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Abstract

Neural language models based on recurrent neural networks
(RNNLM) have significantly improved the performance for
text generation, yet the quality of generated text represented
by Turing Test pass rate is still far from satisfying. Some re-
searchers propose to use adversarial training or reinforcement
learning to promote the quality, however, such methods usu-
ally introduce great challenges in the training and parameter
tuning processes. Through our analysis, we find the problem
of RNNLM comes from the usage of maximum likelihood es-
timation (MLE) as the objective function, which requires the
generated distribution to precisely recover the true distribu-
tion. Such requirement favors high generation diversity which
restricted the generation quality. This is not suitable when the
overall quality is low, since high generation diversity usually
indicates lot of errors rather than diverse good samples. In
this paper, we propose to achieve differentiated distribution
recovery, DDR for short. The key idea is to make the op-
timal generation probability proportional to the S-th power
of the true probability, where 5 > 1. In this way, the gen-
eration quality can be greatly improved by sacrificing diver-
sity from noises and rare patterns. Experiments on synthetic
data and two public text datasets show that our DDR method
achieves more flexible quality-diversity trade-off and higher
Turing Test pass rate, as compared with baseline methods in-
cluding RNNLM, SeqGAN and LeakGAN.

1 Introduction

The ability of generating fluent, grammatical, and logical
text which can pass the Turing Test is crucial for many
natural language processing (NLP) tasks, such as machine
writing (Zhang et al. 2017a), machine translation (Bah-
danau, Cho, and Bengio 2014), dialogue generation (Li et al.
2017), and image captioning (Rennie et al. 2017). This pa-
per focuses mainly on unconditional text generation, which
is principle for the text generation task (Yu et al. 2017;
Guo et al. 2017; Fedus, Goodfellow, and Dai 2018).
Recently, neural generation models have gained great at-
tention in this area. The typical method is to apply re-
current neural networks based language models (RNNLM)
(Mikolov et al. 2010), in which the model is trained using
maximum likelihood estimation (MLE). However, this ob-
jective function is insufficient for generating high-quality
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text, as shown in (Huszar 2015; Arjovsky and Bottou 2017).
The reason is that MLE is equivalent to minimizing KL di-
vergence, which will force the generation probability to be
high for all training instances. As a result, RNNLM trained
with MLE favors high generation diversity and is easy to
be influenced by noises or rare patterns in the training data,
which harms its generation quality. What’s worse, such high
diversity usually comes from lots of generation errors, rather
than diverse good samples as expected. Beam Search can be
applied to guarantee high generation quality by only picking
the sample with highest generation probability, but signifi-
cantly reduces the generation diversity and is not applicable
where far more than one samples need to be generated. How
to achieve high generation quality while making acceptable
trade-off with diversity is still an open problem.

In real applications, generation quality usually holds
much higher priority than diversity, since users are quite sen-
sitive to logical or grammatical errors but less sensitive to
relatively low diversity. According to our observation, the
Turing Test pass rates for generation models trained with
MLE are usually far from satisfying. There are many works
focusing on achieving higher generation quality, among
which adversarial training based methods are most success-
ful(Yu et al. 2017; Lin et al. 2017; Guo et al. 2017; Zhang
et al. 2017b; Fedus, Goodfellow, and Dai 2018). While
making a big progress in the generation quality, the train-
ing with adversarial mechanism (Goodfellow et al. 2014)
is notoriously hard to tune, which easily leads to unstable
training(Arjovsky and Bottou 2017). Some of the methods
also introduce reinforcement learning as a solution for gra-
dient passing difficulties(Yu et al. 2017; Lin et al. 2017;
Guo et al. 2017), which greatly slows down the training pro-
cess as compared with MLE-based methods and makes the
parameter tuning much harder. Further more, such methods
are also observed to cause decrease in generation diversity
while promoting the quality(Lu et al. 2018), but the trade-
off can hardly be controlled.

In this paper, we propose a new approach to achieve
flexible quality-diversity trade-off and higher Turing Test
pass rate, without the costly adversarial training reinforce-
ment learning process. Firstly, we find that the problem of
MLE comes from the theoretical fact that the optimal gen-
erated distribution ) in MLE equals to the true probability
P(x), namely precise distribution recovery. We can see that



this rigorous requirement favors high generation probabil-
ity over all training instances, thus is easily to be influenced
by the noises or rare patterns in the training data. This pa-
per aims at achieving a differentiate distribution recovery
instead, namely DDR. The key idea is to make the optimal
generation probability proportional to the 5-th power of the
true probability with normalization, where 8 > 1. In this
way, significant patterns and rare patterns will be differen-
tiated more clearly, and the influence of noises or rare pat-
terns can be alleviated. Under a generalized form of objec-
tive functions E,p f[Q(z)], we find a family of functions
f(2) = azt/® —a,a > 1, to satisfy our requirements with

%. In this case, the optimal generated probability can

be represented as Q*(z) = P(z)"/ Yo P(z)”. More inter-
estingly, if « goes to infinity, the function f becomes the log
function used in MLE, i.e. f(2) = In z. Therefore, this func-
tion acts as a good substitution for the MLE as the objective
function.

Compared with SeqGAN (Yu et al. 2017) and LeakGAN
(Guo et al. 2017), models in our DDR method can be trained
end to end similarly as RNNLM, without costly adversar-
ial training or reinforcement learning process. We conduct
experiments on both a synthetic dataset and two real-world
public datasets. We observe that the generation quality grad-
ually increases as we lowering « on all datasets, indicating
quality improvement. While achieving competitive genera-
tion quality with SeqGAN and LeakGAN at the same diver-
sity level, DDR can achieve higher quality by further low-
ering «, showing flexible trade-off control. Human evalu-
ation results gives accordant results, where DDR achieves
higher Turing Test pass rate. In addition, we also show the
robustness of DDR by adding noise in training data. While
RNNLM starts to generate bad samples, our method keeps
its ability of generating high-quality samples.

o =

2 Related Work

Generating high-quality text has been a critical challenge for
the NLP community. Since the success application of deep
learning, neural text generation models have been developed
rapidly, and gained some improvements. Among these neu-
ral text generation models, the most typical one is RNNLM
proposed by (Mikolov et al. 2010). RNNLM models the dis-
tribution of text data with recurrent neural networks by de-
composing the joint probability into a product of a series of
conditional probabilities. The model is usually trained with
maximum likelihood estimation (MLE) for an precise distri-
bution recovery, which tries to maximize the probability of
each training instance.

RNNLM trained with MLE are claimed to be suffering
from the exposure bias problem, as shown by (Bengio et al.
2015), which leads to globally-incoherent generation. This
problem occurs when an unseen prefix were generated dur-
ing decoding, causing confusion for the generation of next
word. (Bengio et al. 2015) propose Scheduled Sampling to
alleviate this problem, which forces the model to take into
account of decoding behaviour in the training period. Later
(Lamb et al. 2016) provide a stronger solution called Pro-
fessor Forcing which utilizes adversarial training to ensure
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Figure 1: [llustration of the RNNLM architecture.

similar behaviours between training and decoding period.
Despite successful targeting on the exposure bias problem,
these works achieve relatively small improvement on gen-
eration quality. Our method does not target this problem di-
rectly, but in fact alleviate it by discouraging the generation
of rare patterns, thus lowering the probability of generating
an unseen prefix.

Recently, some works propose to use reinforcement learn-
ing techniques to guide the RNNLM to further improve the
generation quality. For example, (Norouzi et al. 2016) and
(Jaques et al. 2016) propose to combine MLE objective to-
gether with task-specific expected reward for better gener-
ation of sequential data. However there’s currently no sat-
isfying reward for high-quality text generation. PG-BLEU
introduced in (Yu et al. 2017) use the target BLEU scores
(Papineni et al. 2002) as the reward function, but later shows
unacceptable low generation diversity(Lu et al. 2018).

Significant progress in this area was made after wide ap-
plications of adversarial training. (Yu et al. 2017) first in-
troduce GANs to text generation tasks, called SeqGAN.
This work uses policy gradient method together with Monte-
Carlo sampling, making gradient-passing possible for dis-
crete data. With the help of adversarial training, a higher
generation quality is achieved. Later (Lin et al. 2017) intro-
duce RankGAN, which uses a ranking mechanism for bet-
ter reward signals and further improves the generation qual-
ity. Afterwards, (Guo et al. 2017) propose LeakGAN, which
aims at long text generation using a hierarchical architec-
ture. By leaking information from Discriminator to the Gen-
erator and incorporating dilated connections in the Gener-
ator, LeakGAN gets strong generation ability and achieves
current state-of-the-art on text generation quality (Lu et al.
2018). Other works include that, (Fedus, Goodfellow, and
Dai 2018) propose another adversarial framework to predict
a word using surrounding words with actor-critic method.
(Zhang et al. 2017b) apply feature matching for adversarial
training instead of policy gradient method and also achieve
higher generation quality.

Although recent methods have gained improvements on
generation quality, they rely on adversarial training or rein-
forcement learning framework for modeling and optimiza-
tion, which usually introduces difficulties in training and pa-
rameter tuning process. In this paper, we propose DDR in-
stead to improve the generation quality of RNNLM, with-
out the costly adversarial training and reinforcement learn-
ing process.



3 RNN Language Models

First, we introduce the typical RNNLM. Recurrent neural
networks (RNNs) are well suited for processing sequential
data, due to its recurrent nature. (Mikolov et al. 2010) first
introduce RNNs for language modeling (RNNLM), that is,
modeling the probability distribution of the language given
the dataset. Here we denote sequence with length 7" as Y7.7.
RNNLM models the probability of Y;.7 by decomposing
P(Yy.7) into a product of a series of conditional probabil-
ities:
T
= H P(yt|let—1>7

t=1

P(Yi.r)

where y, is the ¢-th token in Y7.7, and Y7.q represents a spe-
cial start token. To encourage capturing long-term depen-
dencies, the RNN cells are usually implemented by LSTM
(Hochreiter and Schmidhuber 1997). The model architecture
is shown in Fig. 1.

Maximum likelihood estimation (MLE, ak.a. Teacher
Forcing) (Williams and Zipser 1989) is usually used for

training RNNLM. Given a dataset {YfT} _, whose ele-
ments are i.i.d. sampled from the real distribution P, MLE
tries to find a model with distribution () by maximizing the
log-likelihood:

1
mgx Ev,..~p logQ(Y1.7) = N - log Q(Yl )

= \

T -

T
Z logQ yt|Y1t 1)-

This objective is equivalent to minimizing the Kullback-
Leibler (KL) divergence, as shown in (Arjovsky and Bottou
2017).

P(Y;
P(Y1.1)log

KLUPIQ awn

=2

Yi.T

The value of KL divergence reaches its minimum at ) = P,
which means MLE pushes model () towards the real dis-
tribution P and achieves its optimal solution with a precise
recovery of the real distribution.

Considering the expression of KL divergence, we can see
that KL divergence is very sensitive on the value of Q(Y7.7).
If the true probability of Yi.r is positive, i.e. P(Yy.7) > 0,
the value inside KL goes to infinity as Q(Y7.7) — 0. This
means KL divergence punishes much if real samples are
not fitted well, showing a favor of high generation diversity.
However, this is problematic when the training data contains
some noises or rare patterns, which is often the case for real-
world text data. The model wastes lot of its attention trying
to fit such data, thus hurting its generation quality. In fact,
such diversity from noises and rare pattern is not necessary,
since it usually leads to generation errors in practice.

Notice that in theory, a model achieves highest diversity
with uniform distribution, and achieves highest quality by al-
ways generating one best sample. However, neither of these
two trivial cases are acceptable in practice. Our goal is thus
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to achieve higher Turing Test pass rate with flexible con-
trol of quality-diversity trade-off, while keeping competitive
generation quality at certain diversity level.

4 Method

In this section, we propose a new differentiated distribution
recovery approach, to replace the precise distribution recov-
ery approach of MLE.

4.1 Differentiated Distribution Recovery

To make the model less influenced by samples with noises
and rare patterns, we require the model to focus on fitting
more significant patterns or instances with higher true prob-
ability. Instead of recovering the true probability distribu-
tion, the generated distribution need to differentiate between
instances with higher probability and lower ones. To achieve
this target, we require the generated probability be propor-
tional to the true probability, shown as

Q(z) x P(z)”.

With 5 > 1, we could expect that samples with higher
real probability are augmented, while samples with lower
real probability are discouraged. We call this approach Dif-
ferentiated Distribution Recovery (DDR), since it gives dif-
ferentiated treatment for different samples when trying to
recover the real distribution. An illustration of DDR applied
on a toy distribution is shown in Fig. 2.

We show that DDR achieves flexible quality-diversity
trade-off control on this toy distribution. In Fig. 2, we see
the quality increases while diversity decreases as 3 grows,
such trade-off can be flexibly controlled by the parameter /3.
Also, DDR becomes more robust against noises with larger
Bs on quality evaluation, especially for smaller noises.

The next question is, how to make this approach possi-
ble in practice. In the following section, we propose a new
objective function, with which the optimal generated proba-
bility can be written as the above form.

4.2 Objective Function

Consider a generalized form of the objective functions

max Eop fIQ()],

where f is a real-valued monotonously increasing function.
We prove that DDR is achieved by using a family of f
functions, as shown in the following theorem.

Theorem 1. Let P and Q be two discrete distributions. With
an objective defined as

mQaX Ea:wP f[Q(m)L

where f(Q(x);a) = a-Q(z )7 —aand o > 1. The optimal
Q with respect to the objective can be written as:

P(z)8
>, P)?

«
-1

Q@) = o=
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Figure 2: Tllustration of differentiated distribution recovery behavior of DDR on a toy categorical distribution. (a):The ground
truth distribution P(x) as well as optimal model distribution Q(z) under different Ss. (b): Changes of generation quality and di-
versity as 5 grows in DDR. Lower Negative Log-Likelihood(NLL) indicates higher quality, and higher Entropy indicates higher
diversity. (¢): Generation quality changes as we blend the toy distribution with a uniform distribution as noise. Perturbation Rate

shows the proportion of added noise.

Proof. The objective is a constrained optimization problem
with following constraints

> Q@) =1,

which can be solved by applying method of Lagrange mul-
tipliers. The Lagrange function is

L(Q(z ZP )]
Qz) +n[Q(z) -

0<Q(z)<1

)s A5 1)

A=Y Q)
Optimal solution is reached where the first derivatives equal

oL oL oL oL
aQ(x) oA oy ' 0n
From the first equation, we have
P(z) - f'1Q" ()] = ¢,
where ¢ = A + v — 1. Note that f’ takes derivative on Q(x)
rather than z, so that

l-a
flR@)] =Q(x) =
Put this equation back into the first restriction above, we get
1o
P(.Z') : Q*(x) ¢ =6

which can be rewritten as Q*(z) = [@]m Then we
denote —=5 as 3 and do summation over z on both sides ,
we get

1.

=0.

:07

B

Sy,

by solving which we can get the value of ¢:

c= () P)’)?
x
Put ¢ back into the equation above, we have

T B
@) = 2

>, P@)”
thus finish the proof.
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Figure 3: Illustration of our proposed function f. We can see
f gradually changes from linear to logarithmic as « grows.

According to Theorem 1, DDR can be realised by setting
the function f as

Q\»—A

f(Qx);a) = a-Q(x)

As long as a« > 1, we have § > 1, and B grows
monotonously as « decreases. This is an asymptotic func-
tion family from linear to logarithmic as « grows (See Fig.
3 for illustration). We have

1@ 1) =Q(x) -
lm f(Qr);a) = i)

These cases correspond to 5 — oo and S = 1 respectively,
where 5 = 1 leads to MLE exactly.

We apply the above objective function for training
RNNLM. Given a text dataset D = {Yf:T}f\;l and a RNN



language model @), the loss function is defined as follows:

Q=

L(D;a) = - a-Q(Yir)

T
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Constant terms are omitted for simplicity. We can see that
the optimization can be conducted similarly to MLE, with-
out costly adversarial training or reinforcement learning pro-
cess, as compared to SeqGAN and Leak GAN.

S Experiments

In this section, we conduct experiments on both synthetic
and real datasets to compare our proposed DDR with other
baselines, including RNNLM, SeqGAN and LeakGAN.

5.1 Empirical Settings

Following the experiment settings in (Guo et al. 2017), we
conduct experiments on synthetic data, MSCOCO Image
Caption dataset (Chen et al. 2015) and EMNLP2017 WMT
News dataset'. We compare our results with three baseline
methods, including RNNLM trained with MLE, SeqGAN
(Yu et al. 2017), and LeakGAN (Guo et al. 2017).

For each dataset, architecture of the RNN part used for
generation (also called the generator) in each models are
kept the same. The generators all contain an embedding
layer, an LSTM layer, and a softmax output layer. The ar-
chitecture of discriminators and managers in SeqGAN and
LeakGAN remain unchanged. Embedding dimensions and
number of LSTM hidden nodes are all set to 32 on synthetic
data and 128 on other two datasets. All models are trained
using the Adam optimizer (Kingma and Ba 2014). Similar to
SeqGAN and LeakGAN, we also pre-train our model using
MLE before applying DDR.

For our DDR method in each experiment, we only report
the results on some picked as according to different datasets
and neglect those causing extremely low diversity.

5.2 Experiments on Synthetic Data

We first test generation quality of DDR on synthetic data,
under which setting we know the real data distribution in ad-
vance. We follow exactly the same setting as (Yu et al. 2017),
and use the same oracle model Gy;qcie. An RNN model with
LSTM is adopted, with all parameters initialized following
the normal distribution N'(0, 1). 10,000 sequences of length
20 are sampled using the oracle model, which constitute the
training set. We use Negative Log-Likelihood(NLL) as qual-
ity evaluation metric, which is defined as

T
NLL = _EYLT'\‘Q[Z lOg Goracle(yt‘}/l:t—l)];
t=1

"http://statmt.org/wmt17/translation-task html

6686

64 MLE
ol 389‘* o
= 36:‘ SeqGAN

#Real

08l
a = 34,‘/
LeakGAN
/
o= 3%A

a=30y"
a = 23/

a =264

0.6

Distinct-3

04f

a =24y
0.2+

5 s 7 s s 10
Negative Log-Likel ihood
Figure 4: Evaluation of quality and diversity on synthetic

dataset. Lower NLL indicates higher quality, and higher
Distinct-3 indicates higher diversity.

where @) still denotes the distribution learned by generation
models. This is a metric used in many works (Yu et al. 2017;
Lin et al. 2017; Guo et al. 2017), which is representative of
generation quality since a higher probability under the real
distribution indicates higher chance to pass the Turing Test
as explained in (Yu et al. 2017). For the diversity evalua-
tion metric, we use Distinct-n(Li et al. 2015), which esti-
mates the richness of distinct n-grams in generated samples.
The value is the number of distinct n-grams divided by to-
tal number of n-grams. Here we set n = 3 according to the
maximal sequence length 20, and evaluate on 5,000 random
generated samples.

The results are shown in Fig. 4. We see that DDR con-
sistently outperforms MLE on quality evaluation for all as,
showing a good substitution of MLE for higher generation
quality. As we lowering the value of «, the generation qual-
ity gradually increases. Although the diversity is also de-
creasing, DDR achieves competitive quality compared with
SeqGAN and LeakGAN at their corresponding diversity
level. Moreover, « can be further lowered for even higher
generation quality than all baseline methods. The quality-
diversity curve of DDR is quite smooth, showing flexible
trade-off control with the parameter «. Notice that DDR has
approximately the same training overhead with MLE, which
is much more time-efficient than SeqGAN and LeakGAN.
We also observe that the evaluation of real data is far above
all models on this synthetic dataset, this can be explained by
the random initialization of parameters, causing the real dis-
tribution near uniform, where almost no training data can be
viewed as noise under NLL evaluation.

5.3 Experiments on Real Data

We also conduct experiments on real text data. We use
two public datasets, MSCOCO Image Caption dataset and
EMNLP2017 WMT News dataset.

MSCOCO dataset contains natural images and their cor-
responding human-labeled descriptions. We only use the
captions in our experiments. The whole dataset contains
417,126 sentences. We follow (Guo et al. 2017) to do the
preprocessing and use exactly the same final training and
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Figure 5: Evaluation of quality and diversity on MSCOCO and WMT dataset. Higher BLEU-n and Distinct-n indicates higher

quality and diversity respectively.

test set. Words with frequency lower than 10 as well as the
sentences containing them are removed. Then 80,000 unique
sentences are sampled to constitute the training set, and an-
other 5,000 unique sentences for the test set. The maximum
sentence length is 32 and the vocabulary size is 4,840.

WMT News dataset contains long sentences of News. We
use the Europarl part of the dataset in our experiment. The
whole dataset contains 2,218,201 sentences. Words with fre-
quency lower than 400 as well as the sentences containing
them are removed. Sentences with length shorter than 15 or
longer than 50 are also removed. Then we sample 200,000
sentences for the training set and another 10,000 sentences
for test set. The final vocabulary size is 6,655.

To evaluate the quality of generated samples, we calcu-
late BLEU scores (Papineni et al. 2002) following (Yu et al.
2017; Lin et al. 2017; Guo et al. 2017). The BLEU score
measures n-gram overlap on generated samples with the
whole test set as reference, so it reflects the similarity be-
tween generated samples and real data. We randomly gener-
ate 5,000 samples for each method and report the BLEU-(2
to 5) scores as well as Distinct-(2 to 5) in Fig. 5. We also con-
sider the case where a model achieves high BLEU scores by
memorizing and reproducing training data. We remove gen-
erated samples which appeared in the training data before
quality evaluation, but the BLEU scores make little differ-
ence. Therefore, we did not report these results.

According to the results on real datasets, DDR achieves
higher generation quality than MLE even with the largest
. As a decreases, generation quality increases as diver-
sity drops as trade-off. The parameter « still provides flex-
ible trade-off control, shown by smooth quality-diversity
curves. The result of 2-grams on WMT dataset seems to
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be an exception, the reason may be that short n-grams are
not representative enough for long text, since results of
longer n-grams all perform as expected. We see that DDR
achieves competitive quality with SeqGAN at the same di-
versity level, however, LeakGAN performs better on WMT
dataset but worse on MSCOCO dataset. This can be ex-
plained by the specially designed model structure for long
text generation in LeakGAN. Even though, DDR shows the
ability to outperform LeakGAN on 4 and 5-gram quality
evaluation with small as, revealing superiority of DDR on
quality-diversity trade-off control. Here the evaluation of
real data is not far from other models compare with which
on synthetic data, since we use a test set for evaluation, thus
lots of rare patterns in training data would be viewed as
noise.

5.4 Human Evaluation

Since BLEU scores only focus on local structures of text, it
may not be sufficient to use them alone for evaluating the
generation quality. As a result, we also conduct human eval-
uation by running a Turing Test on MSCOCO dataset. We
invite 10 CS majored Ph.D students, to give scores on gen-
erated text samples. For each method, we sample 50 sen-
tences randomly from each trained model. We show some
of the generated samples here in Table 1. We mix all sam-
ples from different models, and ask the human annotators to
make judgements on whether a sample is a real one or not.
If the sample is regarded as a real one, it gets +1 score and
0 otherwise. A sample should be regarded as real, as long as
one think it is possibly written by a human. Finally, the av-
erage score acquired by a model can be viewed as its Turing
Test pass rate.



Table 1: Generated samples on MSCOCO dataset.

Method Generated samples

A cat stuck in a car with a slightly opened window.
Bicycles , cars and a trash can in a garage.

Real data . L
A lady talking a self portrait in a fancy bathroom.

A man standing in a white kitchen with his arms folded.

Two young children playing a video game on the Nintendo Wii.
MLE Two pancakes on a white paper plate with sauce on the plate.
A suitcase with vanilla and yellow markings on top of it.

Birds flying on a stone bench next to the tree.

A group of people standing on top of a snow covered mountain.
Two people standing next to each other in the dirt.

SeqGAN . .
A brown horse standing next to a white fence on the beach.

A cow standing in a grassy area near a body of water.

A bicycle is locked to a fence by a truck.

The interior of a bathroom with a long mirror and partially tiled
LeakGAN walls.

A small bathroom has toilet , medicine cabinet , and small sink.

A woman riding a bicycle down a street in front of shops.

DDR A woman wearing tennis gear holding a racket and her racquet.
A dog sitting on a chair in front of a birthday cake.
A bald man lays on a bed in the yellow floral pot.

(o = 64) e L . .
A girl is flying a kite in the sky into the airport.

DDR A man is sitting in a chair with a white cat.
A guy is jumping in the air with a skateboard.
A tall giraffe standing on top of a lush green field.

Two women pose in front of a very tall building.

A couple of young men playing a game of baseball.
A couple of zebra standing on top of a lush green field.
A red stop sign sitting on the side of a road.

A man hitting a tennis ball with a tennis racquet.

The human evaluation results are shown in Table 2. We
find the Turing Test scores are in accordance with BLEU
scores, from which we also see that DDR clearly outper-
forms all other baseline methods. MLE method has a Turing
Test pass rate lower than 50%, which means more than half
of its samples contain logical or grammatical errors, show-
ing its insufficiency for high-quality text generation. Our
DDR method gets higher pass rate with lower «, and achieve
a high pass rate of 0.932 with the lowest «, which is even
much higher than the ground-truth. This can be explained
by the behavior of DDR, that is, DDR promotes generation
quality by neglecting bad training instances with low quality.

5.5 Robustness Test

To show proof for the advantage of DDR in fighting with
noises, we further run a robustness test on MSCOCO
dataset. We add 10% noise samples into the training set and
keep the test set unchanged. A noise sample is composed of
random words picked from the vocabulary. Due to the ran-
domness, we believe these samples are of low quality and
has low probability P(z). We expect our method to neglect
these samples, that is, to generate similar samples with very
low probability, especially with small as. We generate 5,000
samples for each model trained on this corrupted dataset,
and calculate the percentage of generated bad samples. A
generated sample is regarded as bad if its BLUE-2 score on
the test set is lower than 0.001.
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Table 2: The average Turing Test scores on MSCOCO
dataset and percentage of generated bad samples on cor-
rupted MSCOCO dataset.

Method Turing Test Score  Bad Samples %
Ground Truth 0.772 -

MLE 0.490 8.0
SeqGAN 0.706 2.2
LeakGAN 0.758 0.0
DDR(a=64) 0.586 0.4
DDR(a=32) - 0.1
DDR(a=16) - 0.0
DDR(a=38) 0.692 0.0
DDR(a=2) 0.932 0.0

We report the percentage of generated bad samples for
each method in Table 2. From the result, we can see that
MLE is strongly influenced by the noises, and starts to gen-
erate bad samples with a high probability. However, DDR
methods are much less influenced, and even totally neglect
the impact of bad training instances with a o smaller than 16.
LeakGAN also shows such robustness, but SeqGAN does
not. These results show that DDR has the ability to alleviate
the influence of noisy data on generation quality, showing
robustness against noises as compared with MLE.

6 Conclusion and Future Work

In this paper, we proposed a new differentiated distribu-
tion recovery approach to train RNN-based text generation
models for higher Turing Test pass rate, instead of the tra-
ditional MLE approach. Specifically, the objective function
E.p f[Q(x)] is used for optimization, with f(Q(z); ) =

a- Q(az)é —a  (a > 1). With this objective function, the
closed form of the optimal generated probability can be writ-
ten as Q*(z) = P(m)ﬁ/ >, P(2)?, with B = 2= > 1.
We can see that this kind of optimal generation probabil-
ity has the ability to eliminate the influences of the noises
or rare pattern, thus enhance the quality of generated texts
by trading-off some diversity. With the parameter o, such
trade-off can be flexibly controlled. Furthermore, the objec-
tive function can be directly optimized with a similar end-
to-end approach as RNNLM, without expensive adversar-
ial training or reinforcement learning process as in SeqGAN
and LeakGAN. Finally, our experiments on both synthetic
data and real-world data show clearly the ability of our DDR
method to generate competitively high quality texts, as com-
pared with several strong baselines, including SeqGAN and
LeakGAN, in terms of both automatic evaluation metrics
and human evaluations.

(6]

For future work, we plan to apply DDR for conditional
text generation tasks, such as image captioning or dialogue
generation. We are also interested in investigating deeper on
the differences between accurate distribution recovery and
differentiated distribution recovery approaches.
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