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Abstract

Recent advances in data-to-text generation have led to the use
of large-scale datasets and neural network models which are
trained end-to-end, without explicitly modeling what to say
and in what order. In this work, we present a neural network
architecture which incorporates content selection and plan-
ning without sacrificing end-to-end training. We decompose
the generation task into two stages. Given a corpus of data
records (paired with descriptive documents), we first generate
a content plan highlighting which information should be men-
tioned and in which order and then generate the document
while taking the content plan into account. Automatic and
human-based evaluation experiments show that our model’
outperforms strong baselines improving the state-of-the-art
on the recently released ROTOWIRE dataset.

1 Introduction

Data-to-text generation broadly refers to the task of automat-
ically producing text from non-linguistic input (Reiter and
Dale 2000; Gatt and Krahmer 2018). The input may be in
various forms including databases of records, spreadsheets,
expert system knowledge bases, simulations of physical sys-
tems, and so on. Table 1 shows an example in the form of a
database containing statistics on NBA basketball games, and
a corresponding game summary.

Traditional methods for data-to-text generation (Kukich
1983; McKeown 1992) implement a pipeline of modules
including content planning (selecting specific content from
some input and determining the structure of the output text),
sentence planning (determining the structure and lexical
content of each sentence) and surface realization (converting
the sentence plan to a surface string). Recent neural genera-
tion systems (Lebret et al. 2016; Mei et al. 2016; Wiseman et
al. 2017) do not explicitly model any of these stages, rather
they are trained in an end-to-end fashion using the very suc-
cessful encoder-decoder architecture (Bahdanau et al. 2015)
as their backbone.

Despite producing overall fluent text, neural systems
have difficulty capturing long-term structure and generat-
ing documents more than a few sentences long. Wiseman et
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'Our code is publicly available at https:/github.com/ratishsp/
data2text-plan-py.
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Figure 1: Block diagram of our approach.

al. (2017) show that neural text generation techniques per-
form poorly at content selection, they struggle to maintain
inter-sentential coherence, and more generally a reasonable
ordering of the selected facts in the output text. Additional
challenges include avoiding redundancy and being faithful
to the input. Interestingly, comparisons against template-
based methods show that neural techniques do not fare well
on metrics of content selection recall and factual output gen-
eration (i.e., they often hallucinate statements which are not
supported by facts in the database).

In this paper, we address these shortcomings by explic-
itly modeling content selection and planning within a neu-
ral data-to-text architecture. Our model learns a content plan
from the input and conditions on the content plan in order to
generate the output document (see Figure 1 for an illustra-
tion). An explicit content planning mechanism has at least
three advantages for multi-sentence document generation: it
represents a high-level organization of the document struc-
ture allowing the decoder to concentrate on the easier tasks
of sentence planning and surface realization; it makes the
process of data-to-document generation more interpretable
by generating an intermediate representation; and reduces
redundancy in the output, since it is less likely for the con-
tent plan to contain the same information in multiple places.

We train our model end-to-end using neural networks
and evaluate its performance on ROTOWIRE (Wiseman et
al. 2017), a recently released dataset which contains statis-
tics of NBA basketball games paired with human-written
summaries (see Table 1). Automatic and human evaluation
shows that modeling content selection and planning im-
proves generation considerably over competitive baselines.



TEAM WIN LOSS PTS FG-PCT RB AST ...
Pacers 4 6 99 42 40 17

Celtics 5 4 105 44 47 22 ..
PLAYER H/NV AST RB PTS FG CITY

Jeff Teague H 4 3 20 4 |Indiana ...
Miles Turner H 1 8 17 6 Indiana ...
Isaiah Thomas V 5 0 23 4 Boston ...
Kelly Olynyk vV 4 6 16 6 Boston ...
Amir Johnson V 3 9 14 4 Boston ...

bounds, AST: assists, H/V: home or visiting, FG: field
goals, CITY: player team city.

The Boston Celtics defeated the host Indiana Pacers 105-99 at Bankers Life Field-
house on Saturday. In a battle between two injury-riddled teams, the Celtics were
able to prevail with a much needed road victory. The key was shooting and de-
fense, as the Celtics outshot the Pacers from the field, from three-point range and
from the free-throw line. Boston also held Indiana to 42 percent from the field and
22 percent from long distance. The Celtics also won the rebounding and assisting
differentials, while tying the Pacers in turnovers. There were 10 ties and 10 lead
changes, as this game went down to the final seconds. Boston (5—4) has had to deal
with a gluttony of injuries, but they had the fortunate task of playing a team just
as injured here. Isaiah Thomas led the team in scoring, totaling 23 points and five
assists on 4—of—13 shooting. He got most of those points by going 14—of-15 from
the free-throw line. Kelly Olynyk got a rare start and finished second on the team
with his 16 points, six rebounds and four assists.

Table 1: Example of data-records and document summary. Entities and values corresponding to the plan in Table 2 are boldfaced.

2 Related Work

The generation literature provides multiple examples of con-
tent selection components developed for various domains
which are either hand-built (Kukich 1983; McKeown 1992;
Reiter and Dale 1997; Duboue and McKeown 2003) or
learned from data (Barzilay and Lapata 2005; Duboue and
McKeown 2001; 2003; Liang et al. 2009; Angeli et al. 2010;
Kim and Mooney 2010; Konstas and Lapata 2013). Like-
wise, creating summaries of sports games has been a topic
of interest since the early beginnings of generation systems
(Robin 1994; Tanaka-Ishii et al. 1998).

Earlier work on content planning has relied on generic
planners (Dale 1988), based on Rhetorical Structure Theory
(Hovy 1993) and schemas (McKeown et al. 1997). Content
planners are defined by analysing target texts and devising
hand-crafted rules. Duboue and McKeown (2001) study or-
dering constraints for content plans and in follow-on work
(Duboue and McKeown 2002) learn a content planner from
an aligned corpus of inputs and human outputs. A few re-
searchers (Mellish et al. 1998; Karamanis 2004) select con-
tent plans according to a ranking function.

More recent work focuses on end-to-end systems instead
of individual components. However, most models make sim-
plifying assumptions such as generation without any con-
tent selection or planning (Belz 2008; Wong and Mooney
2007) or content selection without planning (Konstas and
Lapata 2012; Angeli et al. 2010; Kim and Mooney 2010).
An exception are Konstas and Lapata (2013) who incorpo-
rate content plans represented as grammar rules operating on
the document level. Their approach works reasonably well
with weather forecasts, but does not scale easily to larger
databases, with richer vocabularies, and longer text descrip-
tions. The model relies on the EM algorithm (Dempster,
Laird, and Rubin 1977) to learn the weights of the grammar
rules which can be very many even when tokens are aligned
to database records as a preprocessing step.

Our work is closest to recent neural network models
which learn generators from data and accompanying text re-
sources. Most previous approaches generate from Wikipedia
infoboxes focusing either on single sentences (Lebret et
al. 2016;2017; Sha et al. 2017; Liu et al. 2017) or short texts
(Perez-Beltrachini and Lapata 2018). Mei et al. (2016) use a
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neural encoder-decoder model to generate weather forecasts
and soccer commentaries, while Wiseman et al. (2017) gen-
erate NBA game summaries (see Table 1). They introduce a
new dataset for data-to-document generation which is suf-
ficiently large for neural network training and adequately
challenging for testing the capabilities of document-scale
text generation (e.g., the average summary length is 330
words and the average number of input records is 628).
Moreover, they propose various automatic evaluation mea-
sures for assessing the quality of system output. Our model
follows on from Wiseman et al. (2017) addressing the chal-
lenges for data-to-text generation identified in their work.
We are not aware of any previous neural network-based
approaches which incorporate content selection and plan-
ning mechanisms and generate multi-sentence documents.
Perez-Beltrachini and Lapata (2018) introduce a content se-
lection component (based on multi-instance learning) with-
out content planning, while Liu et al. (2017) propose a sen-
tence planning mechanism which orders the contents of a
Wikipedia infobox so as to generate a single sentence.

3 Problem Formulation

The input to our model is a table of records (see Table 1
left hand-side). Each record r; has four features including
its type (7;,1; e.g., LOSS, CITY), entity (r;2; €.g., Pacers,
Miles Turner), value (r; 3; e.g., 11, Indiana), and whether a
player is on the home- or away-team (r; 4; see column H/V
in Table 1), represented as {r; ;. }1_,. The output y is a doc-
ument containing words y = y - - - y|,, Where |y| is the doc-
ument length. Figure 2 shows the overall architecture of our
model which consists of two stages: (a) content selection
and planning operates on the input records of a database and
produces a content plan specifying which records are to be
verbalized in the document and in which order (see Table 2)
and (b) text generation produces the output text given the
content plan as input; at each decoding step, the generation
model attends over vector representations of the records in
the content plan.

Let r = {r; }‘le1 denote a table of input records and y

the output text. We model p(y|r) as the joint probability of
text y and content plan z, given input r. We further decom-
pose p(y, z|r) into p(z|r), a content selection and planning
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Figure 2: Generation model with content selection and plan-
ning; the content selection gate is illustrated in Figure 3.

phase, and p(y|r, z), a text generation phase:
pylr) = p(y, 2lr) = p(zlr)plylr, =)

In the following we explain how the components p(z|r) and
p(y|r, z) are estimated.

Record Encoder

The input to our model is a table of unordered records, each
represented as features {r; ; }1_,. Following previous work
(Yang et al. 2017; Wiseman et al. 2017), we embed features
into vectors, and then use a multilayer perceptron to obtain
a vector representation r; for each record:

I'j = RGLU(WT [rj,l; I‘j’g; rj,3; I‘j74] + br)

where [;] indicates vector concatenation, W, €
R™47 b, € R” are parameters, and ReLU is the
rectifier activation function.

Content Selection Gate

The context of a record can be useful in determining its im-
portance vis-a-vis other records in the table. For example,
if a player scores many points, it is likely that other mean-
ingfully related records such as field goals, three-pointers, or
rebounds will be mentioned in the output summary. To better
capture such dependencies among records, we make use of
the content selection gate mechanism as shown in Figure 3.

We first compute attention scores ¢ ;, over the input table
and use them to obtain an attentional vector r?“ for each
record r;:

aj g X exp(rJT.Wark)
Cj =D T
k#j

r?tt = W,lrj;c)]

where W, € R"*" W € R™*2™ are parameter matrices,
and }_, ajp = 1.
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Figure 3: Content selection mechanism.

We next apply the content selection gating mechanism
to r;, and obtain the new record representation r§* via:

= sigmoid (r‘?“)

gj j

I‘;S = gj O) r;
where © denotes element-wise multiplication, and gate g; €
[0,1]" controls the amount of information flowing from r;.
In other words, each element in r; is weighed by the corre-
sponding element of the content selection gate g;.

Content Planning

In our generation task, the output text is long but follows a
canonical structure. Game summaries typically begin by dis-
cussing which team won/lost, following with various statis-
tics involving individual players and their teams (e.g., who
performed exceptionally well or under-performed), and fin-
ishing with any upcoming games. We hypothesize that gen-
eration would benefit from an explicit plan specifying both
what to say and in which order. Our model learns such
content plans from training data. However, notice that RO-
TOWIRE (see Table 1) and most similar data-to-text datasets
do not naturally contain content plans. Fortunately, we can
obtain these relatively straightforwardly following an infor-
mation extraction approach (which we explain in Section 4).

Suffice it to say that plans are extracted by mapping the
text in the summaries onto entities in the input table, their
values, and types (i.e., relations). A plan is a sequence of
pointers with each entry pointing to an input record {r; }ljil
An excerpt of a plan is shown in Table 2. The order in the
plan corresponds to the sequence in which entities appear
in the game summary. Let z = 27 ... 2| denote the con-
tent planning sequence. Each z; points to an input record,

ie., z; € {r; }Ilel Given the input records, the probability
p(z|r) is decomposed as:

||
p(zlr) = T p(zxl2<r: )
k=1

where 2., = 21 ... 2k_1.

Since the output tokens of the content planning stage cor-
respond to positions in the input sequence, we make use of
Pointer Networks (Vinyals et al. 2015). The latter use at-
tention to point to the tokens of the input sequence rather
than creating a weighted representation of source encodings.

As shown in Figure 2, given {r; }|j711’ we use an LSTM de-

coder to generate tokens corresponding to positions in the



Value Entity Type HV
Boston Celtics TEAM-CITY \"
Celtics Celtics TEAM-NAME \
105 Celtics TEAM-PTS \Y
Indiana Pacers TEAM-CITY H
Pacers Pacers TEAM-NAME H
99 Pacers TEAM-PTS H
42 Pacers TEAM-FG_PCT H
22 Pacers TEAM-FG3_PCT H
5 Celtics TEAM-WIN \"
4 Celtics TEAM-LOSS \
Isaiah Isaiah_-Thomas | FIRST_-NAME \
Thomas | Isaiah_.Thomas | SECOND_NAME | V
23 Isaiah_Thomas | PTS \%
5 Isaiah_-Thomas | AST \"
4 Isaiah_Thomas FGM \%
13 Isaiah_Thomas | FGA \%
Kelly Kelly_Olynyk FIRST_NAME \
Olynyk Kelly_Olynyk SECOND_NAME | V
16 Kelly_Olynyk PTS \Y
6 Kelly_Olynyk REB \
4 Kelly_Olynyk AST \Y

Table 2: Content plan for the example in Table 1.

input. The first hidden state of the decoder is initialized by

avg({r§® }‘f:'l ), i.e., the average of record vectors. At decod-
ing step k, let hy, be the hidden state of the LSTM. We model
p(zi = 1j|2<k, r) as the attention over input records:

plz = rjlz<k,r) exp(hZWcrﬁs)

where the probability is normalized to 1, and W . are param-
eters. Once zj, points to record r;, we use the corresponding
vector r§” as the input of the next LSTM unit in the decoder.

Text Generation

The probability of output text y conditioned on content
plan z and input table 7 is modeled as:

[yl

plylr, z) = Hp(yt|y<tv z,T)
t=1

where Y+ = y1 . . . Y+—1. We use the encoder-decoder archi-
tecture with an attention mechanism to compute p(y|r, ).

We first encode content plan z into {ek}‘kil using a bidi-
rectional LSTM. Because the content plan is a sequence of
input records, we directly feed the corresponding record vec-

tors {r§’ }‘fz‘l as input to the LSTM units, which share the
record encoder with the first stage.

The text decoder is also based on a recurrent neural net-
work with LSTM units. The decoder is initialized with the
hidden states of the final step in the encoder. At decoding
step t, the input of the LSTM unit is the embedding of the
previously predicted word y;_;. Let d; be the hidden state

of the ¢-th LSTM unit. The probability of predicting y, from
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the output vocabulary is computed via:

B o exp(d] Wyey,) )]
q = Z Bt €k
%
d;"" = tanh(W 4[d¢; q¢])
Pgen(Yt|y<t, 2,7) = softmax,, (Wyd?tt +by) 2

where >, Bip = 1, W, € R W, € R™?" W, €
R™*IVul b, € RIVu! are parameters, and |V, | is the output
vocabulary size.

We further augment the decoder with a copy mechanism,
i.e., the ability to copy words directly from the value por-

tions of records in the content plan (i.e., {zk}‘,j:‘l). We ex-
perimented with joint (Gu et al. 2016) and conditional copy
methods (Gulcehre et al. 2016). Specifically, we introduce a
variable u; € {0, 1} for each time step to indicate whether
the predicted token y; is copied (uy = 1) or not (u; = 0).
The probability of generating y, is computed by:

p(yt‘y<t,2’a7“) = Z p(ytaut|y<t7zar)
u: €{0,1}

where u,; is marginalized out.

Joint Copy The probability of copying from record values
and generating from the vocabulary is globally normalized:

P(Yes Ue|y<t, 2,7)

Zyr«—zk eXp(d;‘,erek) up =1
exp (Wydi™ +by) ug =0

where y; < 2, indicates that y; can be copied from zj,, Wy
is shared as in Equation (1), and W, b, are shared as in
Equation (2).

Conditional Copy The variable u; is first computed as a
switch gate, and then is used to obtain the output probability:
p(ur = 1|y<s, z,7) = sigmoid(wy,, - di + by,)

(e wely<t, z,7) =

p(ue|y<s, z,7) Zy“_zk Bt k
p(ut|y<t7 Z, r)pgen(yt|y<t7 Z, T)

Ut:].
ut=0

where S and pgen (Y¢|y<t, z,7) are computed as in Equa-
tions (1)—(2), and w,, € R", b,, € R are parameters. Follow-
ing Gulcehre et al. (2016) and Wiseman et al. (2017), if y;
appears in the content plan during training, we assume that
Y is copied (i.e., uy = 1).2

2We learn whether y; can be copied from candidate zj, by ap-
plying supervision during training. Specifically, we retain z; when
the record entity and its value occur in the same sentence in y.



Training and Inference

Our model is trained to maximize the log-likelihood of the
gold? content plan given table records r and the gold output
text given the content plan and table records:

max Z log p (z|r) 4+ logp (y|r, 2)
(r,z,y)€D

where D represents training examples (input records, plans,
and game summaries). During inference, the output for input
r is predicted by:

2 = argmax p(z'|r)
Z/

9 = arg max p(y'|r, 2)
Y’

where 2z’ and y' represent content plan and output text can-
didates, respectively. For each stage, we utilize beam search
to approximately obtain the best results.

4 Experimental Setup

Data We trained and evaluated our model on ROTOWIRE
(Wiseman et al. 2017), a dataset of basketball game sum-
maries, paired with corresponding box- and line-score ta-
bles. The summaries are professionally written, relatively
well structured and long (337 words on average). The num-
ber of record types is 39, the average number of records
is 628, the vocabulary size is 11.3K words and token count is
1.6M. The dataset is ideally suited for document-scale gen-
eration. We followed the data partitions introduced in Wise-
man et al. (2017): we trained on 3,398 summaries, tested on
728, and used 727 for validation.

Content Plan Extraction We extracted content plans
from the ROTOWIRE game summaries following an infor-
mation extraction (IE) approach. Specifically, we used the
IE system introduced in Wiseman et al. (2017) which iden-
tifies candidate entity (i.e., player, team, and city) and value
(i.e., number or string) pairs that appear in the text, and then
predicts the type (aka relation) of each candidate pair. For
instance, in the document in Table 1, the IE system might
identify the pair “Jeff Teague, 20” and then predict that that
their relation is “PTS”, extracting the record (Jeff Teague,
20, PTS). Wiseman et al. (2017) train an IE system on RO-
TOWIRE by determining word spans which could represent
entities (i.e., by matching them against players, teams or
cities in the database) and numbers. They then consider each
entity-number pair in the same sentence, and if there is a
record in the database with matching entities and values, the
pair is assigned the corresponding record type or otherwise
given the label “none” to indicate unrelated pairs.

We adopted their IE system architecture which predicts
relations by ensembling 3 convolutional models and 3 bidi-
rectional LSTM models. We trained this system on the train-

3Strictly speaking, the content plan is not gold since it was not
created by an expert but is the output of a fairly accurate IE system.
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ing portion of the ROTOWIRE corpus.* On held-out data it
achieved 94% accuracy, and recalled approximately 80% of
the relations licensed by the records. Given the output of the
IE system, a content plan simply consists of (entity, value,
record type, H/V) tuples in their order of appearance in a
game summary (the content plan for the summary in Table 1
is shown in Table 2). Player names are pre-processed to in-
dicate the individual’s first name and surname (see lIsaiah
and Thomas in Table 2); team records are also pre-processed
to indicate the name of team’s city and the team itself (see
Boston and Celtics in Table 2).

Training Configuration We validated model hyperpa-
rameters on the development set. We did not tune the di-
mensions of word embeddings and LSTM hidden layers;
we used the same value of 600 reported in Wiseman et
al. (2017). We used one-layer pointer networks during con-
tent planning, and two-layer LSTMs during text generation.
Input feeding (Luong et al. 2015) was employed for the text
decoder. We applied dropout (Zaremba et al. 2014) at a rate
of 0.3. Models were trained for 25 epochs with the Ada-
grad optimizer (Duchi et al. 2011); the initial learning rate
was 0.15, learning rate decay was selected from {0.5,0.97},
and batch size was 5. For text decoding, we made use of
BPTT (Mikolov et al. 2010) and set the truncation size
to 100. We set the beam size to 5 during inference. All mod-
els are implemented in OpenNMT-py (Klein et al. 2017).

5 Results

Automatic Evaluation We evaluated model output using
the metrics defined in Wiseman et al. (2017). The idea is to
employ a fairly accurate IE system (see the description in
Section 4) on the gold and automatic summaries and com-
pare whether the identified relations align or diverge.

Let ¢ be the gold output, and y the system output. Content
selection (CS) measures how well (in terms of precision and
recall) the records extracted from y match those found in g.
Relation generation (RG) measures the factuality of the gen-
eration system as the proportion of records extracted from y
which are also found in r (in terms of precision and num-
ber of unique relations). Content ordering (CO) measures
how well the system orders the records it has chosen and is
computed as the normalized Damerau-Levenshtein Distance
between the sequence of records extracted from y and g. In
addition to these metrics, we report BLEU (Papineni et al.
2002), with human-written game summaries as reference.

Our results on the development set are summarized in
Table 3. We compare our Neural Content Planning model
(NCP for short) against the two encoder-decoder (ED) mod-
els presented in Wiseman et al. (2017) with joint copy (JC)
and conditional copy (CC), respectively. In addition to our
own re-implementation of these models, we include the best
scores reported in Wiseman et al. (2017) which were ob-
tained with an encoder-decoder model enhanced with con-

‘A bug in the code of Wiseman et al. (2017) excluded num-
ber words from the output summary. We corrected the bug and this
resulted in greater recall for the relations extracted from the sum-
maries. See the supplementary material for more details.



RG

CS

CcO

RG

CS

CcO

Model # P%| P% R% |DLD% |C-EV Model # P%| P% R% |DLD% |P-EV
TEMPL |54.29 99.92] 26.61 59.16 | 14.42 | 8.51 TEMPL |54.23 99.94| 2699 58.16 | 14.92 8.46
WS-2017(23.95 75.10| 28.11 35.86 | 15.33 | 14.57 WS-2017(23.72 74.80| 29.49 36.18 | 1542 | 14.19
ED+JC |22.98 76.07| 27.70 33.29 | 14.36 | 13.22 NCP+JC (34.09 87.19| 32.02 47.29 | 17.15 | 14.89
ED+CC |21.94 75.08| 27.96 32.71 | 15.03 |13.31 NCP+CC|34.28 87.47| 34.18 51.22 | 18.58 | 16.50
NCP+JC |33.37 87.40| 32.20 48.56 | 17.98 | 14.92

NCP+CC|33.88 87.51| 33.52 51.21 | 18.57 | 16.19 Table 5: Automatic evaluation on ROTOWIRE test set using
NCP+OR|21.59 89.21| 88.52 85.84 | 78.51 |24.11 relation generation (RG) count (#) and precision (P%), con-

Table 3: Automatic evaluation on ROTOWIRE development
set using relation generation (RG) count (#) and preci-
sion (P%), content selection (CS) precision (P%) and re-
call (R%), content ordering (CO) in normalized Damerau-
Levenshtein distance (DLD%), and BLEU.

RG CS CO
Model 4 P% | P% R% | DLD% | BLEU
ED+CC [21.94 75.08 | 27.96 32.71 | 1503 | 1331
CS+CC [24.93 80.55 | 28.63 3523 | 15.12 | 13.52
CP+CC |33.73 84.85 | 29.57 44.72 | 15.84 | 14.45
NCP+CC |33.88 87.51 | 33.52 51.21 | 18.57 | 16.19
NCP 3446 — | 38.00 53.72 | 20.27 —

Table 4: Ablation results on ROTOWIRE development set us-
ing relation generation (RG) count (#) and precision (P%),
content selection (CS) precision (P%) and recall (R%), con-
tent ordering (CO) in normalized Damerau-Levenshtein dis-
tance (DLD%), and BLEU.

ditional copy (WS-2017). Table 3 also shows results when
NCP uses oracle content plans (OR) as input. In addition,
we report the performance of a template-based generator
(Wiseman et al. 2017) which creates a document consist-
ing of eight template sentences: an introductory sentence
(who won/lost), six player-specific sentences (based on the
six highest-scoring players in the game), and a conclusion
sentence.

As can be seen, NCP improves upon vanilla encoder-
decoder models (ED+JC, ED+CC), irrespective of the copy
mechanism being employed. In fact, NCP achieves compa-
rable scores with either joint or conditional copy mechanism
which indicates that it is the content planner which brings
performance improvements. Overall, NCP+CC achieves
best content selection and content ordering scores in terms
of BLEU. Compared to the best reported system in Wise-
man et al. (2017), we achieve an absolute improvement of
approximately 12% in terms of relation generation; content
selection precision also improves by 5% and recall by 15%,
content ordering increases by 3%, and BLEU by 1.5 points.
The results of the oracle system (NCP+OR) show that con-
tent selection and ordering do indeed correlate with the qual-
ity of the content plan and that any improvements in our
planning component would result in better output. As far
as the template-based system is concerned, we observe that
it obtains low BLEU and CS precision but scores high on
CS recall and RG metrics. This is not surprising as the tem-
plate system is provided with domain knowledge which our
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tent selection (CS) precision (R%) and recall (R%), content
ordering (CO) in normalized Damerau-Levenshtein distance
(DLD%), and BLEU.

model does not have, and thus represents an upper-bound on
content selection and relation generation. We also measured
the degree to which the game summaries generated by our
model contain redundant information as the proportion of
non-duplicate records extracted from the summary by the IE
system. 84.5% of the records in NCP+CC are non-duplicates
compared to Wiseman et al. (2017) who obtain 72.9% show-
ing that our model is less repetitive.

We further conducted an ablation study with the condi-
tional copy variant of our model (NCP+CC) to establish
whether improvements are due to better content selection
(CS) and/or content planning (CP). We see in Table 4 that
content selection and planning individually contribute to
performance improvements over the baseline (ED+CC), and
accuracy further increases when both components are taken
into account. In addition we evaluated these components
on their own (independently of text generation) by com-
paring the output of the planner (see p(z|r) block in Fig-
ure 2) against gold content plans obtained using the IE sys-
tem (see row NCP in Table 4. Compared to the full system
(NCP+CC), content selection precision and recall are higher
(by 4.5% and 2%, respectively) as well as content ordering
(by 1.8%). In another study, we used the CS and CO metrics
to measure how well the generated text follows the content
plan produced by the planner (instead of arbitrarily adding or
removing information). We found out that NCP+CC gener-
ates game summaries which follow the content plan closely:
CS precision is higher than 85%, CS recall is higher than
93%, and CO higher than 84%. This reinforces our claim
that higher accuracies in the content selection and planning
phase will result in further improvements in text generation.

The test set results in Table 5 follow a pattern simi-
lar to the development set. NCP achieves higher accuracy
in all metrics including relation generation, content selec-
tion, content ordering, and BLEU compared to Wiseman et
al. (2017). We provide examples of system output in Fig-
ure 4 and the supplementary material.

Human-Based Evaluation We conducted two human
evaluation experiments using the Amazon Mechanical Turk
(AMT) crowdsourcing platform. The first study assessed re-
lation generation by examining whether improvements in re-
lation generation attested by automatic evaluation metrics
are indeed corroborated by human judgments. We compared
our best performing model (NCP+CC), with gold reference



The Golden State Warriors (10-2) defeated the Boston Celtics (6-6) 104-88. Klay
Thompson scored 28 points (12-21 FG, 3-6 3PT, 1-1 FT) to go with 4 rebounds.
Kevin Durant scored 23 points (10-13 FG, 1-2 3PT, 2-4 FT) to go with 10 rebounds.
Isaiah Thomas scored 18 points (4—12 FG, 1-6 3PT, 9-9 FT) to go with 2 rebounds.
Avery Bradley scored 17 points (7-15 FG, 2—4 3PT, 1-2 FT) to go with 10 rebounds.
Stephen Curry scored 16 points (7-20 FG, 2—-10 3PT, 0-0 FT) to go with 3 rebounds.
Terry Rozier scored 11 points (3-5 FG, 2-3 3PT, 3—4 FT) to go with 7 rebounds.
The Golden State Warriors’ next game will be at home against the Dallas Mavericks,
while the Boston Celtics will travel to play the Bulls.

The Golden State Warriors defeated the Boston Celtics 104-88 at TD Garden on Fri-
day. The Warriors (10-2) came into this game winners of five of their last six games,
but the Warriors (6-6) were able to pull away in the second half. Klay Thompson led
the way for the Warriors with 28 points on 12—of-21 shooting, while Kevin Durant
added 23 points, 10 rebounds, seven assists and two steals. Stephen Curry added 16
points and eight assists, while Draymond Green rounded out the box score with 11
points, eight rebounds and eight assists. For the Celtics, it was Isaiah Thomas who
shot just 4—of-12 from the field and finished with 18 points. Avery Bradley added
17 points and 10 rebounds, while the rest of the Celtics combined to score just seven
points. Boston will look to get back on track as they play host to the 76ers on Friday.

Figure 4: Example output from TEMPL (top) and NPC+CC
(bottom). Text that accurately reflects a record in the associ-
ated box or line score is in blue, erroneous text is in red.

summaries, a template system and the best model of Wise-
man et al. (2017). AMT workers were presented with a spe-
cific NBA game’s box score and line score, and four (ran-
domly selected) sentences from the summary. They were
asked to identify supporting and contradicting facts men-
tioned in each sentence. We randomly selected 30 games
from the test set. Each sentence was rated by three workers.

The left two columns in Table 6 contain the average
number of supporting and contradicting facts per sentence
as determined by the crowdworkers, for each model. The
template-based system has the highest number of supporting
facts, even compared to the human gold standard. TEMPL
does not perform any content selection, it includes a large
number of facts from the database and since it does not per-
form any generation either, it exhibits a few contradictions.
Compared to WS-2017 and the Gold summaries, NCP+CC
displays a larger number of supporting facts. All models
are significantly® different in the number of supporting facts
(#Supp) from TEMPL (using a one-way ANOVA with post-
hoc Tukey HSD tests). NCP+CC is significantly different
from WS-2017 and Gold. With respect to contradicting facts
(#Cont), Gold and TEMPL are not significantly different
from each other but are significantly different from the neu-
ral systems (WS-2017, NCP+CC).

In the second experiment, we assessed the generation
quality of our model. We elicited judgments for the same
30 games used in the first study. For each game, participants
were asked to compare a human-written summary, NCP with
conditional copy (NCP+CC), Wiseman et al.’s (2017) best
model, and the template system. Our study used Best-Worst
Scaling (BWS; Louviere, Flynn, and Marley 2015), a tech-
nique shown to be less labor-intensive and providing more

3 All significance differences reported throughout this paper are
with a level less than 0.05.
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#Support #Contra Gram Cohere Concise
Gold 2.98 0.28 11.78 16.00 13.78
TEMPL 6.98 0.21 -0.89 -4.89 1.33
WS-2017 3.19 1.09 -4.22 -4.89 -6.44
NCP+CC 4.90 0.90 -2.44 -2.44 -3.55

Table 6: Average number of supporting (#Support) and con-
tradicting (#Contra) facts in game summaries and best-
worst scaling evaluation (higher is better) for grammaticality
(Gram), Coherence (Cohere), and Conciseness (Concise).

reliable results as compared to rating scales (Kiritchenko
and Mohammad 2017). We arranged every 4-tuple of com-
peting summaries into 6 pairs. Every pair was shown to three
crowdworkers, who were asked to choose which summary
was best and which was worst according to three criteria:
Grammaticality (is the summary fluent and grammatical?),
Coherence (is the summary easy to read? does it follow a
natural ordering of facts?), and Conciseness (does the sum-
mary avoid redundant information and repetitions?). The
score of a system for each criterion is computed as the dif-
ference between the percentage of times the system was se-
lected as the best and the percentage of times it was selected
as the worst (Orme 2009). The scores range from —100 (ab-
solutely worst) to +100 (absolutely best).

The results of the second study are summarized in Ta-
ble 6. Gold summaries were perceived as significantly better
compared to the automatic systems across all criteria (again
using a one-way ANOVA with post-hoc Tukey HSD tests).
NCP+CC was perceived as significantly more grammatical
than WS-2017 but not compared to TEMPL which does not
suffer from fluency errors since it does not perform any gen-
eration. NCP+CC was perceived as significantly more co-
herent than TEMPL and WS-2017. The template fairs poorly
on coherence, its output is stilted and exhibits no variability
(see top block in Table 4). With regard to conciseness, the
neural systems are significantly worse than TEMPL, while
NCP+CC is significantly better than WS-2017. By design
the template cannot repeat information since there is no re-
dundancy in the sentences chosen to verbalize the summary.

Taken together, our results show that content planning im-
proves data-to-text generation across metrics and systems.
We find that NCP+CC overall performs best, however there
is a significant gap between automatically generated sum-
maries and human-authored ones.

6 Conclusions

We presented a data-to-text generation model which is en-
hanced with content selection and planning modules. Exper-
imental results (based on automatic metrics and judgment
elicitation studies) demonstrate that generation quality im-
proves both in terms of the number of relevant facts con-
tained in the output text, and the order according to which
these are presented. Positive side-effects of content planning
are additional improvements in the grammaticality, and con-
ciseness of the generated text. In the future, we would like
to learn more detail-oriented plans involving inference over
multiple facts and entities. We would also like to verify our
approach across domains and languages.
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