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Abstract

Evidence identification, optic disc segmentation and auto-
mated glaucoma diagnosis are the most clinically signifi-
cant tasks for clinicians to assess fundus images. However,
delivering the three tasks simultaneously is extremely chal-
lenging due to the high variability of fundus structure and
lack of datasets with complete annotations. In this paper, we
propose an innovative Weakly-Supervised Multi-Task Learn-
ing method (WSMTL) for accurate evidence identification,
optic disc segmentation and automated glaucoma diagnosis.
The WSMTL method only uses weak-label data with binary
diagnostic labels (normal/glaucoma) for training, while ob-
tains pixel-level segmentation mask and diagnosis for testing.
The WSMTL is constituted by a skip and densely connected
CNN to capture multi-scale discriminative representation of
fundus structure; a well-designed pyramid integration struc-
ture to generate high-resolution evidence map for evidence
identification, in which the pixels with higher value repre-
sent higher confidence to highlight the abnormalities; a con-
strained clustering branch for optic disc segmentation; and a
fully-connected discriminator for automated glaucoma diag-
nosis. Experimental results show that our proposed WSMTL
effectively and simultaneously delivers evidence identifica-
tion, optic disc segmentation (89.6% TP Dice), and accurate
glaucoma diagnosis (92.4% AUC). This endows our WSMTL
a great potential for the effective clinical assessment of glau-
coma.

Introduction
Evidence identification, optic disc segmentation and glau-
coma diagnosis are the indispensable parts of clinical prac-
tice since they provide quantitative evaluation and precise
diagnosing for glaucoma assessment. In practice, a clinician
often inspects fundus images for identifying the suspicious
regions, then zooms-in to manually contour the optic disc,
evaluates its appearance and strives the diagnosis of glau-
coma. In the process, evidence regions indicate where the
abnormalities appear and the segmented optic disc provides
quantitative evaluation for discrimination between the nor-
mal and glaucomatous cases. Therefore, the tasks of identi-
fication, segmentation and diagnosis are the three key parts
for clinical assessment of fundus image.
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Although most previous works are devoted to segmenta-
tion of optic disc as evident for glaucoma diagnosis(Cheng
et al. 2013; Chen et al. 2015; Almazroa et al. 2015), de-
signing the well-performing model to simultaneously iden-
tify evidence, segment optic disc and diagnose glaucoma is
still challenging due to some limitations. (1) Lack of large-
scale segmentation ground truth even though plenty of train-
ing data with binary diagnostic labels (normal/glaucoma).
Since diagnostic labels are readily available and efficiently
obtained from diagnostic reports, it would be great to de-
sign the algorithm taking the report directly for training. (2)
Lack of effective framework to model the relationships be-
tween evidence identification, optic disc segmentation and
glaucoma diagnosis since they are heterogeneous tasks for
mutually exclusive objectives. (3) Lack of effective method
to deal with the high variability and extreme inhomogeneity
of optic disc structure from fundus image across subjects.

The weakly-supervised method has great potential since
it can learn from large-scale weak-label data to discover
the evidence and optic disc, further enhance the diagno-
sis confidence of glaucoma. Recently, it has been demon-
strated that convolutional neural networks (CNN) trained
with diagnostic labels have the remarkable capability in ab-
normalities localization (Wang et al. 2017; Zhang, Bhalerao,
and Hutchinson 2017). In those models, the standard global
max/average-pooling (Zhou et al. 2016) retains the spatial
structure of pixels that can be exploited to discover discrim-
inative local regions. However, those models usually iden-
tify some sparse regions to deal with the single task, which
deviate from the requirement of optic disc segmentation and
glaucoma diagnosis that needs pixel-wise inference. There-
fore, existing models are unsuitable to be used directly for
simultaneous identification, segmentation and diagnosis.

In this paper, we propose the Weakly-Supervised Multi-
Task Learning method (WSMTL, shown in Fig.1) to deliver
evidence identification, optic disc segmentation and glau-
coma diagnosis simultaneously. Our basic assumption is that
the information extracted from high-level diagnosis task can
act as helpful supervision for low-level evidence identifica-
tion and segmentation tasks, when the low-level label infor-
mation is insufficient. Specifically, we first built model to
construct pyramid evidence maps based on the multi-scale
features representation extracted from the diagnosis network
when training with the binary diagnosis labels. Take the ev-
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Figure 1: Weakly-Supervised Multi-Task Learning. (a) Weakly-Supervised Multi-Task Learning Settings. Three indispensable
tasks are denoted as evidence identification (I), optic disc segmentation (S) and glaucoma diagnosis (D). By learning from
the weak-label data, the WSMTL achieves the three tasks simultaneously. (b) Overview of the Weakly-Supervised Multi-Task
Learning framework (WSMTL), which is trained with only the binary diagnostic labels.

idence maps as the bridge, then we leverage the evidence
identification task by a pyramid integration structure and
optic disc segmentation task via the constrained clustering
branch, respectively. Finally, the diagnosis confidence is en-
hanced by use of the evidence and segmented optic disc in-
formation. The use of weakly-supervised multi-task frame-
work is advantageous to evidence identification and optic
disc segmentation, and learns relationships among multiple
tasks from high level (diagnosis) to low level (segmentation)
due to the fact that it provides an effective tool to model
the correspondence from the diagnostic labels (image-level)
to the spatial pixels. Benefit from those advantages, the
WSMTL is capable of delivering effective evidence identifi-
cation, optic disc segmentation and accurate glaucoma diag-
nosis simultaneously with one unified framework.

In summary, our main contributions are three-fold:

• For the first time, a unified framework (WSMTL) is pro-
posed to simultaneously deliver three indispensable parts
of clinical practice: evidence identification, optic disc seg-
mentation and automated glaucoma diagnosis.

• An innovative weakly-supervised multi-task learning ap-
proach is proposed to endow the model with the abil-
ity to discover the evidence regions, obtain the optic
disc mask and complete diagnosis learning from weak-
label data (given only the binary diagnostic labels (nor-
mal/glaucoma)).

• A newly-designed CNN with skip connections and
densely connected layer is developed to capture multi-
scale task-aware features to release the limitation from
high variability and extreme inhomogeneity of fundus
structure.

Related Work
Weakly-supervised learning (WSL) has attracted great in-
terests nowadays because the amount of data with weak-
label annotations is much bigger and is growing much faster
than that with complete annotations, especially in medical
field. The major problem of weakly-supervised visual anal-
ysis is how to accurately assign weak labels such as image-
level annotations to corresponding pixels of training im-
ages. Recently, many methods are emerging to establish the
desired pixel-label correspondence in training for weakly-
supervised learning (Tang et al. 2018; Huang et al. 2018;
Kwak et al. 2017). Pinheiro et al. (2015) proposed to utilize
multiple instance learning (MIL) which puts more weigh on
pixels important for classifying the image during training to
obtain the pixel labels from image level supervision. Papan-
dreou et al. (2015) adopted an alternating training procedure
based on the Expectation-Maximization algorithm to predict
the attribution of pixels. Wei et al. (2016) proposed a simple
to complex learning method to gradually enhance the seg-
mentation network. Huang et al. (2018) proposed a seman-
tic segmentation network starting from the discriminative re-
gions and progressively increase the pixel-level supervision
using by seeded region growing.

Recently, many weakly-supervised learning methods have
tried to provide an effective solution for medical prediction.
Zhang et al. (2017) proposed a weakly-supervised learning
method to identify evidence regions of lumbar spinal steno-
sis for localising and classifying vertebrae in MRI images.
Quellec et al. (2017) proposed a solution to create heatmaps
showing the suspicious lesions where the pixels play a role
in the image-level predictions. Gondal et al. (2017) pro-
posed a CNN-based method to detect lesion areas for dia-
betic retinopathy with image-level label. Weakly-supervised
localization, segmentation and identification are attracting
more and more attentions since plenty of training data with
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weak labels are readily available and efficiently obtained
from diagnostic reports.

Multi-task learning (MTL) is a learning paradigm in ma-
chine learning and its aim is to leverage shared informa-
tion contained in multiple related tasks to help improve
the performance of all the tasks (Zhang and Yang 2017;
Chen et al. 2017). Designing deep architectures for joint
tasks is popular and effective, which has been used for
several vision tasks (Pinheiro, Collobert, and Dollár 2015;
Girshick 2015). Those networks fall into two categories. The
one is trained separately for different tasks, and the config-
urations of different tasks are similar, but the learned pa-
rameters are totally different. The other method solves a
common problem with two objective terms, such as gener-
ating object segmentation proposals. He et al. (2017) pro-
posed a general framework to detects objects in an image
while simultaneously generating a high-quality segmenta-
tion mask for each instance by adding a branch for bound-
ing box recognition. This architecture has led to an effec-
tive multi-task neural network methods, which use differ-
ent network branch performing the segmentation and detec-
tion tasks by sharing features. In medical analysis, Feng et
al. (2017) exploited CNN for automated detection and seg-
mentation of pulmonary nodules on lung computed tomog-
raphy (CT) scans. Wang et al. (2017) proposed a convolu-
tion neural network based algorithm for simultaneously di-
agnosing diabetic retinopathy and detecting suspicious re-
gions. Different from existing methods, we propose a dis-
tinguished method to simultaneously deliver multiple indis-
pensable tasks given only the binary diagnosis labels. We
call this kind of learning method as weakly-supervised multi-
task learning (WSMTL).

The Proposed Method
As shown in Fig.1(b), our weakly-supervised multi-task
learning framework consists of four distinguishing parts:
(1) a newly-designed CNN with skip connections and
dense block to automatically capture the multi-scale fea-
ture representation, (2) a pyramid integration structure with
multi-layer global pooling and activation pyramid map-
ping learning only from the diagnostic labels to generate
high-resolution evidence map for evidence identification and
segmentation, (3) a deep neural network, named as Con-
strained Clustering Branch (CCB), implements for optic disc
segmentation, and (4) a fully-connected discriminator for
automated glaucoma diagnosis. The proposed framework
forms a tree structured network architecture, which use three
different branches performing the evidence identification,
glaucoma diagnosis and optic disc segmentation tasks, and
shares the feature representation constructed by CNN back-
bone.

CNN with Skip Connections for Multi-scale
Representation
In our WSMTL framework, CNN with skip connections
and dense block are employed to capture multi-scale fea-
ture representation to deal with the challenges introduced
by high variability and extreme inhomogeneity of fundus

structure. Skip connections give the backbone CNN access
to different convolutional layers directly to capture coarse
high-level semantic features and low-level high-resolution
features. Dense block allows the network to reuse and by-
pass existing features from prior layers and ensures high ac-
curacies in later layers.

The WSMTL implements 4 dense blocks and inserts the
transition layer between adjacent dense blocks to adjust the
resolution of feature maps. The transition layers used in our
experiments consist of a batch normalization layer and an
1× 1 convolutional layer followed by a 2× 2 average pool-
ing layer. Each dense block having an equal number of lay-
ers is defined following the design in DenseNets (Lin et al.
2016), and we set the number of output channels of the three
scales to 6, 6, 12 and 24, respectively. Each output of the
dense block is directly connected to corresponding feature
map to enhance the semantics for low-level feature and spa-
tial information for high-level features. Features from dif-
ferent convolutional dense block are directly concatenated
while bypassing intermediate layers to classify fundus im-
age as normal or glaucomatous during training. This archi-
tecture helps the deep convolutional neural network generate
multi-scale feature maps with accurate spatial and seman-
tic information closely related to glaucoma diagnosis. The
multi-scale feature representation helps the model discover
more fine-grained details of the meaningful evidence regions
which closely related to the fundus structure.

For a given fundus image, let f i
k(x, y) represents the fea-

ture map of channel k at scale i and spatial location (x, y),
and P i

k indicates the feature vector pooled from correspond-
ing feature map. During training, the classification score S
can be obtained by a weighted sum as

S =
∑
i

∑
k

wi
kP

i
k (1)

where wi
k is the weight corresponding to glaucoma for fea-

ture channel k and spatial scale i. Essentially, wi
k is updated

using the gradients backpropagation during the network is
training with the diagnosis label, thence, it indicates the im-
portance of P i

k for glaucoma diagnosis. Finally, the output
of the softmax for glaucoma is given by exp(S)∑

exp(S) . Given the
binary diagnosis label, the network learns a feature hierarchy
consisting of multi-scale feature maps with a scaling step
of 2, where the feature hierarchy possesses more high-level
semantics to represent the glaucomatous changes of fundus
structure.

Pyramid Integration Structure for Evidence
Identification
As shown in Fig.2, a pyramid integration structure is imple-
mented for evidence identification by constructing a high-
resolution evidence map. The pyramid integration structure
is constituted by two blocks, multi-layer global pooling for
generation of pyramid activations which highlight the dis-
criminative pixels, and activation pyramid mapping for con-
struction of evidence map by integrating the pyramid activa-
tions. By means of the two blocks, the pyramid integration
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Figure 2: The pyramid integration structure for evidence
identification. (a) multi-layer global pooling to produce
glaucoma activation hierarchy highlighting discriminative
pixels of feature maps to support glaucoma diagnosis. (b)
activation pyramid mapping to generate evidence map by in-
tegrating activation hierarchy via upsampling and element-
wise addition. The pyramid integration structure not only re-
fines the spatial precision of the output evidence map, but
also highlights more meaningful local pixels for evidence of
glaucoma by merging the high-level glaucoma activations.

structure models the correspondence from binary diagnostic
labels to spital pixels.
Multi-layer Global Pooling (MGP). MGP extends the
global average pooling (GAP) to multiple convolutional lay-
ers to activate the discriminative pixels of fundus image at
multiple scales. To identify the importance of feature map
for glaucoma diagnosis, the weights wi

k learned in discrim-
inate layer are projected to feature maps. Let AM i(x, y)
represents the glaucoma activation at the ith scale, then it is
described more formally as follows

AM i(x, y) =
∑
k

wi
kf

i
k(x, y) (2)

Pixels of AM with higher weights are activated with
higher confidence to support glaucoma diagnosis. Accord-
ingly, glaucoma activations highlight the discriminative pix-
els contributing to glaucoma diagnosis. Therefore, glaucoma
activations bridges the gap between precise location and
global semantics, and the correspondence from the diagnos-
tic labels to the spatial pixels is effectively modeled.
Activation pyramid mapping (APM). The goal of APM is
to construct a high-resolution evidence map by integrating
the activation hierarchy generated by MGP via upsampling
and element-wise addition. At each convolutional stage, the
glaucoma activation AM i(x, y) is merged with the evi-
dence map EM i+1 from the top-down pathway. The pixel
of evidence map with higher value indicates the higher con-
fidence to evidence the glaucoma assessment. In this way,
pyramid integration structure not only discovers more mean-
ingful pixels or local regions for evidence identification, but
also refines the spatial precision of evidence map for pixel-
wise optic disc segmentation.

The basic block of APM is shown in Fig.2(b). The
coarser-resolution evidence map EM i+1 from the top-
down pathway is firstly upsampled by a factor of 2 to obtain
the same spatial resolution as the corresponding glaucoma

activation AM i. The upsampled evidence map ÊM
i+1

is
then merged with the corresponding glaucoma activations
AM i by element-wise addition as

EM i(x, y) = ÊM
i+1

(x, y) +AM i(x, y)

= ÊM
i+1

(x, y) +
∑
k

wi
kAM i

k(x, y)
(3)

Constrained Clustering Branch for Optic Disc
Segmentation
Our proposed CCB is a network head and used to recon-
struct the segmentation mask of optic disc by implementing
a constrained clustering algorithm, which clustering pixels
with relational constraints. The method learns a similarity
metric and clustering objective via deep neural network to
achieve image segmentation incorporating with clustering
algorithm.

In our WSMTL framework, CCB consists of a cluster
assignment block, a pair generation block and a cluster-
ing objective. The cluster assignment block contains two
fully-connected layers to generate assignment (“0” for back-
ground and ”1” for foreground) for every pixel of input im-
age. The output of the block represents a probabilistic as-
signment of a pixel to the cluster. The assignment between
pixels and clusters are formed stochastically during opti-
mization and is guided by the pairwise similarity. If there is
a similar pair, their distribution should be similar, and they
should be labeled with the same label and merged into one
region. The pair generation block enumerates all pair of im-
age pixels based on the 8-connected rule, which ensures that
the clustering pixels are connected in the same region. The
outputs of cluster assignment is enumerated in pairs before
sending to the clustering objective. The proposed objective
function is easily combined with the backbone network and
optimized by stochastic gradient descent end-to-end.

The key to our method is the design of a clustering objec-
tive that can use pairwise information. In most approaches,
the pairwise information is also called as constraints or sim-
ilar pairs (Hsu, Lv, and Kira 2018). We use the pairwise KL-
divergence to evaluate the distance between the assignment
distributions, and use pre-learned similarity function to con-
struct the contrastive loss as the clustering objective. Given a
pair of pixels xp, xq , based on the cluster assignment block,
their output are defined as P and Q. If pixels xp, xq are dis-
similar, the loss is given as

L(xp, xq)
+ = DKL(P∥Q) +DKL(Q∥P) (4)

DKL(P∥Q) =

k∑
m

(pclog(
pc
qc

)) (5)

If pixels xp, xq come from a pair and are dissimilar, the
hinge loss can be employed as

L(xp, xq)
− = Lt(DKL(P∥Q), σ) + Lt(DKL(Q∥P), σ)

(6)
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where
Lt(x, σ) = max(x, σ − e) (7)

Therefore, the total loss can be defined as clustering objec-
tive
L(xp, xq) = F(xp, xq)L(xp, xq)

++(1−F(xp, xq))L(xp, xq)
−

(8)
where F(xp, xq) is the similar function between pixels xp

and xq .
In our experiments, the deep neural network proposed in

(Zagoruyko and Komodakis 2015) is chosen to construct the
similar function F(xp, xq). The network is used to predict
image pixel similarity, while we use it to predict the pix-
els similarity based on their surroundings pixels. We use the
cross-entropy loss and train it end-to-end. After training, the
inference of similarity is achieved among all the pixel pairs
in the input image. The output then be binaried as discrete
similarity predictions and used by CCB as a similarity func-
tion.

Algorithm I summarizes the detail procedure of our op-
tic disc segmentation algorithm. The algorithm contains four
parts: Generate the initial pixel patches, similarity function
pre-learning, training of CCB, inference of optic disc mask.
For a excellent behavior, our segmentation algorithm first
perform a preparation step to group pixels of evidence map
into relative homogeneous patches. Compared with clus-
tering directly to pixels, this strategy makes the segmenta-
tion algorithm more robust and less computation. Secondly,
the similarity function F is learned by a pre-trained net-
work proposed in (Zagoruyko and Komodakis 2015). Here,
xp, xq denote the pixel patches. In this step, the pair gen-
eration block is also used to enumerate possible pairs of
pixel patches. Then we refer to equation 8 as clustering loss
L(xp, xq) to optimize the CCB. After the cluster assignment
of CCB, the segmentation mask of the optic disc is obtained
by retrieving the corresponding pixels in fundus image fol-
lowed by an ellipse fitting algorithm.

Algorithm 1:

1: Input: Evidence map EM
2: Output: Optic disc mask
3: STEP 1: Generate initial pixel patches
4: Generating the pixels patches X = x1, x2, ..., xn by
applying k-means.
5: STEP 2: Similarity function learning
6: Learning the similarity function F(xp, xq) for all the
patch pairs using the network proposed in
(Zagoruyko and Komodakis 2015);
7: STEP 3: CCB optimization
8: Optimizing the CCB using the clustering loss L(xp, xq)
as equation 8.
9: STEP 4: Reference of Optic disc mask
10: Input a test evidence map , forward propagate the data
11: through the CCB with trained weights, and get outputs
for cluster assignment. Using ellipse fitting to obtain the
optic disc segmentation mask.

Fully-Connected Discriminator for Glaucoma
Diagnosis
Glaucoma diagnosis discriminates the input fundus image as
the glaucomatous or normal case by the fully-connected dis-

Figure 3: The Constrained Clustering Branch (CCB) for op-
tic disc segmentation. The input is evidence map. The clus-
ter assignment block is a two fully-connected layers and
generates assignment (“0” for background and ”1” for fore-
ground) for every pixel of input image. Pair generation block
enumerates all pair of image pixels based on the 8-connected
rule. The parameters are trained by optimizing the cluster
objective. When inference, it uses the forward propagation
with only the cluster assignment to obtain the segmentation
mask followed by an ellipse fitting.

criminator, which comprehensively assesses features of raw
fundus image, evidence map and optic disc segmentation.
Firstly, we perform a simple convolutional layer with a ker-
nel of 1 × 1 on the feature maps at each scale to obtain the
relevant features. Secondly, we conduct a simple Gaussian
filter on the segmented regions to capture the discriminative
features for representation of optic disc. Finally, the multi-
scale feature of fundus image and discriminative features of
evidence map and optic disc are concatenation to establish a
whole feature vector and input the soft-max function to de-
termine whether the fundus belongs to glaucoma or normal.

Experiments
The effectiveness of the proposed WSMTL is validated in
the three different tasks. Experimental results show that
WSMTL successfully identifies clinically important yet eas-
ily missed evidence, and achieves 89.6% TP Dice of optic
disc segmentation under 92.4% AUC for glaucoma diagno-
sis.

Dataset and Configurations
Dataset. Our WSMTL is validated with the challenging
dataset ORIGA650 (Cheng et al. 2017) with 168 glauco-
matous and 482 normal eyes. The 650 images with manual
labeled optic disc mask are randomly divided into 325 train-
ing images (Trainset, including 73 glaucoma cases) and 325
testing images (Testset, including 95 glaucoma). We trained
our method on the Trainset with only the diagnosis labels
and tested the trained model on the Testset for evidence iden-
tification, optic disc segmentation and glaucoma diagnosis.
Data Augmentation. We augmented our data in order to
reach our WSMTL the invariance properties. The types of
augmentation used in this work include: (1) Randomly ad-
justing the optic disc coordinates based on Gaussian distri-
bution in order to enhance the generation of our WSMTL,
(2) Adding Gaussian noise directly to our image in order
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Figure 4: Examples of automatically discovered evidence re-
gions by visualizing the top responses locations of the evi-
dence map at different scales. Some easily missed abnor-
malities are retrieved based on high confidence evidence
regions, and those abnormalities are clinically significant
for glaucoma assessment, such as PPCA, bayoneting vessel,
splinter haemorrhage, cupping, polar notching and temporal
unfolding.

to simulate inherent noise, and (3) Horizontal reflecting the
fundus images.
Training and Inference. The DenseNet is adopted as the
backbone network and the last pooling layer pool5, and the
FC layer, softmax are removed. The weights of remaining
layers are initialized based on the pre-training on ImageNet.
In our experiments, a multi-stage training strategy is devel-
oped so that all the evidence identification, optic disc seg-
mentation and glaucoma diagnosis are achieved. First, we
train the backbone CNN and pyramid integration structure
together using the stochastic gradient descent with the only
binary diagnosis labels. Because the diagnosis labels are
high-level semantic information, we use it as supervision
to train the deep neural network to discover the meaningful
pixel region which is useful for evidence identification and
segmentation. Then, based on the trained backbone CNN
and pyramid integration structure, we train the CCB head
via optimizing the clustering objective as equation 8. The
trained WSMTL model is implemented to achieve the evi-
dence identification, optic disc segmentation and glaucoma
diagnosis simultaneously. As shown in the experiments, the
weakly-supervised multi-task training and inference deliver
excellent performance for all the three tasks.

Results and Analysis
Evidence Identification. As shown in Fig.3, The experi-
mental results show that WSMTL obtains accurate visual
evidence to highlight the abnormalities caused by glau-
coma. Some clinically important abnormalities, such as
PPCA, bayoneting vessel, splinter haemorrhage, cupping,
polar notching and temporal unfolding, have been accurately
identified by our WSMTL. In Fig.3, evidence regions are
also visualized by showing the top responses location of
evidence map with high confidence. Abnormalities, easily
missed without the assistance of the evidence, are accurately
located by retrieving the corresponding image regions. The
clinically important evidence provides intuitive illustrations
and interpretation for physicians and patients of how the di-
agnosis is made.
Optic Disc Segmentation and Glaucoma Diagnosis. As

shown in Table.1, experimental results show that the pro-
posed WSMTL achieves accurate optic disc segmentation
(89.6% TP Dice) and glaucoma diagnosis ( 92.4% AUC
). Here, TP Dice is employed to show the effectiveness
of optic disc segmentation of glaucomatous fundus im-
ages since the precise segmentation of optic disc and ac-
curate glaucoma diagnosis are mutually promoted. Com-
pared with state-of-the-art methods(Maninis et al. 2016;
Ronneberger, Fischer, and Brox 2015; Sedai et al. 2017), the
proposed method increases the TP Dice by 4.7%, which in-
dicates that our WSMTL identifies more precise contours of
the abnormal optic disc. It is helpful for clinical glaucoma
assessment to quantitative evaluation of optic disc. Fun-
damentally, the increasing of segmentation accuracy owes
to multi-scale feature representation captured by skip con-
nected CNN and high-resolution evidence map generated by
pyramid integration structure. The results confirm that each
component of the proposed framework is beneficial for ac-
curate optic disc segmentation and glaucoma diagnosis.

Table.1 shows that the proposed WSMTL achieves the
higher accuracy for glaucoma diagnosis since the model de-
termines whether a unknown fundus is glaucoma or normal
based on three sources: original features representation, ex-
tracted evidence map and segmentation mask. Our method
obtains the highest AUC value of 0.924, which increases the
AUC by 8.60% compared with (Fu et al. 2018), by 11.79%
compared with (Cheng et al. 2013), by 20.2% compared
with the conventional approach (Zhao et al. 2017). The ac-
curate evidence identification and segmentation enhance di-
agnosis confidence.

Overall, the proposed WSMTL framework possesses the
remarkable capableness and advantages on the two challeng-
ing tasks, which provides accurate quantitative evaluation
for glaucoma assessment and reduces the rate of misdiag-
nosis in clinic. Therefore, the unified framework provides
great help for clinical simultaneous optic disc segmentation
and glaucoma diagnosis.

Conclusions
We proposed a novel Weakly-Supervised model to simul-
taneously achieve three clinical tasks: evidence identifica-
tion, optic disc segmentation and glaucoma diagnosis. The
model can be trained only with the binary diagnosis la-
bels (normal/glaucoma), while obtains pixel-level evidence
map, segmentation mask and diagnosis prediction simulta-
neously. This model is named as Weakly-Supervised Multi-
Task Learning (WSMTL) in this paper. Specially, we de-
velop a WSMTL framework which implements the newly-
designed CNN for multi-scale representation of fundus im-
age, the pyramid integration structure for evidence identi-
fication, the Constrained Clustering Branch (CCB) for op-
tic disc segmentation, and the fully-connected discrimina-
tor for glaucoma diagnosis. By taking advantages of the
newly-designed WSMTL framework, the proposed weakly-
supervised model is capable of simultaneously delver the
three indispensable parts of clinical practice in a unified
model given only the binary diagnostic labels, which pos-
sesses a great potential for clinical assessment of fundus im-
age.
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Table 1: Performance of WSMTL used for optic disc segmentation and glaucoma diagnosis. Three criteria are evaluated to
compare with state-of-the-art methods. High TP Dice indicates good performance on simultaneous segmentation and diagnosis.

Method Dice TP Dice1 AUC
Fully-supervised

U-Net(Ronneberger, Fischer, and Brox 2015) 0.87±0.09 0.85±0.10 -
DRIU(Maninis et al. 2016) 0.82±0.09 0.81±0.11 -

Semi-supervised
VAE(Sedai et al. 2017) 0.87±0.06 0.84±0.09 -

Our weakly-supervised
1-layer MGP w/ APM 0.82±0.08 0.83±0.07 0.89
2-layers MGP w/ APM 0.85±0.07 0.86±0.05 0.91
3-layers MGP w/ APM 0.87±0.06 0.89±0.04 0.92
4-layers MGP w/ APM 0.86±0.07 0.88±0.06 0.92
3-layers MGP w/o APM 0.82±0.12 0.83±0.09 0.90

1 TP Dice = Dice coefficient over truly detected glaucomatous images.

Figure 5: The visual examples of optic disc segmentation mask, where the white denotes the disc segmentations, while black
denotes background. From left to right: fundus image, ground truth (GT), Unet, DRIU, VAE and our proposed method.
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