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Abstract

We propose an actor-critic algorithm that uses past plan-
ning experience to improve the efficiency of solving robot
task-and-motion planning (TAMP) problems. TAMP plan-
ners search for goal-achieving sequences of high-level op-
erator instances specified by both discrete and continuous
parameters. Our algorithm learns a policy for selecting the
continuous parameters during search, using a small training
set generated from the search trees of previously solved in-
stances. We also introduce a novel fixed-length vector rep-
resentation for world states with varying numbers of objects
with different shapes, based on a set of key robot configura-
tions. We demonstrate experimentally that our method learns
more efficiently from less data than standard reinforcement-
learning approaches and that using a learned policy to guide
a planner results in the improvement of planning efficiency.

Introduction
A task and motion planning (TAMP) problem involves plan-
ning a sequence of low-level robot motions that achieves
a high level objective, such as cooking a meal, by inte-
grating low-level geometric reasoning with high-level sym-
bolic reasoning. This typically requires a search in a high-
dimensional hybrid space, for a sequence of high-level oper-
ators, each of which has both continuous and discrete param-
eters. Existing planners (Garrett, Kaelbling, and Lozano-
Pérez 2017; Cambon, Alami, and Gravot 2009; Srivastava
et al. 2014; Kaelbling and Lozano-Perez 2011) successfully
tackle these problems, but they can be very computationally
costly, because each node expansion typically requires a call
to a motion planner to determine feasibility.

This paper proposes a learning algorithm that learns to
guide the planner’s search based on past search experi-
ence. We focus on an important subclass of TAMP called
geometric-TAMP (G-TAMP), whose emphasis is on geo-
metric reasoning rather than symbolic task reasoning. In G-
TAMP, the primary interest is achieving a high-level objec-
tive by changing the poses of objects using collision-free
motions, as shown in Figures 1a and 1b. Whether cooking,
cleaning, or packing, all TAMP problems require geomet-
ric reasoning. Therefore, any efficiency improvements to G-
TAMP problems, will benefit TAMP more broadly. For G-
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(a) Conveyor belt domain: green objects must be packed in
room.

(b) Fetch domain: objects must be removed from path to target
object.

Figure 1: Examples of initial (left) and goal states (right).

TAMP problems, choosing values for the continuous param-
eters of operators (such as grasps or object placements) is a
crucial point of leverage. Choosing an infeasible value leads
to a motion-planner call that will take a long time to fail.
Even if the chosen value is feasible, but ultimately does not
lead to a full solution, the planner will waste time searching.

We propose to learn a policy that maps a representation of
the planning state to the continuous parameters of an oper-
ator to be applied in that state. We leave the rest of the de-
cision variables, such as collision-free motions and discrete
operator parameters, to be filled in by the planner. This has
many benefits from both learning and planning perspectives.
For learning, this allows the policy to operate at a higher
level, namely by specifying goals for the low-level motion
planners. Such a policy can be learned from less experience
than a policy for low-level robot motions. For planning, such

8017



a policy will constrain the planner’s continuous search space
to smaller yet promising regions, making the search more ef-
ficient. And, because we will use the policy to guide search,
occasional poor action choices will not impact the correct-
ness of the actions ultimately selected by the robot.

To learn a policy, we use a dataset of past planning ex-
perience. Our premise is that the planner generates operator
sequences that yield high rewards. This is based on two ob-
servations. First, the planner only adds feasible operator in-
stances to its search tree, which allow us to learn to exclude
operator instances such as infeasible object placements. Sec-
ond, a search tree usually contains states and actions that
move closer to the goal based on a heuristic function. Even
when the heuristic function is not optimal, this is far more
effective than an unguided exploration strategy.

Therefore, we would like to learn a policy that imitates the
planner’s operator sequences from the search trees. How-
ever, this poses a challenge: from an episode of planning
experience, we get a search tree, that contains one solution
sequence and many off-target sequences that are feasible but
did not get to a goal state (although they might have, had the
planner continued expanding them). Since we have both off-
target and solution sequences, we cannot simply train a pol-
icy that imitates the operator instances on these sequences.

Alternatively, we could completely rely on a reward signal
and discard this planning experience dataset, but doing so
would be extremely wasteful. Feasible state and operator se-
quences are a clearer learning signal than rewards from ran-
dom exploration in a high-dimensional state-action space.

Therefore, we propose an actor-critic method that learns
a policy by simultaneously maximizing the sum of re-
wards and imitating the planning experience. Our algo-
rithm, Adversarial Monte-Carlo (ADMON), penalizes oper-
ator instances if they are too different from the planner’s se-
quences, while learning the Q-function of the sequences us-
ing past search trees. ADMON can be seen as a regularized
policy learning procedure, where the regularization encour-
ages imitating the planning data.

The learned policy operates on a representation of the
planning state. G-TAMP problems usually involve vary-
ing number of objects with different shapes, and the ever-
changing shape of the robot as it picks, places, and otherwise
manipulates the objects in the environment. Thus, encoding
the state as a fixed-size vector is not straightforward.

We propose a key configuration representation, inspired
by the roadmap approach used in multi-query path planning.
This representation copes with different number of objects
and different robot and object shapes. Specifically, key con-
figurations are a set of robot configurations that were used in
past solutions. Given a new problem instance, the collision
state at these key configurations approximates the relevant
free-space for the robot. The learned policy uses this infor-
mation to infer (approximate) reachability.

We evaluate ADMON and the key configuration repre-
sentation in the two challenging G-TAMP problems shown
in Figure 1 and described in detail in the Experiments sec-
tion. We compare ADMON against several pure actor-critic
methods, as well as a state-of-the-art imitation learning algo-
rithm, and show that our method, by using both reward and

demonstration signals, outperforms them in terms of data ef-
ficiency. We then apply the learned policy to guide planners,
and show a significant improvement in planning efficiency.

Related work
In G-TAMP problems, a high-level objective is achieved by
moving one or more objects. Several existing problem types
in the literature can be seen as G-TAMP problems. The ma-
nipulation planning problems considered by Alami, Siméon,
and Laumond (1989) and Siméon et al. (2004) also involve
manipulating a few objects, albeit in more intricate ways.
Garret et al. (2015) and Kaelbling et al. (2011) use heuris-
tic search to solve problems with a large number of objects
and a long horizon. Stilman et al. (2007) attack the “naviga-
tion among movable obstacles” (NAMO) problem, in which
a robot moves objects out of the way to reach a target. Many
of these approaches define high-level operators, and use ran-
dom sampling to choose feasible continuous parameters of
these operators. Our learning algorithm, ADMON, can be
used with any of these planning algorithms to predict the
continuous parameters. An alternative approach is to find the
continuous parameters for a TAMP problem using optimiza-
tion rather than sampling (Toussaint 2015); our method does
not directly apply to such approaches.

ADMON can be seen as a variant of an actor-critic al-
gorithm that uses extra data from past planning experience
in addition to reward signals. In a standard actor-critic al-
gorithm (Konda and Tsitsiklis 2003), a value function is
first trained that evaluates the current policy, and a policy is
trained by maximizing this value function. Actor-critic algo-
rithms have traditionally been applied to problems with dis-
crete action spaces, but recently they have been successfully
extended to continuous action space problems. For exam-
ple, in Proximal Policy Optimization (PPO) (Schulman et al.
2017), an off-policy actor-critic method, a value function is
trained with Monte-Carlo roll-outs from the current policy.
Then, the policy is updated based on an advantage function
computed using this value function, with a clipping operator
that prohibits a large changes between iterations. Deep De-
terministic Policy Gradient (DDPG) (Lillicrap et al. 2016) is
another actor-critic algorithm that extends deep Q-learning
to continuous action space by using a deterministic policy
gradient. These methods have been applied to learning low-
level control tasks such as locomotion, and rely solely on the
given reward signal. Our method uses both past search trees
and reward signals, and is applied to the problem of learning
a high-level operator policy that maps a state to continuous
parameters of the operators.

A number of other algorithms also use data from another
source besides rewards to inform policy search. Guided pol-
icy search (GPS) (Levine and Abbeel 2014) treats data ob-
tained from trajectory optimization as demonstrations, trains
a policy via supervised learning, and enforces a constraint
that makes the policy visit similar states as those seen in the
trajectory optimization data. The key difference from our
work is that we use search trees as guiding samples - in a
search tree, not all actions are optimal, so we cannot sim-
ply use supervised learning. We instead propose an objective
that simultaneously maximizes the sum of rewards while

8018



softly imitating the operator sequences in the search tree.
Another important difference is that trajectory optimization
requires smooth reward functions while the problems of in-
terest to us have discontinuous reward functions. In approx-
imate policy iteration from demonstrations (APID) (Kim et
al. 2013), suboptimal demonstrations are provided in addi-
tion to reward signals, and the discrete action-space prob-
lems are solved using an objective that mixes large-margin
supervised loss and policy evaluation. ADMON can be seen
as an extension of this work, where the suboptimal demon-
strations are provided by the past search trees, to continuous
action spaces.

Since we use learning to guide a planning search pro-
cess, our method is similar in spirit to AlphaGo (Silver et al.
2016), which uses learning to guide Monte-Carlo tree search
in a large search space. The main difference in problem set-
tings is that we have a continuous action space, and evaluat-
ing an edge in a search requires a call to a low-level motion
planner, which can be very expensive.

There has been some work in learning to guide planning
for TAMP problems as well. Kim et al. (2017) predict global
constraints on the solution for generic TAMP problems us-
ing a scoring function to represent planning problem in-
stances. In another work, Kim et al. (2018) develop an al-
gorithm that learns a stochastic policy from past search trees
using generative adversarial nets, for problems with fixed
numbers of objects.

Problem formulation
We consider a subclass of TAMP whose main concern is ge-
ometric reasoning, called G-TAMP. In particular, we formu-
late the G-TAMP problem class as follows. Denote a robot
as R, a set of fixed obstacles as F1, · · · , Fp, and a set of
movable objects as B1, · · ·Bq . An instance of a G-TAMP
problem is defined by the given initial state s0, the number
of obstacles and objects, p and q, their shapes, and by a goal
predicate LG that is True if s ∈ S is a goal state. For exam-
ple, for the conveyor belt domain, LG might be Packed(S),
that outputs True if all objects are in the storage room.

Solving this problem at the level of robot and object con-
figurations is extremely difficult due to a long planning hori-
zon and high dimensional state space. Due to the presence of
dimensionality reducing constraints (Garrett, Kaelbling, and
Lozano-Pérez 2017) such as grasping and placing, classic
motion planning based on random sampling in the combined
robot and object configuration space is not an option.

TAMP approaches define high-level operators, such as
pick, to structure the search process. An operator o is de-
scribed by a set of input parameters, preconditions and ef-
fects. When the input parameters are given, the planner
checks that the preconditions hold in the input state; this of-
ten involves testing for the existence of a path by calling
a low-level motion planner, with a goal determined by the
specified parameters.

We assume m operators O = {o(1), · · · , o(m)}, where
each operator o is associated with discrete parameters, usu-
ally drawn from the set of movable objects, denoted by
δ ∈ ∆o, and continuous parameters, such as a base pose,

denoted by κ ∈ Ko. An operator instance is defined as an
operator that has fully instantiated input parameters, which
we denote with o(δ, κ). A TAMP planner finds a sequence
of operator instances that gets the robot and objects from the
given initial state to a goal state.

Operator policy learning problem Suppose that we are
given a planning experience dataset Dpl = {τ (i)}Li=1, where
each operator sequence, τ , from a search tree is a tuple
{st, ot(δt, κt), rt, st+1}Tt=1 and ot ∈ O. Our objective is to
learn an operator policy associated with each operator that
maps a state to the continuous parameters of the operator,
{πθi}mi=1, where θi is the parameters of the policy for the
operator o(i), πθi : S → Ko(i) , that maximizes the expected
sum of the rewards

max
θ1,··· ,θm

Es0∼P0

[ H∑
t=0

r(st, κt)
∣∣∣θ1, · · · , θm]

where r(st, κt) = r(st, ot(δt, κt)), and P0 is the initial state
distribution. Given a problem instance, we assume a task-
level planner has given the operators and discrete parame-
ters, and our goal is to predict the continuous parameters.

Adversarial Monte-Carlo
One way to formulate an objective for imitating the plan-
ning experience dataset Dpl is by using the adversarial train-
ing scheme (Goodfellow et al. 2014), where we learn a dis-
criminator function Q̂α that assigns high values to opera-
tor instances from Dpl and low-values to operator instances
generated by the policy. We will, for the purpose of exposi-
tion, consider a single operator setting to avoid the notational
clutter. We have

max
α

∑
si,κi∈Dpl

Q̂α(si, κi)− Q̂α(si, πθ(si)) (1)

max
θ

∑
si,κi∈Dpl

Q̂α(si, πθ(si)) (2)

These two objectives are optimized in an alternating fash-
ion to train the policy that imitates the operator sequences
in Dpl. This can be seen as an application of Wasserstein-
GAN (Arjovsky, Chintala, and Bottou 2017) to an imitation
learning problem.

The trouble with this approach is that not all sequences in
the search trees are equally desirable: we would like to gen-
erate operator instances that yield high values. So, we pro-
pose the following regularized policy evaluation objective
that learns the value function from sequences in the search
trees, but simultaneously penalizes the policy in an adver-
sarial manner, in order to imitate the planner’s operator se-
quences. We have

min
α

∑
si,κi∈Dpl

||Q(si, κi)− Q̂α(si, κi)||2

+ λ · [Q̂α(si, πθ(si))]

where Q(si, κi) = r(si, κi) +
∑T
t=i+1 r(st, kt) is the sum

of the rewards of operator sequences in the search tree. We
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Algorithm 1 ADMON(Dpl, λ, TS , lrα, lrθ, n)

for ts = 0 to Ts do
// Train Q-value
Sample {si, κi}ni=1 ∼ Dpl // a batch of data

dq = ∇α
∑n
i=1

[
(Qi − Q̂α(si, κi))2 + λQ̂α(si, πθ(si))

]
α = α− Adam(lrα, dq)
// Train policy
dp = ∇θ

[∑n
i=1 Q̂α(si, πθ(si))

]
θ = θ + Adam(lrθ, dp)
Jts = Evaluate(πθ)

end for
return Q̂α, πθ with max J0, · · · , JTs

treat this as we would a value obtained from a Monte-Carlo
rollout, and λ is used to trade off adversarial regularization
versus accuracy in value-function estimation.

The pseudocode for our algorithm, Adversarial Monte-
Carlo (ADMON), is given in Algorithm 10. The algorithm
takes as inputs the planning experience dataset Dpl, the pa-
rameter for ADMON, λ, the number of iterations, Ts, the
learning rates for the Q-function, lrα, and the policy, lrθ, ,
and batch size n. It then takes a batch gradient descent step
with the parameters of the Q-function, α, and then takes a
batch gradient step with those of the policy, θ.

Adversarial training is known to have stability problems
in its typical application of generating images, since evalu-
ating image-generation policies is not simple. This is not an
issue in our case. In ADMON, after each update of the policy
parameters, we evaluate its performance using theEvaluate
function, which executes the given policy for a fixed num-
ber of time steps and returns the sum of the rewards. We then
return the best performing policy.

Applying ADMON to task-and-motion
planning

Key configuration based feature representation
We now describe a feature representation for a state s, φ,
called key configuration obstacles, that captures essential
collision information for many G-TAMP problems. It is con-
structed from data from a set of related of problem instances
that have some aspects in common, such as locations of per-
manent obstacles, typical poses of other objects, or goals.

Critical to the success or failure of operator parameters
that we generate for the planner is whether the motion plans
they lead to are feasible (or solvable within a reasonable
amount of time), which is ultimately determined by the free
configuration space. However, representing the entire free
configuration space using any regular discretization would
be unthinkably expensive.

We, instead, construct a sparse, carefully sampled approx-
imate representation of the free configuration space, by se-
lecting a set of configurations that are important in our prob-
lem instance distribution. A distribution over problem in-
stance induces a distribution over solutions, including par-
ticular robot configurations. Given a set of previous problem
instances and plans that solve them, we consider the set of

(a) An example scene and its φ. (b) The architecture for Q̂α

Figure 2

all the robot configurations that were attained and construct
a subset of key configurations that has the property that, for
any configuration in the original set, there is at least one key
configuration near it, and the key configurations are not too
close to one another. We denote each key configuration con-
structed this way as φ(i).

Given a set of key configurations, we can construct a
vector representation of the free configuration space in any
state, as shown in figure 2a. For each key configuration φ(i),
shown as a semi-transparent robot, we check for collisions
in that configuration in the current state: if it collides, the
associated feature in a binary vector is set to 1; if not, the
feature is set to 0. Some key configurations may involve the
robot holding an object, which allows us to take collisions
with the held object into account as well.

For Q̂α, we use an architecture illustrated in figure 2b. For
each key configuration φ(i), it has a separate locally fully-
connected network (shown in the red box—the number of
layers and units per layer may be varied) that combines the
continuous parameter κwith the free-configuration informa-
tion, eventually generating a single output value shown as a
green neuron; after that, the outputs of the green neurons are
combined into layers of fully connected networks to gener-
ate the final output Q̂α. Similar to a convolutional network,
the weights in the local networks are “tied” so that they all
represent the same function of k and φ(i).

Using this network and feature representation, we find an
interesting result: when the Q-function approximation Q̂α
requires reasoning about paths to determine the value of
a continuous parameter of an operator, such as an object
placement, the network has learned to detect the key con-
figurations near the relevant path. For example, one of our
parameters for the conveyor belt domain is an object place-
ment, which determines a robot base configuration for plac-
ing the object. When we select the 10 green neurons in Fig-
ure 2b with the highest activation levels for a particular ob-
ject placement, we find that the corresponding key configu-
rations, out of hundreds other key configurations, are those
that would be on the path to the suggested object placement
from the robot’s fixed initial configuration. Some examples
are shown in Figure 3. Different placements activate differ-
ent sets of key configurations, suggesting that the value of a
placement depends on the collision information of configu-
rations important for reaching it.
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Figure 3: Key configurations that have top-10 activations for
three different object placements (semi-transparent); initial
configuration (cyan); final configuration (red).

Planning with the learned policy
Given a problem instance (s0, sg), we take an approach sim-
ilar to (Lozano-Perez and Kaelbling 2014; Toussaint 2015)
in that we try to find the continuous parameters of the
plan conditioned on the given discrete plan, which is also
known as a plan skeleton. The main difference is that we use
the sampling-based graph search with the learned policy to
guide the search.

Specifically, given a plan skeleton
{o1(δ1, ·), · · · , oT (δT , ·)}, the sampling-based graph-
search tries to find the continuous parameters of the
operators, κ1, · · · , κT , to make the discrete plan successful.
The graph search proceeds as follows.

At the root node, the search algorithm first generates m
operator instances of o1(δ1, ·) by sampling the instances of
the parameters κ1, and adds their successor states to the
search agenda. It then pops the node from the agenda with
the lowest heuristic value (estimated cost to reach the goal),
and the search continues until we arrive at a goal state. If at
the current node we cannot sample any feasible operators,
then we discard the node and continue with the next node in
the agenda. The root node is always added back to the queue
after expansion, in order to guarantee completeness.

Typically, a uniform stochastic policy is used as a default
choice to sample the continuous parameters, which guaran-
tees probabilistic completeness. We use instead the learned
policy to sample the continuous parameters.

Experiments
We evaluate ADMON in two practical and challenging G-
TAMP problems, and compare against three benchmarks:
PPO, DDPG, which are actor-critic algorithms for continuous
action spaces, and Generative Adversarial Imitation Learn-
ing GAIL, a state-of-the-art inverse reinforcement learning
algorithm that treats the planning experience dataset as op-
timal demonstrations, and then uses PPO to find a policy
that maximizes the learned rewards. For DDPG, we use an
episodic variant that defers updates of the policy and replay
buffer to the end of each episode, which makes it perform
better in our inherently episodic domain. It is important to
keep some level of stochasticity in any policy we learn, be-
cause there is a large volume of infeasible operator instances
for which no transition occurs. So, we use a Gaussian policy
with a fixed variance of 0.25, and use the learned policies to
predict only the mean of the Gaussian. The hyperparameters

and architectures of the actor and critic neural networks are
included in the appendix.

Our hypotheses are that (a) ADMON, by using the plan-
ning experience dataset Dpl, can learn more data efficiently
than the benchmarks, and (b) learning these policies can im-
prove planning efficiency. To test the first hypothesis, we
show two plots. The first is the learning curve as a function
of the size of Dpl, with a fixed number of interactions with
the simulated environment for the RL methods. For the RL
methods, Dpl is used as an initial training set. For ADMON,
simulations are only used for the evaluation of the current
policy. For this plot, we fix the amount of RL experience at
30000 for the conveyor belt domain, and 15000 for the ob-
ject fetching domain; these are obtained from 300 updates of
the policy and value functions of each algorithm, where for
each update, we do 5 roll-outs, each of which is 20 steps long
for the first domain and 10 steps long for the second domain.
We report the performance of the best policy from these 300
updates, averaged over four different random seeds. Second
is the learning curve with increasing amount of simulated
RL experience, with fixed Dpl size. We fix its size at 100 for
the first domain and 90 for the second domain. For testing
hypothesis (b), we show the improvement in planning effi-
ciency when we use the best policy out of all the ones used
to generate the first two plots to guide a planner.

Domain overview Our objective is to test the generaliza-
tion capability of the learned policy across the changes in the
poses and shapes of different number of objects in the envi-
ronment, while the shape of the environment stays the same.
In the first domain, the robot’s objective is to receive ei-
ther four or five box-shaped objects with various sizes from
a conveyor belt and pack them into a room with a narrow
entrance, already containing some immovable obstacles. A
problem instance is defined by the number of objects in the
room, their shapes and poses, and the order of the objects
that arrive on the conveyor belt. The robot must make a plan
for handling all the boxes, including a grasp for each box, a
placement for it in the room, and all of the robot trajectories.
The initial base configuration is always fixed at the conveyor
belt. After deciding the object placement, which determines
the robot base configuration, a call to an RRT motion plan-
ner is made to find, if possible, a collision-free path from
its fixed initial configuration at the conveyor belt to the se-
lected placement configuration. The robot cannot move an
object once it has placed it. This is a difficult problem that
involves trying a large number of infeasible motion planning
problems, especially if poor sampling is used to sample con-
tinuous operator parameters.

In the second domain, the robot must move to fetch a tar-
get object and bring it back to the robot’s initial location.
The target object is randomly placed in the bottom half of
the room, which is packed with both movable and immov-
able obstacles. A problem instance is defined by the poses
and shapes of the target and movable obstacles. The robot’s
initial configuration is always fixed, but it needs to plan paths
from various configurations as it picks and places objects. To
reach the target object, the robot must pick and place mov-
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able obstacles along the way, each of which involves a call
to the motion planner in a relatively tight environment. We
have set the problem instance distribution so that the robot
must move five to eight objects to create a collision-free path
to fetch the target object. This problem is a generalization of
the navigation among movable obstacle problem (Stilman et
al. 2007) to a mobile-manipulation setting.

In both domains, if the selected operator instance is in-
feasible due to collision or kinematics, the state does not
change. Otherwise, the robot picks or places the selected ob-
ject with the given parameters. The reward function for the
conveyor belt domain is 1 if we successfully place an object
into the room and 0 otherwise. For the fetching domain, the
reward function is 0 if we successfully pick an object, -1 if
we try an infeasible pick or place, and 1 if we successfully
move an object out of the way. For moving all the objects
out of the way, the robot receives a reward of 10.

Task-level planner and sampling procedures At a high-
level, the discrete operator parameters for both of the do-
mains consist of the sequence of objects to be picked and
placed. Specifically, two operators are given to the planner,
pick and place, each of which uses two arms to grasp a large
object. Table 1 summarizes the parameters of each operator.

To provide guidance, we use the policies trained with dif-
ferent learning algorithms. The inputs to the policy are de-
scribed in the table as well. Each operator will generally re-
quire a call to a motion planner to find a collision-free path
from the previous configuration.

The task-level plan for both domains is the sequence of
objects to be pick-and-placed. For the conveyor domain, this
is given by the problem instance definition: the objects ar-
rive in the order to be packed. For the fetching domain, we
implement a swept-volume approach similar to (Dogar and
Srinivasa 2011; Stilman et al. 2007). We first plan a fetching
motion to the target object assuming there are no movable
obstacles in the scene. Then, we check the collision between
this path and the moveable obstacles to identify objects that
need to be moved.

To sample parameters for the pick operation using the de-
fault uniform policy:

1. Sample a collision-free base configuration, (xor, y
o
r , ψ

o
r),

uniformly from a circular region of free configuration
space, with radius equal to the length of the robot’s arm,
centered at the location of the object.

2. With the base configuration fixed at (xor, y
o
r , ψ

o
r) from

the object, sample (d, h, χ), where d and z has a range
[0.5, 1], and χ has a range [π4 , π], uniformly. If an in-
verse kinematics (IK) solution exists for both arms for
this grasp, proceed to step 3, otherwise restart.

3. Use bidirectional RRT (biRRT), or any motion planner,
to get a path from the current robot base configuration to
(xor, y

o
r , ψ

o
r) from the pose of the object. A linear path

from the current arm configuration to the IK solution
found in step 2 is then planned.

If a collision is detected at any stage, the procedure restarts.
When we use the learned policy πθ, we simply draw a sam-

ple from it, and then check for IK solution and path existence
with the predicted grasp and base pose.

For the conveyor belt domain, we assume that the con-
veyor belt drops objects into the same pose, and the robot
can always reach them from its initial configuration near the
conveyor belt, so we do not check for reachability. For the
object fetch domain, we do all three steps.

From a state in which the robot is holding an object, it can
place it at a feasible location in a particular region. To sam-
ple parameters for place using the default uniform policy:
1. Sample a collision-free base configuration, (x, y, ψ), uni-

formly from a desired region.
2. Use biRRT from the current robot base configuration to

(x, y, ψ).
To use πθ, we sample base configurations from it in step 1.

For heuristic function for the continuous-space graph
search in the fetching domain, we use the number of objects
to be moved out of the way as a heuristic. For the conveyor
belt domain, we use the remaining number of objects to be
packed as a heuristic.

To collect a dataset Dpl, we use search trees constructed
while solving previous planning problems. To create a oper-
ator sequence τ from a search tree, we begin at the root and
collect state, action, and rewards up to each leaf node.

Results for the conveyor belt domain Figure 4 (left)
shows the learning curve as we increase the number of
search trees. Each search tree from a problem instance adds
at most 50 (state, reward, operator instance, next state) tu-
ples. The RL algorithms, DDPG and PPO, have rather flat
learning curves. This is because they treat the planning ex-
perience dataset Dpl as just another set of roll-outs; even
with 100 episodes of planning experience, this is only about
5000 transitions. Typically, these methods require tens of
thousands of data to work well. ADMON, on the other hand,
makes special use of Dpl by trying to imitate the sequences.
On the other hand, the results from GAIL show that it is in-
effective to treat Dpl as optimal demonstrations and simply
do imitation. ADMON, which uses reward signals to learn a
Q-function in addition to imitating Dpl, does better.

Figure 4 (middle) shows the learning curves as we in-
crease the amount of transition data, while fixing the number
of search trees at 100. Again, ADMON outperforms the RL
algorithms. Note that the RL approaches, DDPG and PPO, are
inefficient in their use of the highly-rewarding Dpl dataset.
For instance, PPO, being an on-policy algorithm, discards
Dpl after an update. Even though the transition data col-
lected after that is much less informative, since it consists
mostly of zero-reward transitions, it makes an update based
solely on them. As a result, it tends to fall into bad local
optima, and the learning curve saturates around 3000 steps.
The situation is similar for the off-policy algorithm DDPG.
It initially only has Dpl in its replay buffer, but as it col-
lects more data it fills the buffer with zero-reward sequences,
slowing the learning significantly after around 5000 steps.
ADMON, on the other hand, is able to better exploit the
planning experience dataset to end up at a better (local) op-
tima. GAIL shows slightly better performance than PPO and

8022



Operators Cont. Parameters Inputs to πθ
(conv belt)

Inputs to πθ
(obj fetch)

RRT
(conv belt)

RRT
(obj fetch)

Pick (xor, y
o
r , ψ

o
r), (d, h, χ) Learned πθ not used φfetch, φ, (xo, yo, ψo), (l, w, h) No Yes

Place (x, y, ψ) φ φfetch, φ, (xo, yo, ψo) Yes Yes

Table 1: Operator descriptions. (x, y, ψ) refers to a robot base pose, at (x,y) location and rotation ψ in the global frame,
(xor, y

o
r , ψ

o
r) refers to the relative robot base pose with respect to the pose of an object o, whose pose in global frame is

(xo, yo, ψo). (d, h, χ) is a grasp represented by a depth, as a portion of size of object in the pushing direction, height, as a
portion of object height, and angle in the pushing direction, respectively, and (l, w, h) represents the length, width, and height
of object being picked. φfetch is a fetching path represented with key configurations. We describe this in detail in the appendix.

Figure 4: Plots for conveyor belt domain

Figure 5: Plots for object fetch domain

DDPG. It tends to escape bad local optima by learning a re-
ward function that assigns high rewards to the planning ex-
perience dataset Dpl, but still performs worse than ADMON
because it treats Dpl as optimal demonstrations.

Figure 4 (right) shows the reduction in planning time
achieved by different learning algorithms. We can see that,
after about 400 seconds, ADMON achieves 95% optimal
performance, whereas the uniform policy still have not
achieved that performance after 1200 seconds, indicating a
speed up of at least 3.

Results for object fetch domain Figure 5 (left) shows
the learning curve as we increase the number of search
trees. Each search tree adds at most 50 (state, operator in-
stance, next state) tuples, up to 25 of which use pick op-
erator instances, and the remaining are place operator in-
stances. Again, the RL methods show weaker performance
than ADMON although this time they are closer. The poor
performance of GAIL is due to Dpl containing many more
off-target operator sequences than before, due the longer
horizon. Since most of these sequences are not similar to

the solution sequence, treating these data points as optimal
demonstrations hurts the learning.

Figure 5 (middle) shows the learning curve as we increase
the number of transitions, while fixing the number of search
trees at 90. PPO shows large variance with respect to differ-
ent random seeds, and on average, shows a very steep learn-
ing curve at the beginning, but it gets stuck at a bad local
optima. DDPG shows good performance, but still performs
worse than ADMON. GAIL fails to learn anything meaning-
ful due to the previously stated reasons.

Figure 5 (right) shows the impact on the planning effi-
ciency when trained policies are used to choose the contin-
uous parameters. This time, we plot the progress, measured
by the number of objects cleared from the fetching path for
different time limits. We can see that ADMON clears the
optimal number of objects at around 1500 seconds, and the
uniform policy takes 3500 seconds, an improvement in plan-
ning efficiency by a factor of more than 2.3.

DDPG initially performs just as well as ADMON until it
clears 3 objects, but its improvement stops after this point.
This is due to the current-policy-roll-out exploration strat-
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egy used by DDPG. It is very unlikely with this strategy
to encounter an episode where it clears more than 3 ob-
jects. When used with the planner, which uses a heuristic,
the policy starts encountering states that have more than
three objects cleared, leading to poor performance. This phe-
nomenon, where there is a discrepancy between the distribu-
tion of states encountered during training and testing, is also
noted in (Ross, Gordon, and Bagnell 2011). ADMON on the
other hand does not have this problem because it is trained
with the search trees produced by the planner. Note also the
decrease in planning efficiency when using poor policies.

Conclusion
In this work, we proposed an actor-critic algorithm that
learns from planning experience to guide a planner, us-
ing key configuration features. Our experiments shows that
ADMON is more data efficient than benchmarks since it
uses both reward signals and the past search trees. We
also demonstrated that by using the learned policy, we can
achieve a substantial improvement in planning efficiency in
challenging and practical G-TAMP problems.
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Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P.
2015. Backward-forward search for manipulation planning.
IEEE/RSJ International Conference on Intelligent Robots
and Systems.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in Neural In-
formation Processing Systems.
Kaelbling, L. P., and Lozano-Perez, T. 2011. Hierarchical
task and motion planning in the now. IEEE Conference on
Robotics and Automation.

Kim, B.; Farahmand, A.-M.; Pineau, J.; and Precup, D.
2013. Learning from limited demonstrations. Advances in
Neural Information Processing Systems.
Kim, B.; Kaelbling, L. P.; and Lozano-Pérez, T. 2017.
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