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Abstract

In modern computer science education, massive open online
courses (MOOCs) log thousands of hours of data about how
students solve coding challenges. Being so rich in data, these
platforms have garnered the interest of the machine learn-
ing community, with many new algorithms attempting to au-
tonomously provide feedback to help future students learn.
But what about those first hundred thousand students? In
most educational contexts (i.e. classrooms), assignments do
not have enough historical data for supervised learning. In
this paper, we introduce a human-in-the-loop “rubric sam-
pling” approach to tackle the “zero shot” feedback challenge.
We are able to provide autonomous feedback for the first stu-
dents working on an introductory programming assignment
with accuracy that substantially outperforms data-hungry al-
gorithms and approaches human level fidelity. Rubric sam-
pling requires minimal teacher effort, can associate feedback
with specific parts of a student’s solution and can articulate
a student’s misconceptions in the language of the instructor.
Deep learning inference enables rubric sampling to further
improve as more assignment specific student data is acquired.
We demonstrate our results on a novel dataset from Code.org,
the world’s largest programming education platform.

Introduction
The need for high quality education at scale poses a diffi-
cult challenge. The price of education per student is grow-
ing faster than economy-wide costs (Bowen 2012), limiting
the resources available to support student learning. When
also considering the rising need to provide adult retraining,
the gap between the demand for education and our ability to
provide is especially large. In recent years, massively open
online courses (MOOCs) from platforms like Coursera and
Code.org have made progress by scaling the delivery of con-
tent. However, MOOCs largely ignore an equally important
ingredient for learning: high quality feedback. The clear so-
cietal need, alongside massive amounts of data has led to
a machine learning grand challenge: learn how to provide
feedback for education at scale, especially in computer sci-
ence due to its apparent structure and high demand.

Scaling feedback (a.k.a. “feedback” challenge) has
proven to be a hard machine learning problem. Despite
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dozens of projects to combine massive datasets with cutting
edge deep learning, current approaches fall short. Three is-
sues emerge: (1) for even basic computer science education,
homework datasets have statistical distributions with heavy
tails similar to natural language; (2) hand labeling feedback
is expensive, rendering supervised solutions infeasible; (3)
in real world contexts feedback is needed for assignments
with small (or zero) historical records of student learning.
For the billions of learners around the world, most education
and assessments have at most hundreds of records. Even if
students use Code.org, assignments are constantly changing,
making the small-data context perennial. It is a zero-shot so-
lution that has potential to deliver enormous social impact.

We build upon a simple insight that enables us to move be-
yond the supervised paradigm: When experts give feedback,
they are asked to perform the hard task of predicting mis-
conception (y) given program (x). When breaking down the
cognitive steps that experts go through, they often solve the
inference by first thinking generatively p(x, y). They imag-
ine, “if a student were to have a particular set of misconcep-
tions, what sorts of programs is he or she likely to produce.”
Thinking generatively is much easier: while there are a fi-
nite set of decomposable misconceptions, they combine into
exponential amounts of unique solutions.

We formalize this intuition into a technique we call
“rubric sampling” to elicit samples from an expert prior of
the joint distribution p(x, y) and use deep learning for infer-
ence p(y|x). With no historical examples, rubric sampling
enables feedback with accuracy close to the fidelity of hu-
man teachers, outperforming data-intensive state of the art
algorithms. We case study this technique on Code.org, an
online programming platform that has been used by 610 mil-
lion students and has provided a full curriculum to 29 mil-
lion students, equivalent to 39% of the US K12 population.

Specific contributions in this paper:
1. We introduce the Zero Shot Feedback Challenge on a

dataset from 8 assignments from Code.org along with an
evaluation set of 800 labels.

2. We articulate a novel solution: rubric sampling with deep
learning inference which sets the new state of the art in
code feedback prediction: F1 score doubled over baseline,
approaching human level accuracy.
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3. We introduce the ability to (i) attribute feedback to spe-
cific parts of code, (ii) trace learning over time and (iii)
generate synthetic datasets.

The Zero Shot Feedback Challenge
The “Zero-Shot” Feedback Challenge is to infer the miscon-
ceptions that led to errors in a student’s answer using zero
historical examples of student work and zero expert anno-
tations. Though this challenge is difficult, it is a task that
humans find straightforward. Experts are especially adept at
generalizing: an instructor does not need to see thousands of
instances of a misunderstanding in order to understand it.

Why is zero-shot so important? Human annotated exam-
ples are surprisingly time consuming to acquire. In 2014,
Code.org launched an initiative where hundreds of thou-
sands of instructors were crowdsourced to provide feedback
to student solutions1. Labeling was hard and undesirable
work and the long tail of unique solutions meant that even
after thousands of human hours of teacher work, the annota-
tions were only scratching the surface of feedback. The ini-
tiative was cancelled after two years and the effort has not
been reproduced since. For small classrooms and massive
online platforms alike, it is infeasible to acquire the supervi-
sion required for contemporary nonlinear methods.

We foresee three main approaches: (1) learn to transfer
information from one assignment to another, (2) learn to in-
corporate expert knowledge, and (3) form algorithms that
can generalize from small amounts of human annotations.

Related Work
Education Feedback If you were to solve an assignment
on Code.org today, the hints you would be given are gen-
erated from a unit test system combined with static anal-
ysis of the students solution. It has been a widely reported
social-good objective to improve upon these hints (Price and
Barnes 2017) especially since the state of the art is far from
ideal (O’Rourke, Ballweber, and Popoviı́ 2014). Achieving
this goal has proved to be hard. Previous research on a more
basic set of Code.org challenges (the “Hour of Code”) have
scratched the surface with respect to providing feedback at
scale. Original work found that latent patterns in how stu-
dents solve programming assignments have signal as to how
he or she should proceed (Piech et al. 2015c). Applying a
neural network improved prediction of feedback (Piech et
al. 2015a) but models were (1) too far from human accuracy,
(2) weren’t able to explain its predictions and (3) required
massive amounts of data. The current state of the art com-
bines these ideas and provides some improvements (Wang
et al. 2017a). In this paper we propose a method which uses
less data, approaches human accuracy and works on more
complex Code.org assignments by diverging from the clas-
sic supervised framework. Research on feedback for even
more complex assignments such as medical education (Gei-
gle, Zhai, and Ferguson 2016) and natural language ques-
tions (Bulgarov and Nielsen 2018) has also relied on data-
hungry supervised learning and perhaps would benefit from
a rubric sampling inspired approach.

1http://www.code.org/hints

Theoretical inspiration for our expert-based generative
rubric sampling derives from Brown’s “Repair Theory”
which argues that the best way to help students is to un-
derstand the generative origins of their mistakes (Brown and
VanLehn 1980). Simulating student cognition has been ap-
plied to simple arithmetic problems (Koedinger et al. 2015)
and recent hard coded models have been very successful
in inferring why students make subtraction mistakes (Feld-
man et al. 2018). Researchers have argued that such expert
models are infeasible for assignments as complex as coding
(Paaßen et al. 2017). However, the automated hierarchical
decomposition achieved by (Nguyen et al. 2014) inspired
us to develop rubric sampling, a simple expert model that
works for programming assignments.

Zero Shot Learning There is a growing body of work in
zero shot learning from the machine learning community,
spawned by poor performance on unseen data.

The simplest approach is to include a human-in-the-loop.
While labeling is one way human experts can “teach” a
model, it is often not the most efficient. Instead, (Lee et al.
2017) leverages knowledge graphs build by humans to esti-
mate a similarity score. Similarly, (Lake, Salakhutdinov, and
Tenenbaum 2015) present a probabilistic knowledge graph
(i.e. a Bayesian program) for generating symbols that out-
perform deep learning on out-of-sample alphabets. In this
work, we employ a specific knowledge graph called a gram-
mar, which we find to improve generalization.

A more complex approach (without human involvement)
focuses on unsupervised algorithms to estimate the data dis-
tribution. (Verma et al. 2018; Wang et al. 2017b) train an ad-
versarial autoencoder by generating synthetic examples and
concurrently fitting a discriminator to classify between syn-
thetic and empirical data. (Xian et al. 2018) propose a sim-
ilar method for a CNN feature space. In this paper, we gen-
eralize this technique to a larger class of (non-differentiable)
models: in lieu of a discriminator, we interpolate between
synthetic and empirical data via a multimodal autoencoder.

The Code.org Exercises Dataset
Code.org is an online education platform for teaching begin-
ners fundamental concepts in programming. Students build
their solutions in a drag-and-drop interface that pieces to-
gether blocks of code. Its growing popularity since 2013 has
captured a large audience, having been used by 610 million
students worldwide. We investigate a single curriculum con-
sisting of 8 exercises from Code.org’s catalog. In this partic-
ular unit, students are learning to combine nested for loops
with variables, and particularly the use of a for loop counter
in calculations. The problems are all presented as drawing
geometric shapes in a 2D coordinate space, requiring knowl-
edge of angles. For instance, the curriculum begins with the
task of drawing an equilateral triangle (see Figure 1).

The dataset is compiled from 54,488 students. Each time
a student runs their code, the submission is saved. Each stu-
dent is then associated with a trajectory of programs whose
length depends on how many tries the student took. In to-
tal, there are 1,598,375 submissions. Since the exercises do
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P1  15,692 / 51,073 P2  50,190 / 48,606 P3  35,545 / 44,819 P4  12,905 / 42,995 P5  27,200 / 42,361 P6  59,693 / 41,198 P7  46,446 / 38,560 P8  59,615 / 36,727

Figure 1: The curricula for learning nested for loops in Code.org. To provide intuition on the vast domain complexity, we
show the number of unique solutions (blue) and the number of students (orange) who attempted the problem for each of the 8
exercises.

not have a bounded solution space, students could produce
arbitrarily long programs. This implies that, much like natu-
ral language, the distribution of student submissions has ex-
tremely heavy tails. Figure 2 shows how closely the submis-
sions follow a Zipf distribution. To emphasize the difficulty,
even after a million students, there is still a 15% chance that
a new student generates a solution never seen before.

Head

Body

Tail

Figure 2: The distribution of programs for 8 problems from
Code.org follow closely to a Zipf distribution, as shown by
the linear relationship between the log probability of a pro-
gram and the log of its rank in frequency. 5 to 10 programs
dominate while the rest are in the heavy tails.

Evaluation Metric If we only cared about accuracy, we
would prioritize the handful of 5 to 10 programs that make
up the majority of the dataset. But given the infinite number
of possible programs, struggling students who would benefit
most from feedback will almost certainly not submit any one
of the “most likely” programs. Knowing this, we define our
evaluation metrics in terms of the Zipf itself: let the head (of
the Zipf) refer to the top 20 programs ordered by frequency,
the tail as any program with a frequency of three or less, and
the body as everything in between. Figure 2 shows the rough
placement of these three splits. When evaluating models, we
ignore the head: these very common programs can be manu-
ally labeled. Instead, we will report two F1 scores2: one for
programs in the body and one for the tail.

Human Annotations We collected fine-grained human
annotations to over 800 unique solutions (chosen randomly
from P1 and P8) from 7 teaching assistants from the Stan-
ford introduction to programming course. We chose to label

2We choose F1 score over accuracy as the labels are not close
to balanced. Thus, accuracy tends to overinflate numbers.

programs from the easiest (P1) and hardest (P8) exercises
as they are most different. Intermediate exercises (P2 to P7)
share many of same structural features. The annotations are
binary labels of 20 misconceptions that cover geometric con-
cepts (e.g. doesn’t understand equilateral is 60 degrees) to
control flow concepts (e.g. repeats code instead of using a
loop). 200 annotations were used to measure inter-rater reli-
ability and the remaining 600 were used for evaluation. We
refer to this dataset as D. Labeling took 25.9 hours (117 sec-
onds per program). At this rate, the entire dataset would take
9987 hours of expert time, over a year of continual work.

Methods
We consider learning tasks given a dataset of n labeled ex-
amples, where each example (indexed by i) has an input
string xi and a target output vector yi = [yi,1, ..., yi,l] com-
posed of l independent binary labels. In this context, we as-
sume each string represents a block-based program in Lisp-
like notation. Specifically, a program string is a sequence of
Ti tokens, each representing either an operator (functions,
for loop, if statements, etc.), an operand (i.e. variable), an
open parenthesis “(”, or a close parenthesis “)”. See List-
ing 1 for an example program. Formally then, we describe
the dataset as: D = {xi, yi}ni=1 where xi = [xi,1, ..., xi,Ti

].
The goal is to learn a function ŷi = f(xi) such that we min-
imize the error metric defined above, err(ŷi, yi). For super-
vised approaches, we split D into a training (Dtrain) and test
set (Dtest) via a 80-20 ratio. For unsupervised methods, we
evaluate on the entire set D.

Listing 1: Example xi from P1 with 51 tokens. The tokens
Program and WhenRun serve the role of a start-of-sentence
tokens. A model will receive each token in order.
( Program ( WhenRun ) ( Move ( Forward

) ( Value ( Number ( 50 ) ) ) ) (
Repea t ( Value ( Number ( 3 ) ) ) (
Body ( Turn ( L e f t ) ( Value (
Number ( 120 ) ) ) ) ) ) )

Baselines
Majority Label As a sanity check, we can naively make
predictions by voting for the majority label from Dtrain.

Predicting from Output The ubiquitous way to provide
feedback is via unit tests: analyze the output of executing
xi. For Code.org, each execution trace results in a sequence
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when run {integer}TurnTurn Left Right

Terminal Nodes

done

when run 10003Turn Left

Move forward

Move forward

repeat until
do
repeat for
do

{string}
…

…For loop: wrong endFor loop: wrong end

For loop: correct

For loop: no loop

Start Token

Move: wrong op

Move: wrong op

Turn: no turn

Turn: Correct

For loop: Correct

Move: wrong multiple

For loop: correct

Program (start token)

Move: wrong op

Move: wrong multiple

Non-Terminal Nodes

i) primitives ii) token emission iii) merge tokens

terminal relation:  emission of code

synthetic program:
example output sampled 

from grammar

synthetic feedback:
we get semantic tags as 

part of the generation

non-terminal relation: mimic student thinking

repeat for
do

when run

Turn Left

Move forward 1000

repeat for 3
do

Figure 3: Probabilistic grammar (PCFG) for synthetic block-based programs. To generate a synthetic example, we sequentially
choose a set of non-terminal nodes, each of which will emit a set of terminal nodes. The composition of these terminal nodes
make up a program whereas the composition of non-terminal nodes make up the labels/feedback. The emission and transition
probabilities are specified by a human designer (or learned via evolutionary strategies).

of output vectors oi = (oi,1, oi,2, ...) representing coordi-
nates in 2D space where a line has been drawn. We train a
recurrent neural network (RNN) to predict yi from oi. Un-
fortunately, this model requires xi to compile.

Feedforward Neural Network To circumvent compila-
tion, one can tackle the more difficult problem of predict-
ing feedback from raw program strings (Piech et al. 2015b).
We train a l-dimensional classifier composed of a RNN over
tokens by minimizing the binary cross entropy between pre-
dictions ŷi and ground truth yi vectors.

min

l∑
j=1

[−(yi,j log ŷi,j) + (1− yi,j) log(1− ŷi,j)] (1)

The model architecture borrows the sentence encoder (with-
out any stochastic layers) from (Bowman et al. 2015) and
concatenates a 3-layer perceptron with a softmax over l out-
put dimensions. As we will reuse these architectures for
other models, we refer to deterministic encoder as the pro-
gram network and the latter MLP as the feedback network.

Trajectory Prediction No model so far uses the fact that
each student submits many programs before either stopping
or reaching the correct solution. In fact, the current SOTA
(Wang et al. 2017a) is to associate a trajectory of k programs
(x1, x2, ..., xk) with the label yi corresponding to the last
program, xk. Then, for each program xi, we train an embed-
ding ei = f(z|xi), where f is the program network. This re-
sults in a sequence of embeddings (e1, e2, ..., ek) for a single
trajectory. We concurrently train a second RNN to compress
the sequence to a single vector zi = RNN(e1, e2, ..., ek).
This is then provided as input to the feedback network. The
hope is that structure induced by a trajectory implicitly pro-
vides labels that strengthen learning.

Deep Generative Model Finally, we present a new base-
line that is promising in the context of limited data. If we
consider programs and feedback as two modalities, one ap-
proach is to capture the joint distribution p(xi, yi). Doing
so, we can make predictions by sampling from the con-
ditional having seen the program: ŷi ∼ p(yi|xi). To do
this, we train a multimodal variational autoencoder, MVAE
(Wu and Goodman 2018) with two channels. Succinctly,

this generative model uses a product-of-experts inference
network where the joint distribution factorizes into a prod-
uct of distributions defined by two modalities: q(z|x, y) =
q(z|x)q(z|y) where x and y are two observed modalities
and z is a latent variable. We optimize the multimodal ev-
idence lower bound (Wu and Goodman 2018; Vedantam et
al. 2017), which is a sum of three lower bounds:

E
qφh

(z|x,y)
[

∑
h∈{x,y}

λh log pθh(h|z)]− βKL[qφh
(z|x, y), p(z)]

+ E
qφx (z|x)

[log pθx(x|z)]− βKL[qφx
(z|x), p(z)]

+ E
qφy (z|y)

[log pθyy|z)]− βKL[qφy
(z|y), p(z)] (2)

To parameterize qφx
and pθx , we use architectures from

(Bowman et al. 2015). For qφy
and pθy , we use 3-layer

MLPs3. To the best of our knowledge, this is the first appli-
cation of a deep generative model to the feedback challenge.

Rubric Sampling
So far the models have been severely constrained by the
number of labels. If we had a more efficient labeling strat-
egy, we could better train these deep models to their full po-
tential. For instance, imagine instead of focusing on individ-
ual programs, we ask experts to describe a student’s thought
process, enumerating strategies to get to a right or wrong an-
swer. Given a detailed enough description, we can use it to
label indefinitely. Granted, these labels will be noisy but the
quantity should make up for any uncertainty. In fact, we can
formalize such a “description” as a context-free grammar.

A context-free grammar (CFG) is composed of a set of
acyclic production rules describing a space of output strings.
As its name suggests, each rule is applied regardless of
context (meaning no conditional arguments). Formally, a
production rule is made up of non-terminal and terminal
symbols. Non-terminal symbols are hidden and either pro-
duce another non-terminal symbol or a terminal one. Ter-
minal symbols are made up of tokens that appear in the fi-
nal output string. For instance, consider the following CFG:
S → AA;A → α;A → β. S and A are non-terminal sym-
bols whereas α and β are terminal. It is easy to see that this

3qφx(z|x) is composed of the program network and a stochastic
layer; pθy (y|z) is equivalent to the feedback network.
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Figure 4: (a) The F1 scores for P1 and P8. We plot two bars for each model representing the F1 score on the body (left) and
on the tail (right). Rubric sampling models perform far better than baselines and grow close to human-level. The “Zero Shot”
marking refers to rubric sampling without fine-tuning. (b) Highlighting sub-programs conditioned on 4 feedback labels. The
MVAE contains a modality for highlighting masks generated using the rubric. Imagine programming education where sections
of a student’s code can be highlighted along with helpful diagnostics.

CFG can only generate one of {αβ, βα, αα, ββ}. A proba-
bilistic context-free grammar (PCFG) is a CFG parameter-
ized by a vector θ where each production rule has a proba-
bility θi attached. For example, we can make our CFG from
above probabilistic: S 1.0−−→ AA;A 0.9−−→ α;A 0.1−−→ β. Now,
the space of possible outputs has not changed but for in-
stance, αβ will be more probable than βα.

For the feedback challenge, the non-terminal symbols are
labels, yi and the terminal symbols are programs, xi. For
example, a possible production rule might be:

Correctly identified 45 degree angle 1.0−−→ Turn(45)

With a PCFG, we can generate an infinite amount of syn-
thetically labeled programs, Dsyn = {xi, yi}, and use Dsyn
to train data-hungry models. We refer to this as rubric sam-
pling. In practice, we sample a million synthetic examples.
When training supervised networks, we only include unique
examples to avoid prioritizing programs in the Zipf head.

Creating rubrics is surprisingly easy. For a novice (under-
graduate) and an expert (professor), making a PCFG took
19.4 minutes. To make the process even easier, we devel-
oped a simple meta language for representing a grammar.4

Further Learning from Unlabeled Programs
As students use the platform, unlabeled submissions accu-
mulate over time. We refer to the dataset as Dunlabeled.

Evolutionary Strategies We can use unlabeled data in
rubric sampling to automatically learn θ. This means alle-
viating some of the burden for a human-in-the-loop, since
choosing θ is often more difficult than designing the gram-
mar itself. Intuitively, it is easier to reason about what mis-
takes a student can make than how often a student will make

4A Pytorch implementation, rubric grammars, along with data
can be found at https://github.com/mhw32/rubric-sampling-public.

each mistake. But since a PCFG is discrete, we cannot dif-
ferentiate. However, we can hope to approximate local gra-
dients by sampling θ values within some ϵ-neighborhood
and computing finite differences along these random direc-
tions (Salimans et al. 2017). If we repeatedly take a linear
combination of the “best” samples as measured by a fitness
function, then over many iterations, we expect the PCFG to
improve. The challenge is in picking the fitness function.

A good choice is to pick θ whose generated distribution,
Dsyn is “closest” to Dunlabeled

5. As both are Zipf-ian, we
can properly measure “closeness” using a rank order met-
ric (Havlin 1995), as rank is independent of frequency.

Rubric Sampling with MVAE Another way to service
unlabeled data is to train with it: one of the features of the
MVAE is that it can handle missing modalities. We can fit
the MVAE with two data sources: Dsyn and Dunlabeled.

In the case of missing labels, Equation 2 decomposes into
the (unimodal) ELBO (Wu and Goodman 2018):

E
qφx (z|x)

[log pθx(x|z)]− βKL[qφx
(z|x), p(z)] (3)

Thus, the MVAE is shown both a synthetic minibatch,
(xi, yi) ∼ Dsyn, which is used to compute the multi-
modal elbo, and an unlabeled minibatch, (xi) ∼ Dunlabeled,
which computes Equation 3. We can jointly optimize the two
losses by summing the gradients prior to taking an optimiza-
tion step. Intuitively, this interpolates between Dunlabeled and
Dsyn, no longer completely relying on the PCFG. One can
also interpret this as a soft-version of structure learning since
using Dunlabeled is somewhat akin to “editing” the PCFG.

5In tuning θ, we consider all programs, not just the unique set
(as doing so would not result in a sensible density estimator).
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Dunlabeled Dgenerated

log-zipf exp-zipf

MVAE
D
~
unlabeled D
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generated

Figure 5: log-Zipf transformation. Applying a log to fre-
quencies of xi ∼ D is like “tempering”. This helps mitigate
the effect of a few elements dominating the distribution.

Log-Zipf Transformation Capturing a Zipf is hard for a
generative model since it is very easy to memorize the top 5
programs and very hard to capture the tail. To make it easier,
we apply a log transformation,6 e.g. if a program appears 10
times in D, it only appears once in the transformed dataset,
D̃. Then, when generating with the MVAE, we invert the
log by exponentiating the frequency of each unique program
(exp-Zipf). Intuitively, log-Zipf is similar to “tempering” a
distribution as it reduces any extreme peaks and troughs.

Results
Recreation of Human Labels
Figure 4 reports a set of F1 scores, including human-level
performance estimated from annotations. Each model is
given two bar plots, one for programs in the body (left)
and one in the tail (right). First, we see that baselines have
lower F1 scores compared to models that take advantage
of synthetic data. That being said, the new baseline MVAE
we introduced already performs far better than the previous
SOTA. In P1, using rubric sampling increases the F1 score
by 0.31 in the body and 0.13 in the tail (we find similar gains
in P8). These promising results imply that the grammar in-
deed is effective. We also find that combining the MVAE
with rubric sampling boosts the F1 by an additional 0.2,
reaching 94% accuracy in P1 and 95% in P8. With these
scores, we are reasonably confident that for a new student,
despite the likelihood that he/she will submit a never-before-
seen program, we will provide good feedback.

To put these results in terms of impact, Table 1 estimates
the number of correct feedback we could have given to stu-
dents in P1 to P8 based on projections from the annotated
set. Over the full curriculum, our best model would have
provided the correct feedback to an expected 126,000 addi-
tional programs compared to what Code.org currently uses,
potentially helping thousands more students.

Tracing Knowledge Across Curricula
If we had a scalable way to provide feedback, what impact
could we make to code education? We can begin to mea-
sure this impact using the full Code.org curriculum. Having
demonstrated good performance on P1 and P8, we can confi-
dently apply rubric sampling to P2 through P7. This is quite
powerful as it allows us to estimate student understanding

6We preserve examples that appear only once in D to D̃ i.e.
x̃ = min(log(x), 1) where x ∈ D and x̃ ∈ D̃.

Model
Amount of

Correct Feedback
Predicting from output 1,483,157 (86.0%)
Rubric sampling with MVAE 1,610,020 (93.7%)
Expert human 1,658,162 (96.2%)

Table 1: Amount of correct feedback over the curriculum.
We ignore programs in the head of the Zipf as those can
be manually labeled. With the best model, we could have
provided 126,000 additional points of feedback.

over a curricula. Critically, we can gauge the performance
of both individual students and the student body as a whole.
These sort of queries are valuable to teachers to be able to
(1) measure a student’s progress scalably and (2) judge how
useful assignments and lessons have been.

In Figure 6, we analyze the average student’s level of
understanding over the 8 problems for two main concepts:
loops and geometry (e.g. shapes, angles, movement). For
each submission in a student’s trajectory, we classify it as
having either 1) no errors, 2) more loop errors, or 3) more
geometry errors7. The figure shows the distribution of stu-
dents in each of the three categories from the first 10 sub-
missions. From looking at behavior within a problem and
between problems, we can make the following inferences:

1. Most students are successfully completing each prob-
lem. In other words, the blue area is increasing over time.
Equivalently, the number of students still struggling by
the 10th submission approaches a small number.

2. The difficulty of problems is not uniform. P6 is much
more difficult than the others as the fraction of students
with correct solutions is roughly constant. In contrast, P1,
P4, and P5 are easier, where students quickly cease to
make mistakes. As a teacher, one could use this informa-
tion to improve the educational content and better hone in
on areas where more students struggle.

3. Students are learning geometry better than looping.
The rate that the pink area approaches zero is consistently
faster than that of the orange area. By P8, students are
barely struggling with geometry but a fair proportion still
find looping difficult. As the curriculum was intended to
teach nested looping, one interpretation is that the draw-
ing aspect was somewhat distracting.

Fine-grain Feedback: Code Highlighting
With most online programming education, the form of feed-
back is limited to pop-up tips or compiler messages. But,
with generative models we can provide more fine-grain feed-
back through highlighting subsets of the program responsi-
ble for the model predicting each feedback label.

7We do so by comparing the summed predicted probabilities
for all labels related to loops, ŷi,loop =

∑
j∈loop ŷi,j and labels re-

lated to geometry, ŷi,geom =
∑

j∈geom ŷi,j . If both ŷi,loop < 1 and
ŷi,geom < 1, then we classify this program as “no errors”. Other-
wise, we classify based on which quantity is larger.
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Figure 6: Student understanding of loops and geometry across curricula: (top row) We plot the percentage of students who are
either doing perfect (cyan), struggling more with looping concepts (orange), or struggling more with geometry concepts (pink).
In general the percentage of students with no errors increases over time as more students finish the problem. Additionally, we
can extrapolate that students are more effectively learning geometry than looping, as the area covered by pink decreases faster
and more consistently than the area covered by orange. We can also see that P6 is somewhat of an outlier, being much more
difficult for students than any other problem. (bottom row) In addition to aggregate statistics, we can also track learning for
individual students. We can infer that this particular student tries several attempts with P6 before dropping out.

First, if we consider a PCFG, the task of highlighting a
program xi is equivalent to finding the most likely parsing
in a probabilistic tree that would generate xi. In practice,
we use the A* algorithm for fast Viterbi parsing (Klein and
Manning 2003). Given the most likely parsing, we can fol-
low the trajectory from root to leaf and record which sub-
programs are generated by non-terminal nodes. This has one
major limitation: only programs within the support of the
PCFG can be highlighted. To bypass this, we can curate
a synthetic dataset with each program having a segmenta-
tion mask denoting which tokens to highlight. If we treat
the mask as an additional modality, we can then learn the
joint distribution over programs, labels, and masks. See (Wu
and Goodman 2018) for details in defining a VAE with three
modalities. In Figure 4b, we randomly sample 4 programs
and show segmentation masks. The running time to compute
a mask is negligible, meaning that this can be used for pro-
viding on-the-fly feedback to students. Moreover, highlight-
ing provides a notion of interpretability (which is extremely
important if we are working with students), much like Grad-
Cam (Selvaraju et al. 2017) did for computer vision.

Clustering Students by Level of Understanding

With any latent generative model, the rich latent space pro-
vides a vector representation for unstructured data. Using
the MVAE, we first sample zi ∼ q(zi|xi) for all xi ∈ Dtest;
we then train use t-SNE (Maaten and Hinton 2008) to re-
duce to two dimensions. In Figure 7b and c, we color each
embedded program from Dsyn by whether the true label is
positive or negative. We find that the space is partitioned to
group programs with similar feedback together. In Figure 7a,
we see that Dunlabeled is also organized into disjoint clusters.
This implies that even with no data about a new student we
can draw inferences from their neighbors in latent space.

Positive Negative Unlabeled

(a) Dunlabeled (b) Dsyn: Turn/Move (c) Dsyn: No Repeat

Figure 7: Clustering students. Using the inference network
in the MVAE, we can embed a program in 2D. In Dunlabeled
(a), we see a handful of distinct clusters. In Dsyn (b,c), we
find meaningful clusters that are segmented by labels.

Discussion
We get closer to human level performance than previous
SOTA. Any of the rubric sampling models beat the SOTA
by at least 0.46 in P1 and 0.24 in P8, nearly tripling the F1
score in P1 and doubling in P8. In both exercises, our best
model is just under 95% accuracy, which is encouraging for
this to be implemented in the real world.

We can effectively track student growth over time.
With a high performing model, we can analyze students over
time. For Code.org, we were able to (1) gauge what indi-
vidual students struggle with, (2) gauge what a collective
of students struggle with, (3) identify the effectiveness of a
curriculum, and (4) identify the difficulty of problems.

Making a rubric is neither difficult nor costly. It is not
the case that only experts can make a good rubric. We also
asked an undergraduate (novice) to make a rubric for P1 and
found that while an experts’ rubric averaged 0.69 ± 0.03 in
F1 score, the novice’s averaged 0.63 ± 0.01, both of which
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are much higher than baselines (0.29±, 0.03). Furthermore,
we measured that it took a group of teaching assistants 24.9
hours to label 800 unique programs. In comparison, it took
a novice an average of 19.4 minutes to make a rubric.

We provide feedback to programs that do not compile.
Rubic sampling and MVAE make no assumptions on pro-
gram behavior, working out-of-the-box from the 1st student.

We do not need to handpick θ when designing a rubric.
In Figure 1, the PCFG uses hand-picked θ. However, one
can argue that it is difficult to know how often students make
mistakes and yet, the choice of θ is important: performance
drops if we randomly choose. For example, in P1, using
hand-picked θ has a 0.26± 0.002 increase over random θ in
F1-score. In the absence of an expert, we can use evolution-
ary strategies to find a good minima starting from a random
initialization. Over 3 runs, we found that learning θ reduces
the difference to 0.007 ± 0.005 in P1, even beating expert
parameters by 0.005± 0.009 in P8. With a large dataset, we
only have to define the structure, not the probabilities.

The log-Zipf transform ensures that learning does not
collapse to memorizing the most frequent programs. If
we were to use the raw statistics of the student data, the
MVAE would minimize loss by memorizing the most fre-
quent programs. As evidence of this, when sampling from
its generative model, we found that the MVAE only gener-
ated programs in the top 25 programs by frequency (even
with 1 million samples). We propose the log-Zipf transfor-
mation as a general tool for parameter learning with Zipf-
distributed data. Critically, the transform downweights the
head and upweights the tail in an invertible fashion.

The MVAE interpolates between synthetic and empirical
data. Unlike the PCFG, we can train the MVAE with mul-
tiple data sources. Effectively, the programs we show to the
model is drawn from an interpolation between the synthetic
distribution defined by rubric sampling and the true (unla-
beled) data distribution. Intuitively, the increase in perfor-
mance from the MVAE can be attributed to better capturing
the true density of student programs (see Figure 9).

We can generate and open-source a large dataset of stu-
dent programs. Datasets with student data are difficult to
release to the open community. But large public datasets
have been a dominant force in pushing the boundaries of re-
search. Luckily, with generative models, we can curate our
own “Imagenet” for education. But, we want to ensure that
our dataset matches D in distribution. Intuitively, it is im-
possible that a PCFG can capture D since that would re-
quire production rules that span the entire tail of the Zipf. In
fact, as shown in Figure 8, the PCFG is not that faithful. One
remedy is to use the MVAE trained with Dunlabeled as that is
interpolating between distributions. Figure 8, confirms that
the MVAE matches the shape of D much better.
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Figure 8: We compare DMVAE
syn and DRubric

syn to Dunlabeled.
Programs from the MVAE cover Dunlabeled much better than
relying on synthetic data alone (PCFG).

Limitations and Future Work
The effectiveness of rubric sampling is largely determined
by the complexity of the programming task. Although a
block-based language like in Code.org already has an infi-
nite number of possible programs, the set of probable stu-
dent programs is much smaller than in a typical university
level coding assignment. An important distinction is the in-
troduction of variable and function names. As suggested by
Figure 9, the version of rubric sampling used in this paper
may have difficulty scaling to harder problems. As PCFGs
are context-free, making a sufficiently expressive grammar
for complex problems requires extremely large graphs with
repetitive subgraphs. Future work could look to generalizing
rubric sampling to arbitrary graphs with conditional branch-
ing, or investigate structural learning to improve graphs to
cover more of the empirical data.

Data PCFG MVAE

(a) Code.org (b) University classroom

Figure 9: The space of likely student programs in a block-
based language can be covered by a PCFG. But in a higher-
order language like Python, the space is much larger.

Conclusion
We introduce the zero shot feedback challenge. On a widely
used platform, we show rubric sampling to far surpass the
SOTA. We combine this with a generative model to clus-
ter students, highlight code, and incorporate historical data.
This approach can scale feedback for real world use.
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