Montague meets Markov: Deep se-
mantics with probabilistic logical form. In Proceedings of
*SEM13, 11–21.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Proc. NIPS. 2787–2795.
Bouraoui, Z.; Jameel, S.; and Schockaert, S. 2017. Induc-
tive reasoning about ontologies using conceptual spaces. In
Proc. AAAI, 4364–4370.
Bouraoui, Z.; Jameel, S.; and Schockaert, S. 2018. Relation
induction in word embeddings revisited. In Proc. COLING.
Bühmann, L.; Lehmann, J.; and Westphal, P. 2016. Dl-
learner–a framework for inductive learning on the semantic
web. Journal of Web Semantics 39:15–24.
Gardner, M.; Talukdar, P.; Krishnamurthy, J.; and Mitchell,
T. 2014. Incorporating vector space similarity in random
walk inference over knowledge bases. In Proc. EMNLP,
397–406.
Gupta, A.; Boleda, G.; Baroni, M.; and Padó, S. 2015. Dis-
tributional vectors encode referential attributes. In Proc.
EMNLP, 12–21.
Hill, F.; Cho, K.; and Korhonen, A. 2016. Learning dis-
tributed representations of sentences from unlabelled data.
In Proc. NAACL-HLT, 1367–1377.
Kok, S., and Domingos, P. 2007. Statistical predicate inven-
tion. In Proc. ICML, 433–440.
Lao, N.; Mitchell, T.; and Cohen, W. W. 2011. Random walk
inference and learning in a large scale knowledge base. In
Proceedings of EMNLP, 529–539.
Levy, O.; Goldberg, Y.; and Ramat-Gan, I. 2014. Linguistic
regularities in sparse and explicit word representations. In
Proc. CoNLL, 171–180.
Medina, J.; Ojeda-Aciego, M.; and Vojtáš, P. 2004.
Similarity-based unification: a multi-adjoint approach.
Fuzzy sets and systems 146:43–62.
Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic reg-
ularities in continuous space word representations. In Proc.
NAACL-HLT, 746–751.

Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009. Dis-
tant supervision for relation extraction without labeled data.
In Proc. ACL, 1003–1011.
Mu, J.; Bhat, S.; and Viswanath, P. 2017. All-but-the-top:
Simple and effective postprocessing for word representa-
tions. CoRR abs/1702.01417.
Murphy, K. 2007. Conjugate Bayesian analysis of the Gaus-
sian distribution. Technical report, University of British
Columbia.
Neelakantan, A., and Chang, M. 2015. Inferring missing
entity type instances for knowledge base completion: New
dataset and methods. In Proc. NAACL, 515–525.
Osherson, D. N.; Smith, E. E.; Wilkie, O.; Lopez, A.; and
Shafir, E. 1990. Category-based induction. Psychological
review 97(2):185–200.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP, 1532–
1543.
Pujara, J.; Chen, D.; Dalvi, B.; and Rocktäschel, S. S. T.,
eds. 2017. Proc. Workshop on Automated Knowledge Base
Construction.
Riedel, S.; Yao, L.; and McCallum, A. 2010. Modeling
relations and their mentions without labeled text. In Proc.
ECML/PKDD, 148–163.
Rocktäschel, T., and Riedel, S. 2016. Learning knowledge
base inference with neural theorem provers. In Proceedings
of the 5th Workshop on Automated Knowledge Base Con-
struction, 45–50.
Rocktäschel, T., and Riedel, S. 2017. End-to-end differen-
tiable proving. In Proc. NIPS, 3791–3803.
Schockaert, S., and Prade, H. 2013. Interpolative and ex-
trapolative reasoning in propositional theories using qualita-
tive knowledge about conceptual spaces. Artif.Intell 202:86–
131.
Sourek, G.; Manandhar, S.; Zelezný, F.; Schockaert, S.; and
Kuzelka, O. 2016. Learning predictive categories using
lifted relational neural networks. In Proc. ILP, 108–119.
Speer, R.; Havasi, C.; and Lieberman, H. 2008. Analogys-
pace: reducing the dimensionality of common sense knowl-
edge. In Proc. AAAI, 548–553.
Tenenbaum, J. B., and Griffiths, T. L. 2001. Generalization,
similarity, and bayesian inference. Behavioral and Brain
Sciences 24:629–640.
Vilnis, L., and McCallum, A. 2015. Word representations
via gaussian embedding. In Proceedings of the International
Conference on Learning Representations.
Völker, J., and Niepert, M. 2011. Statistical schema induc-
tion. In Proc. ESWC, 124–138.
Vylomova, E.; Rimell, L.; Cohn, T.; and Baldwin, T. 2016.
Take and took, gaggle and goose, book and read: Evaluating
the utility of vector differences for lexical relation learning.
In Proc. ACL.
West, R.; Gabrilovich, E.; Murphy, K.; Sun, S.; Gupta, R.;
and Lin, D. 2014. Knowledge base completion via search-
based question answering. In Proc. WWW, 515–526.

6235

