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Abstract

Recent years have witnessed the rising popularity of Natural
Language Processing (NLP) and related fields such as Artifi-
cial Intelligence (AI) and Machine Learning (ML). Many on-
line courses and resources are available even for those with-
out a strong background in the field. Often the student is cu-
rious about a specific topic but does not quite know where
to begin studying. To answer the question of “what should
one learn first,”we apply an embedding-based method to learn
prerequisite relations for course concepts in the domain of
NLP. We introduce LectureBank, a dataset containing 1,352
English lecture files collected from university courses which
are each classified according to an existing taxonomy as well
as 208 manually-labeled prerequisite relation topics, which
is publicly available '. The dataset will be useful for educa-
tional purposes such as lecture preparation and organization
as well as applications such as reading list generation. Ad-
ditionally, we experiment with neural graph-based networks
and non-neural classifiers to learn these prerequisite relations
from our dataset.

Introduction

As more and more online courses and resources are becom-
ing accessible to the general public, researching advanced
topics has become more feasible. A large amount of educa-
tional material is available online, although it is not struc-
tured in an organized way. (Margolis and Laurence 1999)
suggested that concepts are one of the most fundamental
constructs and that having an order for learning and orga-
nizing them is essential for acquiring new knowledge. To be
able to capture the concept organization and dependencies
for NLP, we study the problem of building concept prereq-
uisite chains. We treat each concept as a single vertex, and
learn the dependencies to ultimately build a concept graph
as in (Gordon et al. 2016). We define a prerequisite to be
the directed dependency between two vertices. Once prereq-
uisite relations among concepts are learned, these relations
can be used for downstream tasks and applications such as
generating reading lists for readers based on a query as well
as curriculum planning (Gordon et al. 2017).

Imagine the scenario in Figure 1 in which a student has
some basic knowledge of NLP but wants to learn a specific
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new concept such as POS ragging. In order to fully under-
stand this concept, he or she should have an understanding of
prerequisite concepts such as Viterbi Algorithm and Markov
Models, as well as the prerequisites for these concepts: Dy-
namic Programming Bayes Theorem and Probabilities. Al-
though many search engines can provide relevant documents
or learning resources, most of the results are based on rele-
vancy and semantics while few have the ability to provide
a reasonable list based on a path to learning a new concept.
Additionally, we might want to recommend the correspond-
ing learning materials such as lecture files for each of the
concepts. Thus, for educational purposes, we aim to learn
the prerequisite relations of each concept pair and eventually
apply them in a search engine. Given a query concept word
or phrase, the search engine would provide the study materi-
als corresponding to the prerequisites of the query concept.

Recent work has focused on extracting and learning con-
cept dependencies from scientific corpora including the
ACL Anthology (Bird et al. 2008) as well as from online
courses (Gordon et al. 2016; Pan et al. 2017a; Liu et al.
2016). On the other hand, we are more interested in learn-
ing materials such as blogs, surveys and papers, and in this
paper, we focus on lecture files, which are usually well-
organized and contain a focused topic. We manually col-
lected lecture files by inspection of the file contents and
annotated each lecture file according to a taxonomy of 305
topics. We used our LectureBank corpus and a recently pub-
lished corpus TutorialBank (Fabbri et al. 2018) as training
data. We annotated prerequisite relations for each concept
pair from a list of 208 concepts provided in (Fabbri et al.
2018). These 208 concepts differ in granularity and scope
from the 305 taxonomy topics; they consist of topics for
which one could conceivably write a survey and are thus nei-
ther too fine-grained or large in scope. Similarly to (Pan et al.
2017a), we focus on learning embedded representations of
the concepts. We test the effectiveness of standard classifiers
as well as the recently introduced neural link-prediction ap-
proaches of Variational(Kipf and Welling 2016b) and vanilla
Graph Autoencoders (Schlichtkrull et al. 2018) to discover
prerequisite relations.

Our main contributions are the following. First, we in-
troduce our LectureBank dataset with 1,352 English lec-
ture files (51,939 slides) classified according to an exist-
ing taxonomy. The dataset can be used directly as study
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Figure 1: An example of prerequisite relations from lecture slides depicted as a directed graph. The direction of an edge is
from a prerequisite of a concept to the concept itself. For example, Hidden Markov Models is a prerequisite of POS Tagging.
We illustrate each concept with a slide on that topic, selected from our corpus. The references for the slides starting from
POS Tagging and moving clockwise are: (Bamman 2017), (Schneider 2018), (Chang 2018), (Radev 2018), (Eisner 2012) and

(Konidaris 2016).

material mainly in the fields of NLP or ML, as it covers
high-quality university lectures suitable for entry-level re-
searchers or NLP engineers working at the internet or so-
cial media companies. The corpus can also be used for topic
modeling of scientific topics in addition to the prerequisite
chains learning task. Additional details on the dataset can be
found in Section 3. Second, we compare novel graph-based
deep learning models, which have shown promise in the task
of link prediction, with standard classification methods and
demonstrate the importance of oversampling in this task.

Related Work

In this section, we briefly describe related work on prereq-
uisite chain learning using concept graphs as well as recent
developments in neural graph-based methods.

Concept Graphs

Previous work collected online courses including Computer
Science, Statistics and Mathematics from Massachusetts
Institute of Technology , California Institute of Technol-
ogy, Princeton University and Carnegie Mellon University
and proposed an approach for inference within and across
course-level and concept-level directed graphs (Liu et al.
2016). We focused on detailed concept-level mainly in the
NLP domain. (Gordon et al. 2016) introduced two meth-
ods for discovering concept dependency relations automat-
ically from a text corpus: a cross-entropy approach and an
information-flow approach. They tested the methods on the
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ACL Anthology corpus (Bird et al. 2008). Concepts were
determined using LDA topic modeling (Blei, Ng, and Jor-
dan 2003), and prerequisite relations are notably found in an
unsupervised setting. (Pan et al. 2017b) proposed a represen-
tation learning-based method to learn the concepts and a set
of novel features to identify prerequisite relations. However,
these methods benefit from the help of Wikipedia to perform
entity extraction and improve entity representations. How-
ever, a Wikipedia page may not always be available for a
concept, and we focus on obtaining concept representations
solely from our corpus.

Other work has focused on generating prerequisite rela-
tions among concepts on a Massive Open Online Courses
(MOOC:s) corpus (Pan et al. 2017a). They proposed seven
types of features covering course concept semantics, course
video context and course structure. They cast the prerequi-
site chain problem as a binary classification problem by eval-
uating the prerequisite relationship between each concept
pair and applying four different binary classifiers. While
they constructed three datasets to evaluate their methods, the
coverage of the datasets is relatively small, as only up to 244
topics and three domains (Machine Learning, Data Structure
and Algorithms and Calculus) are considered. In this paper,
we expand the range of domains and the number of courses.

Additionally, a manually-collected and categorized cor-
pus of about 6,300 resources on NLP and the related fields
of ML, Al and IR was recently introduced by (Fabbri et
al. 2018). This corpus was released with a list of 208 topics



for which prerequisite relationships were annotated, mak-
ing it a complementary dataset to ours. However, only a sin-
gle annotator annotated each relation and prerequisite an-
notations were ternary versus our binary classification. As
there have not been any experiments on learning prerequi-
site chains using this corpus, we choose to take advantage
of both TutorialBank and LectureBank to learn prerequi-
site relations. Besides the 208 topics for prerequisite rela-
tionships, they also proposed a university-level NLP course
syllabus-like taxonomy of 305 topics, which the surveys, tu-
torials and resources other than scientific papers are classi-
fied into. These 305 topics can be coarse-grained, such as
Natural Language Processing, Artificial Intelligence. Also,
there are redundant topics such as Classification and kNN 1
and Classification and kNN 2. In comparison, the 208 top-
ics are more fine-grained and suitable for prerequisite chain
learning, although there are some overlap topics with the 305
topics. Of note, as in the TutorialBank dataset, deep learn-
ing topics are a major focus as both datasets consist of work
from the last few years, and an abundance of tutorials and
resources on deep learning have been published in this time,
thus explaining this bias.

Graph Convolutional Networks

Using neural networks on structured data structures such
as graphs is a difficult problem. Graph Convolutional Net-
works (GCNs) aim to tackle this task by drawing inspira-
tion from spectral graph theory. (Defferrard, Bresson, and
Vandergheynst 2016) design fast localized convolutional fil-
ters on graphs for an image-processing task while (Kipf
and Welling 2016a) apply GCNs to a number of semi-
supervised graph-based classification tasks, reporting faster
training times and better predictive accuracy. More recently
GCNs have been applied to problems such as machine trans-
lation (Bastings et al. 2017) and summarization (Yasunaga et
al. 2017). GCNs have also been applied to the task of link
prediction or predicting relations among entities. For this
task, some, but not all, of the relations among entities are
given during training, and the goal is to predict additional
unobserved relations during testing. Finding prerequisite re-
lations can be viewed as link prediction, where the vertices
are concepts, and the edges are the prerequisite relations, or
lack thereof.

The work from (Kipf and Welling 2016b) introduced
a non-probabilistic Graph Autoencoder (GAE) as well as
the Variational Graph Autoencoder (VGAE). These mod-
els build upon work on autoencoders and variational au-
toencoders for unsupervised learning on graph-structured
data for tasks such as predicting links in a citation net-
work. These models combine a GCN encoder with inner
product decoders and latent variables in the case of VGAE.
(Schlichtkrull et al. 2018) extend GCNs and variational
graph autoencoders to model large-scale relational data for
the tasks of link prediction and entity classification, and thus
we examine the applicability of these models for the prereq-
uisite chains learning task.
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LectureBank Dataset

In this section, we introduce the LectureBank dataset, anal-
ysis, statistics, annotations, and then compare it with other
similar datasets.

Data Collection and Presentation

We collected online lecture files from 60 courses covering
5 different domains, including NLP, ML, Al, deep learning
(DL) and information retrieval (IR). For copyright reasons,
we are releasing only the links to the individual lectures.

In order to make the course slides more accessible to the
user, we have indexed all slide lectures and created a search
engine which allows the user to browse courses and slides
according to queries. As related material on a subject can
come from a variety of courses, we believe gathering them
into a single search engine dramatically reduces the amount
of time a student will spend searching for relevant material.
The search engine will be made publicly available.

Dataset Analysis and Statistics

Our LectureBank dataset focuses on courses from 5 do-
mains, and detailed statistics can be found in Table 1. The
table reports the number of courses, lecture files, pages to-
kens, the average tokens per lecture file and the average to-
kens per page. For preprocessing, we used the PDFMiner?
python package to extract the texts from the PDF files, and
python-pptx® to extract Powerpoint (PPT) presentations. If
a course provided both PDF and PPT versions, we kept the
PDF files and removed the PPT files.

Additional Annotation

Prerequisite Annotation In addition to using our own
dataset for prerequisite chain learning, we make use of a
recently introduced corpus of resources on topics related
to NLP. (Fabbri et al. 2018) introduced a set of 208 topics
on NLP and related fields and annotated all of the concept
pairs as one of the following: not a prerequisite, somewhat
a prerequisite or a true prerequisite. While the annotations
emphasize the breadth of pairs annotated, we think certain
dependency relations might not be clear to annotate, such
as ’long dependencies” (if A is a prerequisite of B and B
is a prerequisite of C, should we count A as a prerequisite
of C or not). We aim to improve classification agreement
by making the criteria more precise and having additional
annotators annotate the topics. Each of our annotators an-
notated each prerequisite relation, and we report high inter-
annotator agreement. Our annotators consist of two PhD stu-
dents working on NLP. We obtained a Cohen’s kappa (Co-
hen 1960) of 0.7 which according to (Landis and Koch 1977)
is considered substantial agreement. We asked the annota-
tors the following question for each topic pair (A, B):is A a
prerequisite of B; i.e., do you think learning the concept A
will help one to learn the concept B? Even if the distance be-
tween two concepts in a potential concept graph is large, if
one topic is typically learned before the other in a university

Zhttps://pypi.python.org/pypi/pdfminer3k/
*https://python-pptx.readthedocs.io/en/latest/#



Domain  #courses #lectures  #slides #tokens #tokens/lecture  #tokens/slide
NLP 35 764 29,661 1,570,578 2,055.73 52.95
ML 12 260 10,720 866,728 3,333.57 80.85

Al 5 101 4911 265,460 2,628.32 54.05
DL 4 148 3,270 582,502 3,935.82 178.14
IR 4 79 3,377 157,808 1,997.57 46.73
Overall 60 1352 51,939 3,443,076 2,546.65 66.29

Table 1: LectureBank Dataset Statistics: within each domain, we have a certain number of courses; each course consists of
lectures files; each lecture file has multiple individual slides. The contrasting number of tokens per slide for DL is a result of

the small sample size and the courses chosen.

course and is helpful in building up knowledge for learning
another concept, we considered this earlier concept a prereq-
uisite of the other. Thus, while the criteria may be subjective,
we direct the annotators to refer to standard university cur-
ricula for unclear prerequisite pairs. Only binary yes (posi-
tive) or no (negative) answers are possible. This is in contrast
to the ternary classification of (Fabbri et al. 2018), who re-
port a kappa score of .3 on the same prerequisite pairs. We
chose binary annotation over the ternary annotation of (Fab-
bri et al. 2018) as this is the same setup as in related work
such as (Pan et al. 2017a). Additionally, the choice of binary
as opposed to ternary classification pertains to the precision
and recall trade-off which we discuss in the results section
below. We decided that concepts which are “somewhat pre-
requisites” as in (Fabbri et al. 2018) should be labelled as
prerequisites so that they are not missed as potential missing
areas of knowledge.

We took the intersection of the two annotators’ annota-
tions, which resulted in a labeled directed concept graph
with 208 concept vertices and 921 edges. If concept A is
a prerequisite of concept B, the edge direction goes from
concept vertex A to concept vertex B. We also observed
some cycles between a pair of vertices within the concept
graph. We found 12 such pairs in our labeled concept graph.
These pairs consist of very closely related topics such as
Domain Adaptation and Transfer Learning and LDA and
Topic Modeling, suggesting that in the future we may com-
bine these pairs into a single concept. There are 7 indepen-
dent topics which have no prerequisite relationships with
the rest of the topics. They are: Morphological Disambigua-
tion, Weakly-supervised learning, Multi-task Learning, Ima-
geNet, Human-robot interaction, Game playing in Al, data
structures and algorithms. The topics were proposed by
(Fabbri et al. 2018), and so we chose to keep all the topics
in our experiments.

We also list the concept vertices that have the largest
in-degree and out-degree in Table 2. In-degree illustrates
that the concept vertex has many prerequisite concepts; out-
degree illustrates that the concept vertex is a prerequisite to
many other concepts. The concepts with large in-degree are
advanced concepts which require much background knowl-
edge in order to be learned well, while the list of con-
cepts with large out-degree are more fundamental concepts.
We also observed the longest path in the constructed con-
cept graph, which consists of 14 concepts in the path: Ma-
trix Multiplication, Differential Calculus, Backpropagation,
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Backpropagation Through Time, Artificial Neural Network,
Word Embeddings, Word2Vec, Seq2Seq, Neural Machine
Translation, BLEU, IBM Translation Models, ROUGE, Au-
tomatic Summarization, Scientific Article Summarization.

Classification We used the TutorialBank taxonomy from
(Fabbri et al. 2018), which contains 305 topics of varying
granularity. Based on a university-level NLP course syl-
labus, the TutorialBank taxonomy was then expanded to
other topics from other courses from IR, AI, ML and DL.
The 305 taxonomy topics cover a wide range of topics in
NLP area, and we only use these topics during our manual
labeling of our lecture dataset as an additional annotation
work. We manually classified all 1,352 LectureBank lecture
files into the TutorialBank taxonomy. In Table 3 we show
the top 10 more frequent TutorialBank taxonomy labels for
our corpus classification.

Another taxonomy which was considered for our classi-
fication was the 2012 ACM Computing Classification Sys-
tem (CCS) 4, a poly-hierarchical ontology that can be uti-
lized in semantic web applications. The system is hierarchi-
cally structured into four levels; Machine Translation, for
example, can be found in the following branch: Comput-
ing Methodologies — Artificial Intelligence — Natural Lan-
guage Processing — Machine Translation. The Artificial In-
telligence directory has 8 subcategories including Natural
Language processing, and 8 subcategories under the Natural
Language Processing directory. However, rather than focus-
ing on the larger scope of computing or even Al in general,
our main focus in NLP. Compared with CCS, the Tutorial-
Bank taxonomy covers detailed categorization, focusing on
NLP and related fields insofar as they related to NLP, mak-
ing it very suitable for our desired classification.

Vocabulary Alongside our lecture files we also provide a
vocabulary list containing 1,221 terms with the help of the
LectureBank Corpus, the vocabulary can be used as an in-
domain reference while it mainly focuses on NLP and re-
lated areas. Rather than using Wikipedia to create a corpus
vocabulary, we took the union of three topic sets: the Tu-
torialBank taxonomy topics, the 208 topics labeled for pre-
requisite chains and the topics extracted from LectureBank.
The first two parts are provided by (Fabbri et al. 2018), and
we contributed more fine-grained topic words from our Lec-
tureBank. Different from (Fabbri et al. 2018) who manually
propose topic terms, we propose topic terms in an automat-
ical way: we found keywords from LectureBank by taking

*https://www.acm.org/publications/class-2012



[ Most in-degree Concept Vertices

[ Count [| Most out-degree Concept Vertices | Count |

Neural Machine Translation 19 Data Structures and Algorithms 106
Variational Autoencoders 15 Probabilities 105
Stack LSTM 13 Linear Algebra 98

Seq2seq Models 13 Matrix Multiplication 72
Highway Networks 12 Bayes Theorem 59

DQN 12 Conditional Probability 58

Bidirectional Recurrent Neural Networks 11 Differential Calculus 21
Convolutional Neural Networks 11 Activation Functions 20
Multilingual Word Embeddings 11 Loss Function 19
Capsule Networks 11 Entropy 17

Topic Modeling 10 Data Preprocessing 17

Neural Turing Machine 10 Backpropagation 17
Recursive Neural Networks 10 Artificial Neural Networks 16
Attention Models 10 Backpropagation Through Time 14
Generative Adversarial Networks 10 Information Theory 13

Table 2: Concept vertices from our annotated concept graph with the largest in-degree and out-degree

[ Topic [ Count |
Introduction to Neural Networks 92
Machine Learning Resources 56
Information Retrieval 31
Classification 30
Probabilistic Reasoning 29
‘Word Embeddings 25
Hidden Markov Models 20
NLP Resources 20
Machine Translation Basics 19
Monte Carlo Methods 19

Table 3: Counts of the most frequent taxonomy topic labels
of the LectureBank files

the header section of each individual lecture slide and post-
processing and filtering that list. This method can be ex-
tended to other online resources such as blog posts and pa-
pers to enlarge the vocabulary. In the future, the vocabulary
can be potentially used as additional concepts for creating
a concept graph in an automated manner. This vocabulary
can also serve an educational purpose for preparing lecture
topics.

Comparison with Similar Datasets

MOOC:s In arecent research, (Pan et al. 2017a) evaluated on
three corpora extracted from Massive Open Online Courses
(MOOQCs), containing three domains (Machine Learning,
Data Structures and Algorithms and Calculus). They are
the first to study prerequisite relations in a MOOC corpus.
The corpora contain video subtitles and speech scripts, and
the number of topics ranges from 128 to 244. They used
Wikipedia to help obtain entity representations.

Coursera and XuetangX Similarly, (Pan et al. 2017b)
constructed four course corpora in two domains (Computer
Science and Economics) and in two languages (English and
Chinese) from video captions. In each corpus, the number
of courses varies from 5 to 18. Also, they have a significant
number of candidate concepts for each corpus which ranges
from 27,571 to 79,009. Similarly, they also benefit from the
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help of Wikipedia® and the Baidu encyclopedia® when learn-
ing prerequisite relations.

ACL Anthology Scientific Corpus A corpus for prereq-
uisite relations among topics was presented by(Gordon et
al. 2016). They used topic modeling to generate a list of 305
topics from the ACL Anthology (Bird et al. 2008). While
the focus of this corpus is NLP, the resources come from
academic papers, while we focus on tutorials from Tutori-
alBank and our corpus of lectures. Additionally, they only
annotate a subset of the topics for prerequisite annotations
while we annotate two orders of magnitude larger in terms
of prerequisite edges and show strong inter-annotator agree-
ment.

Prerequisite Chain Learning

In this section, we introduce our two-step framework: con-
cept feature learning and a recently proposed neural graph-
based method in addition to traditional classification meth-
ods.

Concept Feature Learning

The first step is to extract concept vectors from various
documents or lectures. We trained a Doc2Vec model (Le
and Mikolov 2014), an unsupervised model which can train
dense vectors as representations for variable-length texts
such as sentences or documents. Our Doc2Vec model was
trained using Gensim’. We set the dimension of the docu-
ment vector to be 300, and the model was trained in the man-
ner of Distributed Memory Model of Paragraph Vectors (PV-
DM) (Le and Mikolov 2014). We obtained document repre-
sentations from our LectureBank data and TutorialBank data
from (Fabbri et al. 2018) separately as well as after combin-
ing the corpora. We then took the trained Doc2Vec model
to infer the embedded vector of a given concept. This dense
vector topic representation is then used as input to our mod-
els.

Shttps://dumps.wikimedia.org/enwiki/20170120/
®https://baike.baidu.com/
"https://radimrehurek.com/gensim/



Prerequisite Chain Learning as Linking Prediction

Concept prerequisite chain learning can be viewed as a type
of link prediction problem with prerequisite relations as
links among concepts. The goal of this model is to learn a di-
rected graph G = (V, E), where the vertices V' correspond
to concepts and the edges E correspond to the prerequisite
relationships (if any) among the concepts. The model takes
as input an adjacency matrix A and a feature matrix X of
size n X d, where n is the number of vertices/concepts and
d is the number of input features per vertex.

Graph Autoencoders In the case of the non-probabilistic
GAE, an x f embeddings matrix A, where f is the size of
the embeddings, is parameterized by a two-layer GCN:
Z = GCN(X,A)
and the reconstructed adjacency matrix is:
A=0(22")

Variational Graph Autoencoders As an extension to the
above model, the stochastic latent variables z;, summarized
in Z, are introduced and Z is modeled by a Gaussian prior
distribution [ [, NV(z;, 0,T). As in (Kipf and Welling 2016b),
we use the following inference model parameterized by a
two-layer GCN:

N
d(ZX,A) = [ a(z:X,A)
i=1
where
q(2:X, A) = N (zi| p;, diag (7)),
the matrix of mean vectors is pu = GCN,(X,A) and
logo = GCN, (X, A). The two-layer GCN is defined as:
GCN(X,A) = AReLU(AXW,)W1,

where W, represents the weight matrix at level ¢ and A=

D ZAD ? is the symmetrically normalized adjacency ma-
trix. The following generative model results:

N N
PAZ) =[] [ [ p(Aslzi,2),
i=1j=1
where
p(Aij = 1|zi,2) = o (2] 2;)
The variational lower bound L is optimized w.r.t. the varia-
tional parameters W:

L = Eyzxa)log p(A|Z)]—
KL[g(Z[X,A)||p(Z)]

where K L[g(-)||p(-)] is the Kullback-Leibler divergence
between ¢ and p.

Experiments

We treat the predictions of our prerequisite chain learning
problem as a binary classification result among pairs of con-
cepts and report precision, recall and F1 scores. We report
results on 5 fold cross validation where the test set con-
tains 10% of the positive prerequisite labels, following (Kipf
and Welling 2016b). For the task of learning prerequisite
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[ Method Precision Recall F1 |

TutorialBank

NB 0.761 0.453 0.567

SVM 0.832 0.703  0.761

LR 0.819 0.604 0.693

RF 0.871 0.459 0.599

GAE 0.634 0.884 0.725

VGAE 0.599 0.895 0.717
LectureBank

NB 0.853 0.611 0.710

SVM 0.835 0.668  0.740

LR 0.840 0.640 0.724

RF 0.831 0.624 0.712

GAE 0.577 0.905 0.705

VGAE 0.545 0.921 0.684

TutorialBank + LectureBank

NB 0.614 0.670  0.641

SVM 0.824 0.688  0.748

LR 0.794 0.613  0.690

RF 0.787 0.519 0.625

GAE 0.594 0.899 0.715

VGAE 0.578 0.916 0.708

Table 4: Experiment results using oversampling with
Doc2Vec concept representations trained on three settings:
TutorialBank, LectureBank and TutorialBank combined
with LectureBank.

chains, positive samples are usually rare, leading to imbal-
anced datasets. More specifically, we first divided training
and testing where it was guaranteed that 10% positive sam-
ples were selected in the testing set, then added the same
number of negative samples into the testing set and took the
rest samples as the training set. Finally, during each run, we
oversampled on the training set, and report an average score
of the 5 runs. We have 921 positive concept pairs and 41,829
negative concept pairs in total before oversampling.

Models

Binary classifiers We compared the neural graph-based
methods with the following classifiers: Naive Bayes clas-
sifier (VB), SVM with linear kernel (SVM), Logistic Regres-
sion (LR) and Random Forest classifier (RF). After obtain-
ing the concept representations for each possible concept
pair as described above, we concatenated the source con-
cept and target concept embeddings together, used the cor-
responding prerequisite chain label as the class label and fit
the classifiers.

GAE We used the same concept embeddings described
above as vertex features for the GAE model. We followed
the same parameters from (Kipf and Welling 2016b). We
trained using gradient descent on batches the size of the en-
tire training dataset for 200 epochs using the Adam opti-
mizer (Kingma and Ba 2014) and a learning rate of 0.01.
The two-layer GCN encoding contains 32 hidden units in
the first layer and 16 hidden units in the second layer.

Results and Analysis

As shown in Table 4, we report precision, recall and F1
scores of our embedding-based concept representation with
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Figure 2: A subset of the recovered concept graph. The diagram is based on predictions on our test data. Some dependencies
may be missing if the corresponding concept pairs were not in the test data or were predicted to have a negative label, e.g., the
potential edge between Backpropagation Through Time and Backpropagation.

the Naive Bayes classifier, SVM with linear kernel, Logis-
tic Regression and Random Forest classifier, along with the
vanilla graph autoencoder (GAE) and variational graph au-
toencoder (VGAE). The concept representation was trained
using Doc2Vec under three different settings: only using Tu-
torialBank, only using LectureBank, and on the combination
of TutorialBank + LectureBank.

For the four binary classifiers, we observe a high preci-
sion and a low recall in all three different Doc2vec model
settings. On the other hand, the GAE and VGAE show high
recall and low precision. In general, SVM beats the other
methods with high F1 scores among all corpora. The SVM
and other basic classifiers benefit greatly from oversam-
pling; we found that initial experiments with imbalanced
datasets yielded very poor results. We modified the adja-
cency input to allow for parallel edges in a multi-graph to ac-
count for oversampled inputs in the GAE and VGAE, but the
changes in performance were minimum. Intuitively, these
models explicitly model the desired concept graph structure
and are able to represent features in the vertices and prop-
agate them through the graph. However, these specific net-
works were applied to the case of citation networks in which
case parallel edges are non-existent. Thus we found that the
SVM performed better in the general binary classification
setting when using oversampling.

In terms of precision and recall for downstream tasks such
as a search engine, for two classifiers with the same F1 score,
we prefer the one with a higher recall. This coincides with
our desired interface; we want the user to be able to mark
subjects which are already known and be presented with po-
tential prerequisites which are not known. We would rather
give the student more concepts which they need to know
rather than fewer in which case they may miss important
fundamental knowledge.

Although the highest F1 score was achieved when topic
embeddings were trained on TutorialBank via SVM classi-
fier, the variance between the three datasets is not significant.
A potential explanation might be the that TutorialBank and
LectureBank contain similar content and coverage. Tutorial-
Bank has notably four times as many documents and some
notably longer resources such as topic surveys than Lecture-
Bank, which may improve the performance of our Doc2Vec
document representation. However, we can see that the F1
score is only slightly higher than that of LectureBank. Ad-
ditionally, the list of concepts was provided by (Fabbri et
al. 2018) for the TutorialBank dataset, so we expected these
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topics to be broadly included in the TutoriaBank dataset.

Concept Graph Recovery

According to the F1 score, the highest-performing model
is SVM with Doc2Vec trained on TutorialBank. To demon-
strate the effectiveness of our model, we took a single train-
ing and testing fold from our 5-fold cross-validation exper-
iments randomly and tried to recover the concept graph on
the corresponding testing data by predicting the labels. Fig-
ure 2 shows a subset of the recovered concept graph con-
taining 14 vertices and 12 edges. We observe some reason-
able paths, for example: Gradient Descent, Backpropagation
Through Time, Recursive Neural Networks. Another reason-
able dependency relation shows that Seg2seq is dependent
upon multiple prerequisites such as Word2vec, Backpropa-
gation and Activation Functions.

Conclusion and Future Work

In this paper, we introduced LectureBank, a collection of
1,352 English lecture slides from 60 university-level courses
and their corresponding class label annotations. In addition,
we extracted 1,221 concepts automatically from Lecture-
Bank which serve as additional references for in-domain vo-
cabulary. We also release annotation of prerequisite relation
pairs on 208 concepts. These annotations will be useful as
both an educational tool for the NLP community and a cor-
pus to promote research on learning prerequisite relations.

In the future, we plan to expand LectureBank by enriching
the coverage of courses, e.g., adding courses from medical
information retrieval or linguistics, and we are planning to
increase the corpus size to over 100 courses shortly. To take
advantage of LectureBank and the prerequisite chains we
have learned so far, we are planning to additionally classify
each lecture into one of the prerequisite topics, thus mak-
ing a search engine which can provide learning materials
with the help of prerequisite relations. The search engine
will first figure out the prerequisites of a query concept, and
then it will be able to provide a list of lectures or even spe-
cific pages from them for each prerequisite concept, and in
the future, it will take user experience as input to provide
better resources for each specific user. Another part of fu-
ture work is to automatically extract such topics. Finally, we
plan to apply our prerequisite chain learning model to other
applications such as reading list generation and survey gen-
eration.
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