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Abstract

Multiple-choice machine reading comprehension is an im-
portant and challenging task where the machine is required
to select the correct answer from a set of candidate an-
swers given passage and question. Existing approaches ei-
ther match extracted evidence with candidate answers shal-
lowly or model passage, question and candidate answers with
a single paradigm of matching. In this paper, we propose
Multi-Matching Network (MMN) which models the seman-
tic relationship among passage, question and candidate an-
swers from multiple different paradigms of matching. In our
MMN model, each paradigm is inspired by how human think
and designed under a unified compose-match framework.
To demonstrate the effectiveness of our model, we evaluate
MMN on a large-scale multiple choice machine reading com-
prehension dataset (i.e. RACE). Empirical results show that
our proposed model achieves a significant improvement com-
pared to strong baselines and obtains state-of-the-art results.

Introduction
As a fundamental task and a long-standing goal in the field
of natural language processing, machine reading compre-
hension (MRC) aims to enable machines to automatically
answer questions according to passages in hand. There have
been many researches on machine reading comprehension.
For example, (Yin et al. 2016) proposed to match passages
against sequences that concatenate both questions and candi-
date answers; (Dhingra et al. 2017; Chen, Bolton, and Man-
ning 2016; Lai et al. 2017; Zhu et al. 2018) proposed to
first match passages to questions and then select answers
based on the matching result; etc. Despite the success of pre-
vious approaches on reading-comprehension scenarios that
answers can be directly extracted from the given passages,
such as SQuAD (Rajpurkar et al. 2016) and CNN/Daily
Mail (Hermann et al. 2015), they do not work on questions
whose answers need to be inferred from the given questions
and passages, i.e., answers cannot be directly extracted from
passages. One example of such reading-comprehension sce-
narios is RACE, which was recently released by (Lai et al.
2017). RACE was built from middle and high school En-
glish examinations in China. As mentioned in (Lai et al.
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2017), RACE is more challenging and requires more infer-
ences compared to the above-mentioned datasets.

For example, in Table 1, we can see that there is contra-
diction between ”Mike never washed them well” in the pas-
sage and combination of ”Mike” in Question 1 and ”washed
them clean” in candidate answer A; there is entailment be-
tween ”Mike never washed them well” in the passage and
combination of ”Mike” in Question 1 and ”never washed
them clean” in candidate answer C.

To address this problem, (Wang et al. 2018) propose to
jointly model the sequence triplets (i.e. passage, question
and candidate answer) assuming that questions and candi-
date answers are equally important in reading comprehen-
sion. Triplet matching, however, usually encodes the loca-
tional information of the question and the candidate answer
matched to a specific context of the passage (Wang et al.
2018), which ignores scenarios that there are multiple evi-
dence snippets in the passage, which are significant for an-
swering the questions. For example, in Question 2, “the main
idea of this passage” depends on the evidence snippets as de-
scribed by all sentences in the passages, which produces the
answer ”D”, i.e., ”The job market has changed dramatically
over the past 4 years”. In this paper, we aim to build a novel
framework to capture multiple evidence snippets and entail-
ment relationships among passages, questions and answers,
which is challenging since we cannot find answers by locally
matching words among passages, questions and answers.

To overcome the challenge, we observe that humans usu-
ally answer multiple choice questions by two ways. The first
one is to extract evidence snippets from passages according
to questions, and then match evidence snippets with candi-
date answers. The other way is to read candidate answers
and questions together to form pseudo statements and then
recognize entailment relationships between pseudo state-
ments and passages. After that, human fuse different con-
siderations to verify answers and make final decisions.

Inspired by how humans answer multiple choice ques-
tions, we propose a novel approach, called MMN, which
stands for Multi-Matching Network. Corresponding to
above-mentioned two ways, our MMN approach contains
two types of matching between multiple sequences, namely,
(1) Evidence-Answer Matching and (2) Question-Passage-
Answer Matching, which are designed under the unified
compose-match framework. We first encode the context in-
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Table 1: Examples in RACE. The text in bold is the supportive evidence or related premise to answer the questions.

Passage: · · · Three or four times every day his mother said to him,” Mike, your hands are very dirty again, go and wash them.” Mike
never really washed them well. He only put his hands in the water for a few seconds and then took them out again. · · ·
Question 1:When Mike washed his hands, . Golden answer: C
A. He washed them clean. C. He never washed them clean.
B. He used soap and water. D. He felt very happy.
Passage: · · · This year’s college graduates are facing one of the worst job markets in years. · · · many people already working
are getting laid off and don’t have jobs, so it’s even harder for new college graduates to find jobs. · · ·
Other popular fields (like information system management, computer science, and political science) have seen big declines in
starting salaries. · · · which would be great in bad economy.” · · ·
Question 2: The main idea of this passage is that ? Golden answer: D
A. A lot of graduates are losing their jobs. C. Salaries in some fields have increased in the past year.
B. Ryan Stewart has not been able to find a job. D. The job market has changed dramatically over the past 4 years.

formation into word embeddings and generate the contextu-
alized word representations with GRUs (Chung et al. 2014)
and gate mechanism. After that, we develop Evidence-
Answer Matching to extract multiple evidence snippets to
form evidence sequences, which are then matched to can-
didate answers. Meanwhile, we build Question-Passage-
Answer Matching to learn semantic relationships among
passages, questions and candidate answers. Finally, we inte-
grate multiple aggregated matching results as final matching
representations to make final decisions.

The remainder of this paper is organized as follows. We
first describe our MMN approach in detail in Section 2 and
present our experimental results in Section 3. After that, we
present previous work related to our work in Section 4 and
conclude our work with future work in Section 5.

Our Proposed Model
In this section, we introduce the task definition and describe
our MMN model in detail. The illustration of MMN is
shown in Figure 1(a). Our model is composed of following
major components: input embedding, projection layer, con-
text encoding, multi-matching component, merging layer
and answer prediction. We will address each component in
detail in the following subsections.

Task Definition
In the scenario of multiple choice reading comprehension,
given a passage, a question and a few candidate answers, our
goal is to select the correct answer from candidate answers.
Formally, we represent the dataset as {P,Q,A, y}Ni=1, where
P = {wP

t }
lp
t=1 is a passage composed of a sequence of

words wP
t , Q = {wQ

t }
lq
t=1 is a question composed of a se-

quence of words wQ
t , A is a set of answers, each of which

is A = {wA
t }

la
t=1 ∈ A, and y indicates the index of golden

answer. lp, lq, la are lengths of the passage, question and an-
swer, respectively. In the sequel, for the simplicity of de-
scription, we will omit the superscript (P , Q or A) of wP ,
wQ and wA, and the subscript (p, q, or a) of lp, lq and la.

Input Embedding and Projection Layer
The goal of input embedding is to map one-hot encoded
word vectors into low dimensional vector space. The output

of input embedding consists of three parts: pretrained word-
level word embedding vector, char-level word embedding
vector and exact word matching feature. Following (Seo et
al. 2016), char-level word embeddings are generated by ap-
plying convolution and max-over-time-pooling operation to
each word. Then, we pass the the output e ∈ Rn×l of in-
put embedding into a projection layer to learn task-specific
representation E ∈ Rd×l as follows:

E = ReLU(WP e+ bP ), (1)
where WP ∈ Rd×n, bP ∈ Rd are weights and biases,
ReLU is the Rectified Linear Unit, n denotes the number
of dimensions of input embedding vector and d denotes the
number of hidden units in the projection layer. The projec-
tion layer outputs a sequence of d-dimensional vectors for
input sequences (i.e., passages, questions and answers).

Context Encoding
In order to accumulate contextual representations for words,
we employ a bi-directional recurrent network (BiRNN) to
read sequences from both sides, i.e. the bottom part in Fig-
ure 1(a). Specifically, we use Gated Recurrent Unit (GRU)
(Chung et al. 2014) as the basic building block and con-
catenate the hidden states of both directions at each time
step. We denote the operation of BiGRU on a sequence s
as BiGRU(s). Thus, we have contextualized word repre-
sentations H ∈ Rd×l as follows:

H = BiGRU(E). (2)
Inspired by (Srivastava, Greff, and Schmidhuber 2015), we
exploit gate mechanism to control the information flow
from word representations and contextualized representa-
tions. Thus, we have gated contextualized representations
H̃ ∈ Rd×l as shown below:

z = σ(WEE +WHH + b), (3)

H̃ = E ∗ z +H ∗ (1− z), (4)
where WE ,WH ∈ Rd×d, b ∈ Rd are weights and biases,
and z ∈ Rd×l is the update gate. Essentially, the gated con-
textual encoding layer can be seen as a sequential variant
of the highway network, where we use a recurrent neural
network to learn the gate instead of a forward neural net-
work. Intuitively, incorporating sequential information into
a highway network could be more effective in modelling se-
quences.
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Figure 1: (a) Illustration of MMN (Left: Evidence-Answer Matching I; Middle: Evidence-Answer-Matching II; Right:
Question-Passage-Answer Matching) (b) Match operation. (c) SoftSel operation.

Multi-Matching Component
In the multi-matching component, there are two types of
matching modules, i.e. Evidence-Answer Matching mod-
ule (denoted by EAM-I and EAM-II in Figure 1(a)) and
Question-Passage-Answer Matching module (denoted by
QPAM in Figure 1), which are constructed under a uni-
fied framework. Both of them consist of two submodule:
composing submodule and matching submodule. Compos-
ing submodule is used to build attended sequences according
to the attention mechanism, while matching submodule is
used to model the semantic relationship between sequences.
Before we describe them in detail, we define two operations,
SoftSel and Match as follows.

• SoftSel (i.e. Figure 1(c)): This operation takes two se-
quences as input, and outputs a sequence. After calculat-
ing the cartesian similarity between all possible combi-
nations of vectors of the two input sequences, we apply
a row-wise softmax function to the similarity, and then
we use the normalized similarity matrix as weights to cal-
culate weighted sum of vectors of the first sequence. Let
HI1 ∈ Rd×l1 andHI2 ∈ Rd×l2 be the input. We calculate
the output HO ∈ Rd×l1 as follows:

G = HI1TWGHI2 , (5)

G̃ = row-wise softmax(G), (6)

HO = HI2G̃T , (7)

where W ∈ Rd×d are weights, G, G̃ ∈ Rl1×l2 are im-
mediate similarity matrices. Intuitively, HO

i encodes the
most relevant part of the second sequence w.r.t. ith word
in the first sequence.

• Match (i.e. Figure 1(b)): This operation takes
four sequences as input, which are denoted by
HI1 , HI2 , HI3 , HI4 ∈ Rd×l, respectively, and out-
puts the aggregated matching representation Hf ∈ R2d.
To do this, we first divide four inputs into two groups,
i.e., the first two as one group and the last two as the other
group. We then calculate the matching representation
M1,M2 ∈ Rd×l within each group by:

M1 = ReLU(WM

[
HI1 ∗HI2

HI1 −HI2

]
+ bM ), (8)

M2 = ReLU(WM

[
HI3 ∗HI4

HI3 −HI4

]
+ bM ), (9)

where WM ∈ Rd×2d and bM ∈ Rd are learnable weights

and biases and
[
·
·

]
denotes column-wise concatenation,

∗ and− denote element-wise multiplication and substrac-
tion, respectively. After that, we project the concatenation
of M1 and M2 to d-dimensional space and aggregate the
projected matching information HM ∈ Rd×l with a Bi-
GRU layer as follows:

HM = BiGRU(WHM

[
M1

M2

]
+ bH

M

), (10)
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where WHM ∈ Rd×2d and bH
M ∈ Rd are learnable

weights and biases. Finally, we extract the salient feature
with max pooling and attentive pooling operation over ag-
gregating representation to obtain Hmax, Hatt ∈ Rd and
concatenate them as final output Hf ∈ R2d as follows:

Hmax = max-pooling(HM ), (11)

α = softmax(ReLU(WHM

HM + bH
M

)), (12)

Hatt = HMα, (13)

Hf =

[
Hmax

Hatt

]
, (14)

where WHM ∈ Rd and bH
M ∈ R are learnable weights

and biases and α ∈ Rl is the normalized weights.

Evidence-Answer Matching Evidence-Answer Match-
ing module is depicted at left and middle part of Figure
1(a), which aims to form matching information between the
extracted evidences and candidate answers. There are two
ways to reach this. We describe one of them in detail. The
second one is similar to the first one so that we describe
it briefly. We denote the first Evidence-Answer Matching
module as EAM-I and the second Evidence-Answer Match-
ing module as EAM-II. Evidence-Answer Matching mod-
ules (EAMs) indicate both of them.

We first begin by forming evidence sequence according
to passage and question. We achieve this by applying a
SoftSel operation which takes passage and question as in-
put, which is formulated as: H̃Q = SoftSel(HQ, HP ).

From the definition of SoftSel, we can see that H̃Q has the
same length as the question, where each position at H̃Q is
a weighted sum of all time steps of passage representation.
Note that H̃Q is not a continuous slice of HP and each po-
sition of H̃Q can be seen as a synthesized evidence vector.
Due to different length of synthesized evidence and answer,
it may be not suitable to match the answer and evidence di-
rectly, because there is huge semantic gap between them.
As such, we utilize the answer to refine evidence further.
H̃QA = SoftSel(HA, H̃Q), where H̃QA ∈ Rd×la . In-
tuitively, the most related evidence to answer is extracted,
which will benefit the matching with the candidate answers.

Directly matching them may not be effective, so we
explore a deeper fashion to model the deeper relation-
ship. We calculate the attended sequence w.r.t. each
other as follows: H

QA
= SoftSel(H̃QA, HA), H

A
=

SoftSel(HA, H̃QA). Together with two input sequences,
we feed them into Match operation to get final aggregated
matching representation Hf1 ∈ R2d as follows: Hf1 =

Match(H̃QA, H
QA
, HA, H

A
).

For the other way to form evidence, we first attend ques-
tion with candidate answer. Then, attended question is used
to interact with the passage to obtain evidence with the same
length as the candidate answers. The intuition behind it is
that some words in question is more important for extracting
evidence. Finally, we feed extracted evidence sequence and
answer into matching submodule to obtain final aggregated
matching representation Hf2 ∈ R2d.

Question-Passage-Answer Matching Differing from
Evidence-Answer Matching module, the Question-Passage-
Answer Matching module (i.e. right part of Figure 1(a))
aims to model passage, question and candidate answer
together, which we call QPAM for short. Like Evidence-
Answer Matching, Question-Passage-Answer Matching is
also designed under our unified compose-match framework.
Following our framework, we first compose passage-aware
question HPQ ∈ Rd×lp and passage-aware candidate
answer HPA ∈ Rd×lp with SoftSel operation, which
is formulated as follows: HPQ = SoftSel(HP , HQ),
HPA = SoftSel(HP , HA). Each position of HPQ, HPA

represents the most relevant part of the question and the can-
didate answers, respectively. Next, we match HPQ, HPA

with HP using Match operation to obtain the aggregated
matching representation Hf3 ∈ R2d, which is formulated
as follows: Hf3 = Match(HPQ, HP , HPA, HP ). Intu-
itively, the question and answer are combined implicitly
to match with specific snippet in the passage to decide its
entailment relationship.

Merging Layer
In this section, we merge the output vectors of Evidence-
Answer Matching module and Question-Passage-Answer
Matching module. In practice, merging outputs from differ-
ent modules is proved to be very effective. Empirically, we
concatenate all output vectors to obtain the summary of ag-
gregated information Hf ∈ R6d as follows:

Hf = [Hf1 ;Hf2 ;Hf3 ], (15)

where [·; ·; ·] denotes row-wise concatenation operation.

Answer Prediction
The input to the final prediction layer is the output of merg-
ing layer. We pass it to a hidden layer which outputs v ∈ R2d

as follows:
v = ReLU(W vHf + bv), (16)

where W v ∈ R2d×6d and bv ∈ R2d are trainable weights
and biases. Then we apply a softmax classification layer to
obtain the probability distribution over classes ŷ as follows:

ŷ = softmax(Wv + b), (17)

where W ∈ R2d, b ∈ R are trainable weights and biases.

Optimization Objective
We perform optimizing our proposed model with multi-
class cross-entropy loss with L2 regularization. The objec-
tive function is given as

J(θ) = −
N∑
i=1

L∑
j=1

y
(i)
j log ŷ

(i)
j + λ||θ||2, (18)

where J is the cost function, yj is a L-dimensional one-hot
vector with ground truth being 1 and the others being 0, ŷj is
the output probability of jth class, andN , L, θ, λ denote the
number of examples, the number of candidate answers for
each question, all trainable parameters, regularization coef-
ficient respectively.
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Experiments
To evaluate the effectiveness of our model, we conduct ex-
periments on RACE (Lai et al. 2017) which is a large-scale
multiple choice reading comprehension dataset. Our model
achieves the state-of-the-art performance on this dataset.

Datasets and Implementation Details
RACE consists of two subsets collected from English exams
for middle and high school students, which we call RACE-
M and RACE-H respectively by following (Lai et al. 2017).
All questions and candidate answers in RACE are generated
by human experts. There is only one correct answer among 4
candidates for each question. We partition the train/dev/test
sets in the same way as ((Lai et al. 2017)) does and use accu-
racy as the evaluation metric. Accuracy is calculated as fol-
lows: accuracy = N+/N , where N+ and N are the num-
ber of correct predictions and the total number of questions.
The statistics of RACE dataset are shown in Table 2.

Table 2: Statistics of dataset. #w/p, #w/q and #w/a represent
the average length of passage, question and candidate an-
swers respectively. #a/q is the number of candidate answers
for each question.

Dataset Train Dev Test #w/p #w/q #w/a #a/q
RACE-M 25421 1436 1436 249.9 10.1 4.9 4
RACE-H 62445 3451 3498 374.9 11.4 6.8 4

RACE 87866 4887 4934 342.9 11.0 6.3 4

We tokenize all sentences using SpaCy toolkit1 and low-
ercase all tokens. Our model is implemented with Ten-
sorFlow2 (Abadi et al. 2016) and all hyperparameters are
tuned according to performance on the development set. We
use 300D GloVe3 (Pennington, Socher, and Manning 2014)
word embeddings which remain fixed during training. Out-
of-vocabulary words are initialized to zero vectors. Each Bi-
GRU holds 1 layer and 100 hidden units for each direction.
To alleviate overfitting, we apply dropout (Srivastava et al.
2014) to the input of every layer with the dropout rate set to
0.2. The model is updated using mini-batch stochastic gradi-
ent descent with batch size of 32. We train our model using
ADAM (Kingma and Ba 2014) with learning rate of 0.0003,
where gradients are clipped in L2-norm to no larger than
10. Regularization coefficient is set to 1e-7. Early stopping
technique is adopted after 50 epochs. All experiments were
conducted on a NVIDIA TITAN XP GPU Card.

Comparison against Baselines
We compare our model with the following baselines.
• SAR (Chen, Bolton, and Manning 2016) builds bilinear

attention to obtain evidence representation and compare
it to candidate answers.

• GAR (Dhingra et al. 2017) applies multi-hop gated atten-
tion mechanism between passage and question to obtain
question-aware evidence representation.
1https://spacy.io/
2https://www.tensorflow.org/
3https://nlp.stanford.edu/projects/glove/

• ElimiNet (Parikh et al. 2018) tries to eliminate candidate
answers in a multi-hop manner, which is built on top of
gated attention layer(s).

• HAF (Zhu et al. 2018) employs hierarchical attention flow
to extract evidence and also considers correlation among
candidate answers.

• DFN (Xu et al. 2017) utilizes various matching function
to model sequences and selects the best policy optimized
by reinforcement learning technique.

• Hier-Co-Matching (Wang et al. 2018) proposes a new co-
matching approach to jointly model whether a passage
can match both a question and a candidate answer.

• BiAttention (MRU) (Tay, Tuan, and Hui 2018) adopts
bidirectional attention to obtain matching representation
among sequences encoded by Multi-range Reasoning
Units (MRU).

Performance comparison against all baseline models are
shown in Table 3. From Table 3, we can observe that MMN
outperforms all baselines and achieves state-of-the-art accu-
racy, which verifies the efficacy of our model. More specifi-
cally, on RACE-M subset, MMN outperforms the currently
most competitive models BiAttention (MRU) and Hier-Co-
Matching by 3.4 percentages and 5.3 percentages, respec-
tively. On RACE-H subset, MMN achieves higher accuracy
by 4.7 percentages and 4.0 percentages than BiAttention
(MRU) and Hier-Co-Matching. Overall, MMN achieves an
accuracy of 54.7%, which demonstrates the effectiveness of
MMN. For further comparison, we also report results of the
ensemble model. Following (Xu et al. 2017) and (Tay, Tuan,
and Hui 2018), we build an ensemble model of 9 single mod-
els, where all single models are initialized with different ran-
dom seeds and hyperparameters. We observe that ensemble
models also obtains a significant performance gain. We also
report the performace of Amazon Turkers tested on a sam-
pled subset of RACE and the percentage of the unambiguous
question in a subset of the test set (i.e. Ceiling Performance).
Note that there is still a huge performance gap between ma-
chine reading model and human, which indicates the great
potential for future research.

Ablation Study
To evaluate the effectiveness of each component of MMN,
we conduct ablation analysis on RACE. Table 4 shows the
performance of our single full model and all single ablated
models on the development set. In Table 4, we observe that
all key components of MMN contribute to the model perfor-
mance. Without char-level word embedding, performance
decreases by 0.7 percentage. To fairly validate the effect of
gate mechanism used in context encoding, we replace it with
highway network on top of BiGRU layer. Decreasing perfor-
mance shows that gated contextual encoding is more effec-
tive than the highway network in our model. The key con-
tribution of this work is multi-matching component which
models the input in different ways. In Table 4, we see that
performance gets worse when ablating EAM-I and EAM-II
than ablating either of them. This is not surprising because
a variety of extracting evidence could benefit learning more
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Table 3: Experimental results on test set. Best machine
model result is in boldface. ∗ indicates ensemble model.

Model RACE-M RACE-H RACE
SAR 44.2 43.0 43.3
GA 41.9 43.4 42.9

ElimiNet 44.4 44.5 44.5
HAF 46.2 46.4 46.0
DFN 51.5 45.7 47.4

Hier-Co-Matching 55.8 48.2 50.4
BiAttention (MRU) 57.7 47.5 50.4
MMN(Our model) 61.1 52.2 54.7

GA+ElimiNet∗ 47.4 47.4 47.2
DFN∗ 55.6 49.4 51.2

BiAttention (MRU)∗ 60.2 50.3 53.3
MMN∗(Our model) 64.7 55.5 58.2

Turkers 85.1 69.4 73.3
Ceiling Performance 95.4 94.2 94.5

effective matching representation in merging layer. By re-
moving QPAM module, the model only achieves accuracy of
53.2% and 48.8% on RACE-M and RACE-H respectively.
We believe the reason is that there are many fill-in-blank
questions in which recognizing entailment would be more
suitable for selecting the correct answer.

Table 4: Results of ablated model on development set. CWE:
Char-level Word Embedding. GCE: Gated Context Encod-
ing.

Model RACE-M ∆ RACE-H ∆ RACE ∆
Full-Model 63.8 - 54.7 - 57.4 -
w/o CWE 62.3 -1.5 54.2 -0.5 56.7 -0.7
w/o GCE 61.2 -2.6 52.3 -2.4 54.9 -2.5
w/o EAM-I 62.6 -1.2 53.8 -0.9 56.3 -1.1
w/o EAM-II 62.0 -1.8 53.1 -1.6 55.7 -1.7
w/o EAMs 59.4 -4.4 50.5 -4.2 53.1 -4.3
w/o QPAM 53.2 -10.6 48.8 -5.9 50.1 -7.3

Accuracy w.r.t. Question Types
We first divide all examples in development set of RACE
into many categories according to question type. Question
types are decided by respective words, such as what, where,
why, who. Besides questions whose types are indicated by
some certain words, there are many fill-in-blank questions
(e.g. is the movie capital of the world.) and statement-
justification checking questions (e.g. which of the following
is not true?), which are also categorized into fill-in-blank and
true/false respectively.

Figure 2 shows how well our model performs with respect
to different types of questions. In this experiment, we would
like to see the performance on some particular type of ques-
tions. We can see that the performances for ”why” questions
are higher than others. The length of candidate answers of
”why” question is usually longer than other types of ques-
tions, such as ”when” and ”where” question, which could
provide richer information when matched with passage or

evidence. However, performance gap against other question
types is not large, which indicates that our model has ro-
bust performance in different type of questions. Our model
works poorly for the true/false questions. Because it is dif-
ficult to utilize the sequence matching to handle questions
with negative words, where flipping the semantic polarity of
the sentence is required.

Accuracy w.r.t. Answer Length
We next evaluate the performance of our model with regard
to the answer length. Since the length of answers varies in
a large range, we divide all examples into several groups
according to the average length, i.e. the number of words,
of 4 candidate answers. In Figure 3, we see that our model
performs better on RACE-M than on RACE-H in almost all
groups of questions with different lengths of answers. It is
not surprising because RACE-M is collected from exams in
middle school. Note that it is not obvious that our model
performs better when answering question with shorter can-
didate answers. The reason we believe is that longer candi-
date answers may provide more information as our model is
based on sequence matching.

fill-
the

-bl
an

k
oth

er

pu
rpo

se/
ide

a/t
ile

tru
e/f

als
e

wha
t

whe
n

whic
h

who why

Type of Questions

0

200

400

600

800

1000

1200

1400

1600
Nu

m
be

r o
f C

as
es

Right_RACE-H
Wrong_RACE-H
Right_RACE-M
Wrong_RACE-M

Figure 2: performance on different types of questions.

Case Study
To demonstrate the effectiveness of each subcomponent of
MMN, we design an experiment to analyze the outputs
of MMN and ablated model at final softmax classifica-
tion layer. We sample two illustrative cases, which are also
shown in Section 1. Normalized logits and predicted an-
swers of different models are shown in Table 5. It is intrigu-
ing to note that our model can handle them well.

From Table 5, we can observe that both of MMN and
QPAM predict the answer correctly when answering the first
question, while EAMs predicts the answer wrongly, which
indicates our multi-matching mechanism can make a differ-
ence when one of single matching makes an incorrect deci-
sion. For the second question, as we stated in Section 1, it
is necessary to extract multiple evidences to summarize the
passage so that EAMs is more suitable than QPAM to an-
swer the question. We can see that both of MMN and EAMs
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Figure 3: Performance on different lengths of answers.

predict the answer correctly and QPAM predicts the answer
wrongly. Furthermore, It can be observerd that the output
logit corresponding correct answer of MMN is higher than
both EAMs and QPAM for both two questions. Intuitively,
combining EAMs and QPAM is beneficial to MMN to learn
richer representation in the merging layer.

Table 5: Output logits and prediction of different model

Sample Model Candidates Prediction Golden
A B C D Answer

1
MMN 0.02 0.01 0.94 0.03 C
EAMs 0.01 0.14 0.03 0.82 D C
QPAM 0.29 0.06 0.53 0.12 C

2
MMN 0.03 0.02 0.05 0.90 D
EAMs 0.29 0.12 0.05 0.54 D D
QPAM 0.01 0.10 0.78 0.11 C

Related Work
Machine Reading Comprehension (MRC) has been studied
extensively in the literature. The emergence of many large-
scale datasets promotes the research in this field. (Hermann
et al. 2015) generated a large cloze-style dataset from CNN
news corpus automatically. (Rajpurkar et al. 2016) released
Stanford Question Answer Dataset (SQuAD), where the
question is generated by the human according to wikipedia
articles and the answer is a span of the passage. Compared
to these datasets where answer is extracted from passage
directly, answers to questions in MS-MARCO (Nguyen et
al. 2016), DuReader (He et al. 2018), MCtest (Richardson,
Burges, and Renshaw 2013) and RACE (Lai et al. 2017) are
human-generated, which is more challenging. This can be
seen that the current state-of-the-art model can only achieve
almost 50% accuracy on RACE, though there are only 4 can-
didate answers for each question.

Most recent works involving multiple choice reading
comprehension attempt to synthesize evidence representa-
tion according to attention mechanism (Bahdanau, Cho, and

Bengio 2014; Wang and Jiang 2016). (Parikh et al. 2018)
proposes ElimiNet which tries to use soft-eliminating to ex-
clude the incorrect candidate answers. However, it is usu-
ally ignored to model semantic relationship between ev-
idence and answer deeply, which is expecially important
when answer is a long sequence and almost complete sen-
tence. Among existing works, DFN (Xu et al. 2017) and
Hier-Co-Matching (Wang et al. 2018) are a bit similar to
MMN. The key differences between MMN and them lie in
following aspects: (1) MMN matches attended context se-
quences directly instead of using multi-perspective match-
ing (Wang, Hamza, and Florian 2017), where the input fed to
match is similarity scores. (2) MMN utilizes both triple se-
quences matching and pairwise sequences matching. These
two matching are unified under our proposed compose-
match framework. Furthermore, MMN aggregates the in-
formation with both max pooling and attentive pooling.
(3) MMN employs sequential variant of highway network
(Srivastava, Greff, and Schmidhuber 2015) to improve the
performance further. (4) Comparing our Question-Passage-
Answer Matching to Hier-Co-Matching, we adopt the flatten
structure instead of hierarchical structure used in Hier-Co-
Matching when encoding passage. Though the flatten struc-
ture performs worse than hierarchical structure in Hier-Co-
Matching, we still show its effectiveness when matched with
Evidence-Answer Matching in our model.

Conclusion
In this work, we propose a novel Multi-Matching Network
for multiple choice machine reading comprehension. Our
MMN learns the relationship among passage, question and
candidate answer in two different ways. Both ways guide us
to design our model which is intuitive and effective. Empiri-
cal results on RACE dataset demonstrate MMN’s effective-
ness, which achieves state-of-the-art results. However, on
RACE dataset, there is a huge performance gap compared
to human performance. This indicates the difficulty of the
task and huge improvement potential of our model.

In the future, it would be interesting to incorporate com-
monsense knowledge to further improve our approach. An-
other future direction is to extract evidence sequences to
build interpretable reading comprehension model based on
planning approaches (Feng, Zhuo, and Kambhampati 2018;
Zhang, Huang, and Zhao 2018) or leverage the MMN model
to help acquire planning domain models (Zhuo, Muñoz-
Avila, and Yang 2014; Zhuo and Kambhampati 2017) from
texts.
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M.; Jia, Y.; Józefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
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