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Abstract

In this paper, we present a novel unsupervised representa-
tion learning approach for 3D shapes, which is an impor-
tant research challenge as it avoids the manual effort required
for collecting supervised data. Our method trains an RNN-
based neural network architecture to solve multiple view
inter-prediction tasks for each shape. Given several nearby
views of a shape, we define view inter-prediction as the task
of predicting the center view between the input views, and
reconstructing the input views in a low-level feature space.
The key idea of our approach is to implement the shape rep-
resentation as a shape-specific global memory that is shared
between all local view inter-predictions for each shape. In-
tuitively, this memory enables the system to aggregate infor-
mation that is useful to better solve the view inter-prediction
tasks for each shape, and to leverage the memory as a view-
independent shape representation. Our approach obtains the
best results using a combination of Lo and adversarial losses
for the view inter-prediction task. We show that VIP-GAN
outperforms state-of-the-art methods in unsupervised 3D fea-
ture learning on three large-scale 3D shape benchmarks.

Introduction

Feature learning for 3D shapes is crucial for 3D shape
analysis, including classification (Sharma, Grau, and Fritz
2016; Wu et al. 2016; Han et al. 2016; Yang et al. 2018;
Achlioptas et al. 2018; Han et al. 2018), retrieval (Sharma,
Grau, and Fritz 2016; Wu et al. 2016; Han et al. 2016;
Yang et al. 2018; Achlioptas et al. 2018; Han et al. 2018),
correspondence (Han et al. 2016; 2018) and segmenta-
tion (Qi et al. 2017a; 2017b). In recent years, supervised
3D feature learning has produced remarkable results under
large-scale 3D benchmarks by training deep neural networks
with supervised information (Qi et al. 2017a; 2017b), such
as class labels and point correspondences. However, obtain-
ing supervised information requires intense manual label-
ing effort. Therefore, unsupervised 3D feature learning with
deep neural networks is an important research challenge.
Several studies have addressed this challenge (Sharma,
Grau, and Fritz 2016; Wu et al. 2016; Han et al. 2016;
Girdhar et al. 2016; Rezende et al. 2016; Yang et al. 2018;
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Achlioptas et al. 2018; Han et al. 2018) by training deep
learning models using “supervised” information mined from
the unsupervised scenario. This mining procedure is usually
implemented using different prediction strategies, such as
the prediction of a shape from itself by minimizing recon-
struction error or embedded energy, the prediction of a shape
from its context given by views or local shape features, or the
prediction of a shape from views and itself together. These
methods use multiple views to provide a holistic context of
3D shapes, and they make a single global shape prediction
based on all views.

In contrast, our approach called View Inter-Prediction
GAN (VIP-GAN) learns to make multiple local view inter-
predictions among neighboring views. The view inter-
prediction task is designed to mimic human perception of
view-dependent patterns. That is, based on changes between
neighbor views, humans can easily imagine the center view
between, while the neighbor views can also be reversely
imagined based on the center. As a key idea, our network
architecture implements the shape representation as a shape-
specific global memory whose contents are learned to sup-
port all local view inter-prediction tasks for each shape. In-
tuitively, the memory aggregates information over all view
inter-prediction tasks, which leads to a view-independent
shape representation. Our experimental results indicate that
the obtained representation is highly discriminative and out-
performs competing techniques on several standard shape
classification benchmarks.

More specifically, VIP-GAN considers multiple views
taken around a 3D shape in sequence as the context of the
3D shape, and it separates each view sequence into several
overlapping sections of equal length. It then learns to predict
the center view from its neighbors in each section, and the
neighbors from the center. Crucially, VIP-GAN includes a
memory shared by all view predictions of each shape. We
show that the system uses this memory to improve its view
prediction performance, in effect by learning a view inde-
pendent shape representation. VIP-GAN employs an RNN-
based generator with an encoder-decoder structure to imple-
ment the view inter-prediction strategy in different spaces.
The encoder RNN captures the content information and spa-
tial relationship of the neighbors to predict the center in 2D
view space, while the decoder RNN predicts the neighbors
in a low-level feature space according to the center predicted



by the encoder. To further improve the prediction of the cen-
ter, we train the generator jointly with a discriminator in an
adversarial way. In summary, our significant contributions
are as follows:

1) We propose VIP-GAN as a novel deep learning model
to perform unsupervised 3D global feature learning
through view inter-prediction with adversarial training,
which leads to state-of-the-art performance in shape
classification and retrieval.

VIP-GAN makes it possible to mine fine-grained “su-
pervised” information within the multi-view context
of 3D shapes by imitating human perception of view-
dependent patterns, which facilitates effective unsuper-
vised 3D global feature learning.

iii) We introduce a novel implicit aggregation technique for
3D global feature learning based on RNN, which en-
ables VIP-GAN to aggregate knowledge learned from
each view prediction across a view sequence effec-
tively.

Related work

Supervised 3D feature learning. Recently, supervised 3D
feature learning is an attractive topic. With class labels,
various deep learning models have been proposed to learn
3D features from different 3D raw representations, such as
voxels (Wu et al. 2015), meshes (Han et al. 2018), points
clouds (Qi et al. 2017a; 2017b) and views (Bai et al. 2017,
Shi et al. 2015; Sfikas, Theoharis, and Pratikakis 2017,
Sinha, Bai, and Ramani 2016; Su et al. 2015; Johns,
Leutenegger, and Davison 2016; Kanezaki, Matsushita, and
Nishida 2018), which aims to capture the mapping between
3D raw representations and class labels. The mapping is
captured by spotting the distribution patterns among vox-
els (Wu et al. 2015), points in cloud (Qi et al. 2017a;
2017b), vertices on mesh (Han et al. 2018), or view features
taken from different shapes (Bai et al. 2017; Shi et al. 2015;
Sfikas, Theoharis, and Pratikakis 2017; Sinha, Bai, and Ra-
mani 2016; Su et al. 2015; Johns, Leutenegger, and Davi-
son 2016; Kanezaki, Matsushita, and Nishida 2018). Among
these methods, multi-view based 3D feature learning meth-
ods perform the best, where pooling is widely used for view
aggregation.

Unsupervised 3D feature learning. Although unsupervised
3D feature learning methods (Sharma, Grau, and Fritz 2016;
Wu et al. 2016; Han et al. 2016; Girdhar et al. 2016;
Rezende et al. 2016; Yang et al. 2018; Achlioptas et al. 2018;
Han et al. 2018) are not always with high performance
as supervised ones, their promising advantage of learning
without labels still draws a lot of attention. To mine “su-
pervised” information from unsupervised scenario, unsuper-
vised feature learning methods usually train deep learning
models by different prediction strategies, such as the pre-
diction of a shape from itself by minimizing reconstruc-
tion error (Sharma, Grau, and Fritz 2016; Wu et al. 2016;
Yang et al. 2018; Achlioptas et al. 2018) or embedded en-
ergy (Han et al. 2016), the prediction of a shape from con-
text (Han et al. 2018), or the prediction of a shape from con-
text and itself together (Girdhar et al. 2016; Rezende et al.
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2016). These methods employ different kinds of 3D raw rep-
resentations, such as voxels (Sharma, Grau, and Fritz 2016,
Wu et al. 2016; Girdhar et al. 2016; Rezende et al. 2016),
meshes (Han et al. 2016; 2018) or point clouds (Yang
et al. 2018; Achlioptas et al. 2018), and accordingly, dif-
ferent kinds of context, such as spatial context of virtual
words (Han et al. 2018) or views (Girdhar et al. 2016;
Rezende et al. 2016), are employed. With the ideas of auto-
encoder (Sharma, Grau, and Fritz 2016; Girdhar et al. 2016;
Rezende et al. 2016; Yang et al. 2018; Achlioptas et al.
2018), classification (Han et al. 2018) or generative adver-
sarial training (Wu et al. 2016; Achlioptas et al. 2018), these
methods effectively learn discriminative 3D features. Differ-
ent from these methods, VIP-GAN tries to learn 3D features
by performing view inter-prediction to mine fine-grained
“supervised” information within the multi-view context of
3D shapes, where context formed by multiple views is first
explored for 3D global feature learning with adversarial
training.

View synthesis and unsupervised video feature learning.
View synthesis aims to generate novel views according to
existing views. Deep learning based view synthesis has been
drawing more and more research interests (Tatarchenko,
Dosovitskiy, and Brox 2016; William, Gabriel, and David
2017). First tries teach deep learning models to predict novel
views according to input views and transformation parame-
ters (Tatarchenko, Dosovitskiy, and Brox 2016). To gener-
ate views with more detail (i.e. texture) and less geometric
distortions, external image sets or geometric constraints are
further employed.

Similarly, to predict the future frames in a video, the
information of multiple past frames is aggregated by
RNN (William, Gabriel, and David 2017). However, these
methods mainly focus on the quality of generated views
rather than the discriminability of learned features, where
we find the view quality is not a sufficient condition for the
feature discriminability in our experiments. In addition, the
knowledge learned in each prediction cannot be aggregated
by these methods to represent the global features. There-
fore, these methods cannot be directly used for unsupervised
3D feature learning from view inter-prediction, which high-
lights our novelty by differentiating VIP-GAN apart from
them.

VIP-GAN is also different from unsupervised video fea-
ture learning studies. Sequential views of 3D shapes are dif-
ferent from video frames because there is no firm starting
position in view sequences. Each view could be the first
view because of 3D shape rotation. This requires VIP-GAN
to be invariant to the initial view position, that is, no matter
which view of a 3D shape is the first, the learned feature of
the shape should be the same. This is the main characteris-
tic that makes VIP-GAN different from unsupervised video
feature learning (At test stage, sensitive to the first frame
of a video). Similarly, unsupervised image feature learning
cannot aggregate multiple views and employ multiple view
consistency as VIP-GAN.



VIP-GAN

Overview. The framework of VIP-GAN is illustrated in
Fig. 1. Using multiple local view inter-predictions, VIP-
GAN aims to learn a global representation or feature F' of
a 3D shape m from V views v; sequentially taken around
m, where i € [1,V]. Note that F is learned for each shape
as an F' dimensional vector, effectively serving as a view-
independent memory that is used in all local view inter-
predictions for the shape. Hence F' implicitly aggregates the
knowledge learned from all sections s; across the V' views.
Learning F' is performed via gradient descent together with
the other parameters in VIP-GAN, where F' is randomly ini-
tialized. We split the set of views into V' sections of equal
length, where a section s; is centered at each view v;. We
denote the center view of the section as ¢, and its N neigh-
bors as n;, where j € [1,N] (N = 2 in Fig. 1). In each
section s;, VIP-GAN first predicts the center ¢ in 2D space
from the neighbors n;. Conversely, it also predicts n; in fea-
ture space from the predicted center ¢’

V views of shape m [Section Sliding
N Neighborl Neighbor2
") ™ &
Generator (5 EncoderRNN E DecoderRNN R

Randomly initialized

and iteratively updatch
with other parameters

S fy

Discriminator D
Real center?

Figure 1: VIP-GAN is composed of generator G and dis-
criminator D. The global feature F is learned in G by view
inter-prediction through encoder E, decoder R and deconvo-
lutional net U.

VIP-GAN consists of two main components, the genera-
tor G and discriminator D. The goal of the generator is to
predict the center view in each section from its neighbors in
image space, and the neighbors from the center in feature
space. G consists of a VGG19 network, an encoder RNN E
(in red), a decoder RNN R (in green) and a deconvolutional
network U (in blue), where E and R are implemented by
Gated Recurrent Units (GRUs). In addition, the discrimina-
tor D (in purple) is a convolutional network to distinguish
whether a center view is real or not. G and D are jointly
trained in an adversarial manner.

Generator G. In each section s; of shape m, the first task
of generator G is to collect a feature vector h; that will be
used to generate the predicted center view ¢’. For this pur-
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pose, the generator encodes the content within the neighbor
views n; and the spatial relationship among them. We ex-
tract the content of each n; as a 4096 dimensional feature
vector f; by the last fully connected layer of a VGG19 net-
work, where the resolution of input n; is 224 x 224. We fur-
ther encode the f; with their spatial relationship using an en-
coder RNN E. We provide the global feature F' of shape m,
our learning target, at the first step of the encoder E serving
as a knowledge container or memory that keeps incorporat-
ing the knowledge derived from each view prediction. Dif-
ferent from pooling, which is widely used as an explicit view
aggregation, this implicit aggregation enables VIP-GAN to
learn from more fine-grained information, such as the spatial
relationship among the neighbors n; in each section s;, and
the connection between knowledge derived from different
sections s; across V' views of m. Finally, at the last step of
the encoder E for each section s; we obtain a 4096 dimen-
sional feature h; as the hidden state, which we subsequently
use to generate the predicted center ¢’ using a deconvolu-
tional network U.

By reshaping the 4096 dimensional h; into 256 feature
maps of size 4 x 4, the deconvolutional network U starts gen-
erating the predicted center ¢’ with a resolution of 64 x 64
through four deconvolutional layers. The deconvolutional
layers employ 256, 128, 64, and 3 kernels, respectively, and
each kernel has size 3 x 3 and a stride of 2. In each decon-
volutional layer, we use a leaky ReLu with a leaky gradient
of 0.2. We utilize the L-2 loss between the predicted center
view U(s;) = ¢ and the ground truth center ¢ to measure
the center prediction performance of G, denoted as loss Ly,

Ly = [[U(s:) = ¢|f3- (1

The second task of generator G is to reversely predict the
neighbors n; from the predicted center ¢’ in each section
s;. Different from the center view prediction task, we eval-
uate the prediction in feature space here. The two prediction
tasks in different spaces enable VIP-GAN to more fully un-
derstand the 3D shape m. To predict both the content infor-
mation within each n; and the spatial relationship among n;
from the predicted center ¢/, we employ a decoder RNN R
with h; as initialized hidden state that predicts the features
fj’- of each neighbor view n; step by step. Similar to the en-
coder E, we provide the global feature F' at the first step of
R, which is regarded as a reference for the following neigh-
bor feature predictions. Then, f]( is produced at the j-th step
of R using the feature f;_; of its previous counterpart as
input. We predict the features f]’» in the same order as we
provide the corresponding f; to the encoder E. We measure
the neighbor prediction performance of G using L-2 loss in
feature space,

1

Ly = 2)

N

= >0 IRGs); — 53
where R(s;); = f} is the output at the j-th step of R. In
summary, the loss of G is formed by the loss Ly of U and
the loss Ly of R.

Discriminator D. In preliminary experiments, we found
that the quality of predicted center views ¢’ is not a sufficient
condition to obtain a highly discriminative global feature F'.



Table 1: The effects of balance weights a and 3 on the performance of VIP-GAN under ModelNet10.

(a,) (1,0.05) (3,0.05) (5,0.05) (3,0.1) (3,001) (3,00 (0,001) (0,00 (0,0C
Instance ACC | 92.73 94.05 93,50 9284  91.19 9251 8337  84.80 75.77
Class ACC 92.23 93.71 93.01 9250 90.62 92.08 82.05 83.96 74.78
Table 2: The effects of parameters on VIP-GAN under ModelNet10 in terms of accuracy.
Parameters R D F(1024) F(2048) F(4096) | N(2) N(6) | V(6) V(3) | cGan | BiDir
Instance ACC | 90.53 47.80 | 92.29 92.51 94.05 93.17 9350 | 92.62 92.51 | 89.10 | 93.83
Class ACC | 89.88 44.49 91.73 92.03 93.71 9291 93.08 | 92.32 9222 | 88.34 | 93.45

For example, a complex and powerful deconvolutional net-
work could generate ¢’ with higher quality than our simple
one introduced before, but we found that the learned feature
F' is much less discriminative. This phenomenon is caused
by the large capacity of the more complex deconvolutional
network to generate high quality view ¢’ from any feature
h;. However, this may decrease the discriminability of the
learned feature F'. What we really want to achieve is that
the quality of predicted views ¢’ is mainly due to the discrim-
inability of the learned feature F', rather than the powerful
learning ability of the deconvolutional network.

To resolve this issue, we employ discriminator D with
adversarial training to facilitate our simple deconvolutional
network U. Specifically, D is a CNN with five layers, in-
cluding four convolutional layers and a one dimensional
fully connected layer, where the resolution of input views
is 64 x 64. Each convolutional layer contains 64, 128, 256,
512 kernels respectively, and each kernel has size 5 x 5 and
a stride of 2, where we employ a leaky ReLu with a leaky
gradient of 0.2. In the last layer of D, a sigmoid function
provides the probability that the input is a real center view.
Finally, the loss of D is the cross entropy of the probability
produced from each s;, as defined as Lp in Eq. 3, where
D(U(s;)) is the probability that D thinks the predicted cen-
ter ¢ from s; by U is real,

Lp =logD(c) + log(1 - D(U(s)). (3
Adversarial training. Adversarial training is based on Gen-
erative Adversarial Networks (GAN) (Goodfellow et al.
2014). The predicted center ¢’ from the generator G is
passed to the discriminator D with the real center ¢, where
D tries to learn how to distinguish whether a center is real or
not. With adversarial training, the discriminator D is trained
to maximize the probability when the center is real while
minimizing it when the center is generated by generator G,
as defined in Eq. 3. In contrast, the generator G has to be
trained to fool the discriminator D. Therefore, in s;, the loss
Lpsy for G from D is defined to make the predicted center
U(s;) generated by U more real,

Lpou = log(1 — D(U(s:))). @)

Finally, we define the loss function of VIP-GAN by com-
bining the aforementioned losses as in Eq. 5, where the
weights « and 3 are used to control the balance among them,

L=Ly+alg+ BLpay. )
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Note that simultaneously with the other network parameters,
we also optimize the learning target F' by minimizing L us-
ing a standard gradient descent approach by iteratively up-
dating F' by F < F — ¢ x OL/OF, where ¢ is the learning
rate.

Modes for testing. Typically, there are two modes of un-
supervised learning of features F' of 3D shapes for testing,
which we call the known-test mode and the unknown-test
mode. In known-test mode, the test shapes are given with
the training shapes at the same time, such that the features
of test shapes can be learned with the features of training
shapes together. In unknown-test mode, VIP-GAN is first
pre-trained under training shapes. At test time, we then iter-
atively learn the features of test shapes by minimizing Eq. 5
with fixed pre-trained parameters of U, R and D.

Experimental results and analysis

In this section, the performance of VIP-GAN is evaluated
and analyzed. First we discuss the setup of parameters in-
volved in VIP-GAN. These parameters are tuned to demon-
strate how they affect the discriminability of learned fea-
tures in shape classification under ModelNet10 (Wu et al.
2015). Then, VIP-GAN is compared with state-of-the-art
methods in shape classification and retrieval under Model-
Net10 (Wu et al. 2015), ModelNet40 (Wu et al. 2015) and
ShapeNet55 (Savva et al. 2017). All classification is con-
ducted by a linear SVM (with default parameters in scikit-
learn toolkit) under the global features learned by VIP-GAN.
Parameter setup. The balance weights o and § are impor-
tant for the performance of VIP-GAN. In this experiment,
we explore the effects of a and 8 on the performance of
VIP-GAN under ModelNet10 in terms of average instance
accuracy and average class accuracy, as shown in Table 1.
Initially, the dimension I of global feature F' is 4096, the
center c gets N = 4 neighbors, and the V' = 12 views of
all 3D shapes under ModelNet10 are employed to train VIP-
GAN in known-test mode. « and (3 are set to 1 and 0.05, re-
spectively, since they make the initial values of loss Ly, Ly
and Lpoy comparable to each other, where a normal distri-
bution with mean of 0 and standard deviation of 0.02 is used
to initialize the parameters involved in VIP-GAN.

First, the effect of « is explored by incrementally increas-
ing o from 1 to 3 and 5. With o = 3, best performance
of VIP-GAN is achieved up to 94.05%, and the results with
«a = 3 are better than the results with o« = 5. Then, the effect
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Figure 2: The predicted centers generated with different
pairs of balance parameters («, 3).

of 3 is explored based on o = 3 by increasing 5 to 0.1 and
decreasing 5 to 0.01. These degenerated results show that
the adversarial loss should not be over- or under-weighted.
Subsequently, we highlight the contribution of discriminator
D and decoder R to deconvolutional network U by incre-
mentally setting o and 3 to 0. By setting /3 to 0, the results
with “(3,0)” are better than the results with “(3,0.01)”, but
worse than the results with “(3,0.1)”. This phenomenon im-
plies that the under-weighted GAN loss is not helpful to in-
crease the discriminability of learned features. We observe a
similar phenomenon by comparing between “(0,0.01)” and
“(0,0)”. The comparison between “(3,0)” and “(0,0)” shows
that the decoder R significantly increases the discriminabil-
ity of learned features. In summary, these results show that
the decoder R and the discriminator D can both improve
the performance of VIP-GAN. However, R contributes more
than D to U, and « is less sensitive than /3.

Furthermore, as mentioned before, the quality of pre-
dicted center ¢’ is not a sufficient condition to obtain a highly
discriminative global feature F'. By replacing our simple
U with a more complex one employed in (Dosovitskiy and
Brox 2016), the quality of predicted centers becomes higher,
as shown in the comparison between “(0,0)”” and “(0,0)C” in
Fig. 2. On the other hand, the discriminability of the learned
global feature F' dramatically decreases, as illustrated by the
comparison between “(0,0)” and “(0,0)C” in Table 1. The
reason for this is that the more complex deconvolutional net-
work in (Dosovitskiy and Brox 2016) is too deep to facilitate
effective error back propagation to train a highly discrimina-
tive global feature. To keep the network in (Dosovitskiy and
Brox 2016) unchanged, the predicted views are generated in
the resolution of 256 x 256 rather than 64 x 64, where the
224 x 224 ground truth views are padded with pixel values
of 255 to enable the computation of loss Ly. Finally, we
also highlight the importance of R and D by merely using
Ly or Lpoy to train, as shown by “R” and “D” in Table 2.
Compared with the importance of U as “(0,0)” in Table 1, R
plays the most important role in VIP-GAN.

The predicted centers ¢’ generated by different o and (3
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Table 3: The comparison of classification accuracy under
ModelNet10 and ModelNet40.

Methods Supervised MN40 MNI10
MVCNN Yes 90.10 -
MVCNN-Multi Yes 91.40 -
ORION Yes - 93.80
3DDescriptorNet Yes - 92.40
Pairwise Yes 90.70  92.80
GIFT Yes 89.50 91.50
PANORAMA Yes 90.70 91.12
VoxNet Yes - 92.00
VRN Yes 91.33  93.80
RotationNet Yes 90.65 93.84
PointNet++ Yes 91.90 -
T-L No 74.40 -
LFD No 7547  79.90
Vconv-DAE No 75.50  80.50
3DGAN No 83.30 91.00
LGAN No 85.70  95.30
LGAN(MN40) No 87.27 92.18
FNet No 88.40 94.40
FNet(MN40) No 84.36  91.85
Our No 91.98 94.05
Ourl(SN55) No 90.19  92.18
Our2(+SN55) No 91.25 92.84

are demonstrated in Fig. 2, where the tags marking each col-
umn are consistent with the parameters in Table. 1. Accord-
ing to the ground truth, the complex deconvolutional net-
work (“(0,0)C”) generates centers with higher quality than
our simple ones (“(0,0)”). The comparison between “(0,0)”
and “(3,0)” shows that the decoder R slightly degenerates
the quality of predicted centers. In addition, the adversar-
ial loss weighted by small 5 can make the predicted centers
sharper, but also produce distortions, as illustrated by the
comparison between “(0,0)” and “(0,0.01)”, and the com-
parison between “(3,0)” and “(3,0.01)”. The adversarial loss
weighted by big 8 will make the loss Ly subtle with big
distortions, as shown by “(3,0.1)”.

The effects of F', N and V" are further explored in Table 2.
By gradually decreasing F' from 4096 to 2048 and 1024, the
results are degenerated from 94.05% to 92.51% and 92.29%.
To conduct this experiment with the rest of VIP-GAN un-
changed, one more 4096 dimensional fully connected layer
is employed before F' is inputted in G. Then, the number
N of neighbors in each section s; is explored by respec-
tively decreasing N to 2 and increasing NV to 6, based on the
N = 4 structure with our best results. Although these results
are degenerated from our best results, they are still good.
The degeneration is caused by that less neighbors could not
provide enough discriminative information to learn while
more neighbors would bring redundant discriminative infor-
mation. Following this, we decrease V' to 6 and 3 gradually,
the results are also decreased due to the less information
for learning, where NN is adjusted to 2 when V is set to 3.
Subsequently, we employ conditional GAN to replace the
GAN structure in VIP-GAN, where the ground truth neigh-



bors are regarded as the conditions of the center. The high-
level features f; of neighbors are concatenated with the ex-
tracted feature of the center after the last convolutional layer
in discriminator D, which is further followed by an extra
convolutional layer and the one dimensional fully connected
layer. Although the results dramatically decreased as shown
by “cGan”, it is still better than merely using U as listed
“(0,0)” in Table 1. These results imply that GAN is bet-
ter than conditional GAN for 3D global feature learning in
VIP-GAN, while both the adversarial loss of GAN and con-
ditional GAN are helpful to improve the discriminability of
learned features. Moreover, we also try to train VIP-GAN
by bidirectional view sequences, since human can perform
the view inter-prediction from either left to right or right to
left in a view sequence, as shown by the results listed as
“BiDir”. However, no further improvement is obtained from
the doubled training samples.

Loss

EOTEL
Epoches

(2) (b)

Figure 3: (a)The effectiveness of our novel implicit view ag-
gregation is shown by the comparison between the loss with
nonzero trainable F' and the loss with zero non-trainable F'.
(b)The learned global features are visualized by feature ma-
nipulation in the embedding space.

Classification. We compare VIP-GAN with the state-of-the-
art methods in classification under ModelNet40 and Mod-
elNetl0. The parameters under ModelNet40 are the same
ones with our best results under ModelNet10 in Table 2.
The compared methods include MVCNN (Su et al. 2015),
ORION (Sedaghat et al. 2017), 3DDescriptorNet (Xie et al.
2018), Pairwise (Johns, Leutenegger, and Davison 2016),
GIFT (Bai et al. 2017), PANORAMA (Sfikas, Theoharis,
and Pratikakis 2017), VRN (Brock et al. 2016), Rota-
tionNet (Kanezaki, Matsushita, and Nishida 2018), Point-
Net++ (Qi et al. 2017b), T-L (Girdhar et al. 2016), LFD,
Vconv-DAE (Sharma, Grau, and Fritz 2016), 3DGAN (Wu
etal. 2016), LGAN (Achlioptas et al. 2018), and FNet (Yang
et al. 2018).

VIP-GAN significantly outperforms all its unsupervised
competitors under ModelNet40, and some of them under
ModelNet10, as shown by “Our”, which is also the best re-
sult compared to eight top ranked supervised methods. For
fair comparison, the result of VRN (Brock et al. 2016) is
presented without ensemble learning, and the result of Ro-
tationNet(Kanezaki, Matsushita, and Nishida 2018) is pre-
sented with views taken by the default camera system ori-
entation that is identical to the others. In addition, we try to
train VIP-GAN under ShapeNet55 in unknown-test mode.
Hence, we fix the parameters to extract features under Mod-
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Table 4: The comparison of retrieval in terms of mAP under
ModelNet40 and ModelNet10.

Methods MN40 MNI10
Geolmage 5130  74.90
Pano 76.81 84.18
MVCNN 79.50 -
GIFT 81.94 91.12
RAMA 83.45 87.39
Trip 88.00 -
Our 89.23  90.69
Ourl(SN55) 87.66  90.09
Our2(+SN55) 88.87  90.75
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Figure 4: The comparison of PR curves for retrieval under
ModelNet40 and ModelNet10.

elNet40 and ModelNet10, as shown by “Ourl(SN55)”. Al-
though the results of LGAN(Achlioptas et al. 2018) and
FNet(Yang et al. 2018) are better than “Ourl(SN55)” un-
der ModelNetl10, it is inconclusive whether they are better
than ours. This is because these methods are trained under
a version of ShapeNet55 that contains more than 57,000 3D
shapes, including a number of 3D point clouds. However,
VIP-GAN is trained only under the 51,679 3D shapes from
ShapeNet55 that are available for public download.

Finally, we explore whether “Our” could be further im-

proved by more training shapes from ShapeNet55 in known-
test mode, as shown by “Our2(+SN55)”. However, with
the existing parameters, only comparable results are ob-
tained. Moreover, we evaluate VIP-GAN under ShapeNet55
in known-test mode using the same parameters with our best
results under ModelNet10 in Table 2, as shown in the right-
most column “Our” in Table 6. Similar to “Our2(+SN55)”,
with the existing parameters, only comparable results are ob-
tained by more training shapes from ModelNet40, as shown
by “Our+".
Our novel implicit view aggregation. The effect of our
novel implicit view aggregation is first explored by visu-
alization. In Fig. 3(a), we compare the training loss of our
framework with a fixed, non-trainable F’ set to zero, and our
trainable F'. Our approach is able to learn the characteristics
of each shape to make up the missing information in each
prediction, which reduces the training loss. The two losses
show that the generator is getting to the Nash equilibrium.

In Fig. 3(b), we further evaluate the semantic meaning of
our features by manipulating them algebraically, and visual-



Table 5: The effects of our novel implicit view aggregation
under ModelNet10.

ACC | Non-trainable F' Trainable F'
MaxP | MeanP | MaxP | MeanP | Our
Ins 84.58 87.22 81.72 | 82.49 | 94.05
Cla | 83.95 87.38 80.60 | 81.73 | 93.71

izing the result via nearest neighbor retrieval in ModelNet10,
as shown on the right. The retrieved shapes exhibit charac-
teristics similar to both input shapes, such as the surface of
the bed in the first row, and the bedhead in the second row.
Finally, we compare our implicit view aggregation with
the widely used explicit view aggregation pooling under
ModelNet10. Here, we use the output h; of the encoder E
as the feature of each view, and obtain the global feature of
the shape by pooling all the h; together with maxpooling
and meanpooling, where each h; is obtained with trainable
F' and non-trainable all zero F'. In Table 5, with trainable or
non-trainable F', our implicit view aggregation is always su-
perior to the pooling. Without the support of trainable F',
the pooled features are pushed to be more discriminative
than the ones with trainable F' to minimize the loss, which
makes the pooling results better. However, it is still not good
enough to keep the loss as low as ours shown in Fig. 3(a).

Table 6: Retrieval and classification comparison in terms of
Micro-averaged metrics under ShapeNetCore55.

Micro
Methods P R F1 | mAP | NDCG

Kanezaki | 81.0 | 80.1 | 79.8 | 77.2 86.5
Zhou 78.6 | 773 | 76.7 | 72.2 82.7
Tatsuma | 76.5 | 80.3 | 77.2 | 74.9 82.8
Furuya | 81.8 | 68.9 | 71.2 | 66.3 76.2
Thermos | 74.3 | 67.7 | 69.2 | 62.2 73.2
Deng 41.8 | 71.7 | 479 | 54.0 65.4
Li 53.5 | 256|282 | 199 33.0
Mk 79.3 | 21.1 | 253 | 19.2 27.7
Su 77.0 | 77.0 | 764 | 73.5 81.5
Bai 70.6 | 69.5 | 68.9 | 64.0 76.5
Taco 70.1 | 71.1 | 699 | 67.6 75.6
Our 60.0 | 80.3 | 61.2 | 83.5 89.4
Our+ 60.0 | 80.3 | 61.2 | 83.6 89.5

Our accuracy 82.97

Our+ accuracy 82.51

Retrieval. VIP-GAN is further evaluated in shape retrieval
under ModelNet40, ModelNet10 and ShapeNetS5, as shown
in Table 4, Table 6 and Table 7. The compared results in-
clude LFD, SHD, Fisher vector, 3D ShapeNets (Wu et al.
2015), Geolmage (Sinha, Bai, and Ramani 2016), Pano (Shi
et al. 2015), MVCNN (Su et al. 2015), GIFT (Bai et al.
2017), RAMA (Sfikas, Theoharis, and Pratikakis 2017) and
Trip (He et al. 2018).

In these experiments, the 3D shapes in the test set are used
as queries to retrieve the rest shapes in the same set, and
mean Average Precision (mAP) is used as a metric. In addi-
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tion, we employ global features involved in our classification
results in Table 3 and Table 6 for the retrieval experiments
under the three benchmarks.

As shown in Table 4, our results of “Our” outperform all
the compared results under ModelNet40, and sightly lower
than the best results of 91.12 by GIFT under ModelNet10.
However, it is inconclusive whether GIFT outperforms VIP-
GAN, since the dataset used by GIFT is formed by randomly
selecting 100 shapes from each shape class, which is much
simpler than the whole benchmark that we used. In addition,
with trained by more shapes from ShapeNet55, the result of
“Our2” under ModelNet10 is a little bit higher than the result
of “Our”. Their available PR curves under ModelNet40 and
ModelNet10 are also compared in Fig. 4.

In Table 6 and Table 7, the results of “Our” outperform all
the compared results under ShapeNet55. Besides Taco (Co-
hen et al. 2018) in Table 6, the compared results with-
out reference are from SHREC2017 shape retrieval con-
test (Savva et al. 2017) under ShapeNet55 with the same
names, where micro-averaged and macro-averaged methods
are employed to compute the metrics. Similar to “Our2” un-
der ModelNet10, with trained by more shapes from Model-
Net40, “Our+" is a little bit better than “Our”.

Table 7: Retrieval comparison in terms of Macro-averaged
metrics under ShapeNetCore55.

Macro

Methods P R F1 mAP | NDCG
Kanezaki | 60.2 | 63.9 | 59.0 | 58.3 65.6
Zhou 59.2 | 654 | 58.1 | 57.5 65.7
Tatsuma | 51.8 | 60.1 | 51.9 | 49.6 55.9
Furuya 61.8 | 53.3 | 50.5 | 47.7 56.3
Thermos | 52.3 | 494 | 484 | 41.8 50.2
Deng 122 | 66.7 | 16.6 | 339 40.4
Li 219 | 409 | 19.7 | 25.5 37.7
Mk 59.8 | 283 | 25.8 | 23.2 33.7
Su 57.1 | 625 | 57.5 | 56.6 64.0
Bai 444 | 53.1 | 454 | 447 54.8
Our 189 | 81.2 | 24.0 | 69.2 83.7
Our+ 18.8 | 81.3 | 24.0 | 69.9 84.0

Conclusions

We proposed VIP-GAN, an approach for unsupervised 3D
global feature learning by view inter-prediction that is ca-
pable of learning from fine-grained “supervised” informa-
tion within the multi-view context of 3D shapes. Inspired
by human perception of view-dependent patterns, VIP-GAN
successfully learns more discriminative golbal features than
state-of-the-art view-based methods that regard the multi-
view context as a whole. With adversarial training, the
global features can be learned more efficiently, which fur-
ther improves their discriminability. In addition, our novel
implicit aggregation enables VIP-GAN to learn within the
multi-view context by effectively aggregating knowledge
learned from multiple local view predictions across a view
sequence. Our results show that VIP-GAN outperforms its



unsupervised counterparts, as well as some top ranked su-
pervised methods under large-scale benchmarks in shape
classification and retrieval.
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