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Abstract

Deep learning based automatic feature extraction methods
have radically transformed speaker identification and facial
recognition. Current approaches are typically specialized for
individual domains, such as Deep Vectors (D-Vectors) for
speaker identification. We provide two distinct contributions:
a generalized framework for biometric verification inspired
by D-Vectors and novel models that outperform current state-
of-the-art approaches. Our approach supports substitution of
various feature extraction models and improves the robust-
ness of verification tests across domains. We demonstrate the
framework and models for two different behavioral biometric
verification problems: keystroke and mobile gait. We present
a comprehensive empirical analysis comparing our frame-
work to the state-of-the-art in both domains. Our models per-
form verification with higher accuracy using orders of mag-
nitude less data than state-of-the-art approaches in both do-
mains. We believe that the combination of high accuracy and
practical data requirements will enable application of behav-
ioral biometric models outside of the laboratory in support of
much-needed improvements to cyber security.

Introduction

Automatic feature extraction is revolutionizing the appli-
cation of machine learning. The advent of deep learning
has given rise to viable automatic feature extraction meth-
ods (LeCun, Bengio, and Hinton 2015) that derive latent
features from high-dimensional problem spaces with little-
to-no domain knowledge. This approach has been demon-
strably more effective than traditional handcrafted features,
leading to breakthroughs in computer vision (Krizhevsky,
Sutskever, and Hinton 2012), speech recognition (Graves,
Mohamed, and Hinton 2013), and artificial intelligence (Sil-
ver and Hassabis 2016).

Deep learning is leading to similar advancements in
biometrics, where it has been successfully applied to fa-
cial (Taigman et al. 2014) and speaker recognition (Snyder et
al. 2017). One such advancement is an approach for speaker
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verification known as Deep Vectors (D-Vectors) (Variani et
al. 2014). Speaker verification, and biometric verification
in general, is the process of positively identifying an indi-
vidual based upon their unique biometric patterns, such as
speech. This technology has many important applications
including secure computer access (Smith 2018) and fraud
detection (Cowley 2018).

D-Vectors automatically extracts a latent feature space
from speech audio that effectively separates the unique-
nesses of individuals. This approach has demonstrated sig-
nificant improvements over competing speaker verification
methods with regard to equal error rates (EER) and robust-
ness to noise (Variani et al. 2014; Heigold et al. 2016); how-
ever, the D-Vectors approach and models are not passive,
require explicitly formatted input to function, and specific
to speaker verification. As such, D-Vectors has not been ex-
plored outside of speaker verification.

In this paper, we present a novel framework, inspired by
D-Vectors, that generalizes beyond speaker verification and
can readily be applied to any biometric verification prob-
lem. The only requirements for the application of this frame-
work are user-labeled data and a parameterized model for
feature extraction. As evidence of the framework’s general-
ity, we apply it to two distinctly different and challenging
behavioral verification problems, keystroke and mobile gait.
Unlike in prior applications of D-Vectors, the data was col-
lected passively and few assumptions are made upon input
sequences. Additionally, we provide an empirical evaluation
that shows our approach is more robust and significantly out-
performs modern state-of-the-art (SOA) verification meth-
ods for these modalities. Our key contributions can be sum-
marized as follows:

e Generalization of D-Vectors as a framework for any bio-
metric verification problem

e Improvements to the robustness of similarity scoring by
incorporating two additional distance measures

e Detailed descriptions of how the framework can be ap-
plied to keystroke and mobile gait verification

e A novel featurization model for keystroke data that breaks
from four decades of research and dramatically improves
performance

e A comprehensive empirical study comparing our ap-
proach across two distinct domains and three independent



datasets against the latest comparable SOA methods

e Results across domains demonstrating significant reduc-
tions in EER, by greater than 10%

e Our approach demonstrates orders of magnitude reduc-
tions in data requirements

Background

Traditionally, handcrafted features are used for biometric
verification; a probe (“sample”) composed of those features
is compared against a user’s signature(s) to determine if the
probe data matches the patterns defined in the signature(s).
The signature is a model or a distribution that describes a
user’s behavior in a given context (e.g., keystroke timings).
This is true for the two behavior biometric domains we study
in this paper, keystroke and mobile gait verification.

Current SOA engineered features in keystroke biometric
verification are extracted from key-pairs (i.e., digraphs) or
n-grams. For every pair or n-gram several features are ex-
tracted based on the timings of the press and release of the
keys (Dora et al. 2013). These features are then compared
using a distance metric or traditional classification algorithm
(Banerjee and Woodard 2012).

Gait detection using inertial sensors, specifically those
available in mobile phones, has received far less atten-
tion (Lu et al. 2014). Tri-axial accelerometer and gyroscope
are the most commonly used mobile sensors for gait anal-
ysis. Typically, arbitrarily-sized windows are drawn from
the samples and features are extracted from these windows.
Features are often drawn from both the time and frequency
domains, and often include standard statistical measures
(mean, standard deviation, etc.). Classification algorithms
are then applied to these features, with each window rep-
resenting a sample (Anguita et al. 2013).

While handcrafted features can be effective, they require
a well-defined connection between the data and behavioral
models, excessive data filtering, and extensive outlier detec-
tion. It can also be difficult to find features that capture the
signal of the model and not the noise. These shortcomings
have been demonstrated on several occasions by keystroke
dynamics researchers. Killourhy & Maxion (Killourhy and
Maxion 2009) and Murphy et al. (Murphy et al. 2017) com-
pared algorithms reported by several different studies on var-
ious datasets, including real-world datasets, and found that
the performance of these algorithms often degraded signifi-
cantly outside of laboratory settings.

Automatic feature extraction can improve on these weak-
nesses and minimizes bias introduced by human-defined fea-
tures. To this end, D-Vectors were originally developed for
speaker verification with “Ok Google” (Variani et al. 2014).
The authors use speech processing and a small Deep Neural
Network (DNN) to perform automatic feature extraction to
derive a feature set for speaker representations that outper-
forms standard methods and is more robust to noise. Heigold
et al. (Heigold et al. 2016) implemented an alternative end-
to-end approach for training D-Vector representations that
trains the model directly on the verification task rather than
using an intermediary classification step. This approach in-
troduces several layers of complexity to produce statistically
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significant, yet marginal, improvements to accuracy. Our ap-
proach generalizes Variani et al.’s (Variani et al. 2014) clas-
sification approach to provide a framework that operates in-
dependently of the data type.

Method: D-Vectors

In this paper, we show that D-Vectors can be generalized
beyond speaker verification and applied, as a framework
for training and employing DNNS, to any verification prob-
lem. Figure 1 is a block diagram of our general D-Vector
framework. Our architecture employs a base DNN model
that feeds two distinct phases: training and execution. In the
training phase, the model parameters are tuned to learn the
latent feature space described by the D-Vector. This is fol-
lowed by the execution phase, where D-Vector values are
used as signatures and similarity scores are calculated to per-
form verification.
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Figure 1: D-Vector framework diagram. This diagram de-
picts both the training and execution phases.

Both phases share the same base DNN model. The model
starts with the Raw Sensor Input that accepts sensor read-
ings from whichever modality of biometrics is being mea-
sured. This is followed by Domain Specific Modeling Lay-
ers which contains pre-processing techniques and a DNN.
First, we transform the raw data into a usable format for the
DNN. The DNN must be carefully designed to appropriately
model the problem. For the two biometric modalities that we
apply the framework to, keystroke and gait, we provide de-
tails on the design of these layers in greater detail in subse-
quent sections. The model ends at the D-Vector Layer which,
once trained, describes a point in a latent feature space that
is highly discriminative between subjects.

The objective of the training phase is to tune the base
model to learn and extract the latent feature space that can
generalize beyond the users that were in the training cor-
pus. To do this, an additional Softmax Layer is appended
to the base model. This layer is a one-dimensional vector



of length n, where n is equal to the number of subjects in
the training corpus. This layer enables us to train the DNN
as a standard n-class classification problem using logistic
regression. Each output node on the softmax layer corre-
sponds to the predicted probability that a specific subject
created the data sample. We optimize and train the DNN us-
ing a cross entropy loss function on the prediction error. We
hypothesize that the classification training process will au-
tomatically extract features that are discriminative between
the various subjects in the training corpus and that these fea-
tures generalize well, assuming that the training corpus is
sufficiently representative of the intended target population.
Once training is complete, the Softmax Layer is discarded
and we are left with a model that translates subject data into
points within the discriminative D-Vector space.

After training, the DNN model can be employed in the ex-
ecution phase. This phase includes subject enrollment (sig-
nature generation) and similarity evaluations (comparison of
D-Vector samples against a signature). Enrollment involves
multiple D-Vector samples from a single subject and aver-
ages them to produce a single D-Vector that can be used as
a signature for that subject.

Once this Enrollment Signature is collected, it can be ver-
ified against one or more 7est Vectors using similarity mea-
sures to verify whether the test vector is from the same sub-
ject as the enrollment signature. This is accomplished by the
Similarity Scoring function of the architecture. Unlike the
original D-Vector work, our approach uses a combination of
three scoring measures: cosine similarity, L2 distance, and z-
score using logistic regression. Later in our empirical study,
we show that the additional measures, L2 distance and z-
score, increases the accuracy of the approach beyond cosine
similarity alone. Finally, these scores are combined as fea-
tures to a binary logistic regression classifier, Verifier, that
learns an appropriate threshold for verifying if the signature
and test vector are from the same subject. This last classifier
can be trained by reusing the original training corpus or a
secondary corpus.

Keystroke Verification

While the D-Vector framework itself is data-agnostic, its
success depends on the design and implementation of an ap-
propriate model for data type. The model must be carefully
designed to capture the relevant patterns within the data. We
describe a novel design for a DNN model of keystroke data
that captures more information than prior methods and, thus,
produces more accurate results.

Classical approaches to keystroke verification use aggre-
gate key-pair timing statistics to model these parameters. A
major shortcoming of this approach is that the statistics do
not model long-term (beyond two keys) inter-key patterns
that may be present in keystroke data. Our initial keystroke
model fed these traditional n-gram features into a simple
neural network with three fully connected layers. This only
produced a minor improvement over SOA methods, so we
employed an alternative approach that uses more of the data
and discovers long-term patterns. We hypothesize that such
patterns provide valuable verification information that can
be automatically extracted using an appropriate model.
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Preprocessing The keystroke data ingested by our model
was collected by recording key events that occur every time
a key is pressed or released. Three values are recorded for
each key event: the unique key identifier, whether the event
was a press or release, and a timestamp of the event in mil-
liseconds. Once collected, we perform minor processing be-
fore feeding it to our model. First, the timestamps are con-
verted to relative times; the first keystroke in a session is
discarded and the other time values are calculated as the dif-
ference in timestamps between each key event, At. Next,
any At greater than 500 ms is removed, as this represents a
sufficiently long pause not reflective of fluid typing motions.
Finally, the At values are transformed into scores between
zero and one and normalized. We found that key timings fol-
low an exponential distribution, so the mean of the training
dataset is taken and values are transformed using the expo-
nential cumulative distribution function:

y=1— At

where y is the transformed timing value and ) is the mean.
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Figure 2: DNN architecture for keystroke; the boxes repre-
sent convolutional filters, top dimensions and images repre-
sent layer input, and bottom dimensions represent the size of
a filter.

Automatic Feature Extraction Figure 2 provides an
overview of our keystroke model. The intent of this model
is to capture local patterns, occurring within a small window
of time, from key event timings. As such, we convert the
processed data into images of sequential key events that are
modeled by a deep Convolutional Neural Network (CNN)
that can extract those patterns. The images are 250x20x2
pixels and composed of 250 sequential key events (rows) by
the top 20 most frequently used keys (column) by the event
type (color channel). We only use events from the top 20
most used keys, as including additional keys makes the im-
ages too sparse. Color channels in the images represent the
event type; the green channel is a key press and red is a key
release. The intensity of pixel values are the y values from
the above equation.



Once the data has been converted to images, they are fed
to the model for feature extraction. The first convolution
layer in the model is designed to detect features from a sin-
gle key press and release series of events. Users who type
quickly or use various hot-keys often produce keys that are
out of sequence, in that the press of one key is followed by
the press of another, rather than the release of the first. In our
analysis of keystroke data, we found that press and release
events for a single key generally occur within three events of
one another, so we use convolutional filters of size 3x1 and
stride 1 to extract these features. This layer is followed by a
mean pooling layer, which is performed across seven rows —
determined through empirical evaluation — in each column.
This operation stretches the events over multiple rows in-
creasing the overlap of events between keys.

The second convolution layer extracts features across
multiple keys, while still locally in time. We use convolu-
tional filters of size 7x20 and stride 1 to discover features
that describe how subjects type certain sequences of keys.
This layer also reduces the dimensionality of the image by
not using padding, which reduces the number of columns
to one and produces six fewer rows than the input image.
The last layer of the CNN is a second mean pool; function-
ally, it removes dependence on location (within the image)
of the sequence of keys that activated the filter. It then feeds
into a final Rectified Linear Unit (ReLU) activated layer that
serves as the D-Vector Layer. Dropout is applied aggres-
sively, 75%, to this last layer to prevent over-fitting.

Our keystroke verification approach drew inspiration
from traditional handcrafted features, as seen in the con-
struction of the convolutional layers, while greatly simpli-
fying the data processing and outlier detection performed.
This approach shows how any verification domain can take
advantage of the D-Vectors framework and the benefits that
it provides by drawing inspiration from and simplifying tra-
ditional processing methods.

Mobile Gait Verification

We also apply our D-Vector framework to mobile gait ver-
ification. Visual gait verification examines video for fea-
tures, whereas the features for mobile gait verification are
extracted from accelerometer or gyroscopic sensors placed
directly on the subject. Our analysis seeks to determine if
there are regular, unique patterns in how an individual walks
that can be reliably detected by an inertial sensor and used to
verify or identify a subject. SOA approaches to this problem
employ standard signal processing to extract features based
upon frequency and power of the signals (Lu et al. 2014;
Kumar, Phoha, and Serwadda 2016). In this section, we de-
scribe a novel DNN model that extracts a more discrimina-
tive latent feature space for verification.

Preprocessing For this domain, data is obtained in the x,
y, and z axes from both the accelerometer (37) and gyro-

scope (%) of a mobile phone placed in the subject’s hip
pocket. For both sensors, readings are sampled at regular in-
tervals, typically in the range of 50 to 100 Hz. Unfortunately,
the values for each sensor reading are heavily dependent on
the orientation and manufacturer of the device. If the issues
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they present are not mitigated, these dependencies can lead
to misleading results (i.e., the learning algorithms pickup
on the orientation of a device in an individual’s pocket). To
eliminate orientation dependencies, we only use the mag-
nitude of the accelerometer and gyroscope data. Following
this procedure, leaving just the two magnitude signals as the
input source. These signals are further processed by apply-
ing a median filter to remove individual noise spikes and a
moving average filter to remove environmental noise.
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Figure 3: Pre-processing and DNN architecture for mobile
gait feature extraction.

Following those initial transformations and noise reduc-
tion steps, the data can be processed by our mobile gait
model shown in Figure 3. As with the keystroke model, our
goal with this model is to extract features for user verifica-
tion and identification using minimal data. Rather than using
fixed-time windows for our samples, which may or may not
contain enough relevant step data, we perform step detection
to isolate samples of data with six steps. Our assumption is
that six sequential steps provide a sufficient window to ex-
hibit identifiable features in walking data.

As a first step in isolating sample frames with six steps,
we search for local minima in the accelerometer readings.
Once the minima are detected, the values between the local
minima are considered to be a part of a Step Pair, both a
left and right step. The detected minima correspond only to
either left or right steps based on which pocket the mobile
phone is in. The minima for the opposite leg is significantly
less pronounced and, thus, more difficult to detect, so the
two are combined into one step pair (first graph in Figure
3). Step detection is performed only on the accelerometer
data; however, as the gyroscope and accelerometer readings
are synchronized, we are able to frame the data in identical
locations. The left-most graph in Figure 3 shows typical ac-
celerometer data with a six-step sample identified between
the red and purple dashed lines.

We assume that the discriminative patterns are periodic,
so signal processing features are ideal for modeling such
patterns. These features are extracted in two stages. First, a
periodogram estimate of the Power Spectral Density (PSD)
is obtained (second graph in Figure 3). Then, the power
spectrum produced by the PSD periodogram is fed into a
triangular filterbank (third graph) to produce a fixed-length
set of features. This process is based on the Mel-Frequency



Cepstrum Coefficient (MFCC) method used in speech pro-
cessing to summarize the strength of the signal in each fre-
quency. Filter coefficients are multiplied with the spectral
density at each frequency and aggregated to calculate each
filter value. These filters produce 20 values (10 each for ac-
celerometer and gyroscope) and serve as the input for the
DNN model.

Automatic Feature Extraction The DNN in our model
consists of three fully-connected ReLU activated layers.
During the training process, only the parameters in these
layers are updated, whereas all parameters in the previous
processing steps are fixed. The DNN provides the D-Vectors
framework with a model for extracting latent space features
from the signal features. The size of each layer is shown
in Figure 3. Finally, dropout is applied to each DNN layer,
50% on the first layer and 75% on the remaining two layers,
to prevent over-fitting.

Our neural network archeticture design and data process-
ing drew from the original D-Vectors approach (Variani
et al. 2014) because gait data is very similar in format to
voice data: time series data sampled at a constant rate. Al-
though every domain is different, data from different modal-
ities with similar structure can use some of the same pro-
cessing techniques for the D-Vector approach.

Empirical Study

In this section, we describe a series of experiments that
demonstrate that our D-Vector framework can be applied
to two distinctly different biometric verification problems
and that it also surpasses the performance of prior SOA ap-
proaches in both domains. The two algorithms that we com-
pare our approach against are the keystroke G&P verifica-
tion algorithm (Gunetti and Picardi 2005) and the mobile
gait verification algorithm by Lu et. al (Lu et al. 2014) (In-
tel). We compare these algorithms with our approach (D-
Vector) by accuracy, EER, robustness, and data efficiency.

Datasets

We use three datasets in our experiments to evaluate the ro-
bustness of the approaches and how their performance gen-
eralizes. The first dataset (MultiMod) is one we collected;
it contains both keystroke and gait data, which we describe
in detail below!. Additionally, we use two publicly avail-
able datasets as benchmarks — one for keystroke (Clarkson)
(Murphy et al. 2017) and gait (UCI) (Anguita et al. 2013).
For our MultiMod dataset, we employed a multi-phase
experiment designed to replicate real-world activities to en-
sure that our model accuracy remained high in practice. 104
subjects performed a series of tasks on a desktop, smart-
phone, and tablet to produce fixed-text keystrokes, free-text
keystrokes, and movement data. For fixed-text, the subjects
transcribed three sentences that included the most common
key pairs to ensure sufficient pairs for comparison both
between users and devices. Free-text keystroke data was
produced from online shopping and survey questions and

!This dataset was collected with IRB approval. Approval docu-
ments can be provided upon request
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movement data was collected by smartphones while sub-
jects walked a track. The dataset contains approximately
1,200,000 desktop key-events, representing 4,242 samples,
where a sample is 250 sequential key events, (Mean per
user 41.588, Min. 15, Std. Dev. 7.959) and approximately
1,900,000 mobile (smartphone and tablet) key events, rep-
resenting 4,645 samples (Mean per user 44.663, Min. 25,
Std. Dev. 10.486). Accelerometer and gyroscope data was
collected at 100 Hz. Our dataset contains approximately
147,200,000 movement events, of which 19,806,744 are
walking motion events, divided evenly between accelerom-
eter and gyroscope, representing 28,300 samples, where a
sample is six steps of walking data (Mean per user 272.115,
Min. 123, Std. Dev. 49.82).

The Clarkson benchmark keystroke dataset (Murphy et
al. 2017) consists of 103 users collected over 2.5 years from
subjects’ personal machines during normal interactions, rep-
resenting a realistic use case. The dataset consists of 87 users
with sufficient data. There are 40,380 total samples, with a
mean of 484 samples per user (Std. Dev. 587). The number
of samples per user varied significantly from the MultiMod
dataset, as subjects could enable or disable the keylogger at
any time.

Finally, we use the UCI (Anguita et al. 2013) dataset
as our benchmark for mobile gait. Unlike the MultiMod
dataset, it was collected at a sampling rate of 50 Hz. As with
MultiMod, only the walking data from this dataset is used.
There are 1,769 total extracted samples from 30 users in the
dataset, with a mean of 59 samples per user (Std. Dev. 14).

Keystroke Verification Results

We compare our D-Vector keystroke verification approach
with the SOA G&P approach. The G&P approach is based
upon the traditional handcrafted key-pair features, described
in the Background section, and provides a good contrast
with the our automatic feature extraction based method.

To train the D-Vectors models, the subjects are randomly
partitioned into 70% for training and 30% for testing. In do-
ing so, all testing is performed on users that the framework
has never seen to demonstrate that the extracted D-Vector
features can discriminate universally.

During testing, five randomly selected samples are used as
enrollment samples for each user. Unlike D-Vectors, G&P
does not require a separate training phase. Instead, it per-
forms a pair-wise comparison of all enrolled subjects with a
sample from an unlabeled subject (assumed to be an enrolled
subject). For a fair comparison, we take five random samples
(without replacement) for each subject to create enrollment
signatures. When testing, samples from the same 30% split
of subjects used with D-Vectors are used with G&P to ensure
fairness.

Verification is performed by comparing enrollment signa-
tures of the testing subjects against the remaining samples
from the testing subjects. Performance of each method can
be increased if additional samples, from the same subject,
are used as test vectors and results combined. To demon-
strate the performance increase, experiments using test vec-
tors from one (1) and five (5) samples were performed. Each
experiment is run 10 times using different random seeds.



Table 1: Keystroke verification results. It compares the D-
Vector approach with the SOA G&P algorithm using one
(1) and five (5) samples as test vectors. Standard deviation of
the results are provided. Bold results are significantly better.
Dashed results (-) indicate the approach failed.

EER %
Dataset MultiMod Clarkson
# Test Vec. 1 5 1 5
D-Vector 115+02 | 7.7+0.6 || 153+1.0 | 8.7+ 1.1
G&P - 263+ 49 - 26.1 =4.6

Table 1 provides the results of these experiments. On
the MultiMod dataset, D-Vectors greatly exceeds the perfor-
mance of G&P, achieving an EER of just 11.5% using one
(1) sample for a test vector and 7.7% when five (5) samples
are used. Whereas, G&P manages just 26.3% EER using five
samples of data as a test sample and fails entirely when only
one sample is used. The reason for the failure is that there are
not consistently enough matching bi-grams in enrollments
and test samples of that size for G&P to compute its simi-
larity measures accurately. Our approach is not burdened by
this constraint. Results are similar on the Clarkson dataset,
where D-Vectors achieves 15.3% and 8.7% respectively and
G&P achieves just 26.1%. The slight drop in D-Vector’s per-
formance on the Clarkson dataset is not unexpected, as the
data is from unstructured activities and, as such, those results
are more indicative of real-world performance.

The performance of the G&P approach on the Clarkson
dataset is much worse than the 10.4% reported in (Murphy
et al. 2017) because 10,000 keystroke events were used for
enrollments and 1,000 keystroke events were used as sam-
ples for test vectors in that study. This and G&P’s inability
to use small data samples demonstrates the data efficiency
of D-Vectors, in that it can achieve similar or greater perfor-
mance using far less data for enrollment and testing. Further,
D-Vectors scales more effectively as the number of enrolled
subjects increases. Calculating the similarity measures using
D-Vectors is a linear time operation requiring just O(d +m)
operations per verification test, whereas G&P is an O(d*m)
operation where m is the number of enrolled subjects and
d is the number of samples per enrollment. This difference
translated to dramatic differences in run times. On a mod-
ern dual-CPU machine with GPU acceleration the D-Vectors
method took a few hours to train and a few minutes to per-
form all the tests. Whereas, our G&P implementation took
more than three days to compute these results.

Mobile Gait Verification Results

In our second set of experiments, we compare our D-Vectors
mobile gait verification approach to the SOA Intel ap-
proach (Lu et al. 2014). These results emphasize the signifi-
cance of the D-Vectors approach as a framework for extract-
ing discriminative features rather than simply improvements
to the model. Whereas the G&P and D-Vectors keystroke
approaches use completely different models, our D-Vectors
method uses a similar data processing model as the Intel
model. The main distinctions are the manner in which the
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models are trained and that the D-Vector approach performs
additional feature extraction with the DNN layers (beyond
the signal processing steps), whereas Intel uses a Gaussian
Mixture Model. Also, MFCC features are extracted using
the full speech method in the Intel approach, which includes
the higher frequency space and log scaling.

For fair comparison, we frame the data using the same
step detection technique described earlier for preprocessing
mobile gait data. A training-test split of 70/30% of the sub-
ject data is performed on the Multimod dataset, similar to
what was done in the prior experiments. In this case, both
methods have training and execution phases and use the
same data split. The UCI dataset does not contain enough
data to effectively train and test our methods. As such, all
UCI data was used in verification tests using models pre-
trained on the MultiMod dataset. Again, enrollment signa-
tures were comprised of 5 samples and all experiments were
run 10 times using different random seeds for selection.

Table 2: Mobile gait verification results. It compares the D-
Vector approach with the SOA Intel algorithm using one (1)
and five (5) samples as test vectors. Standard deviation of
the results are provided. Bold results are significantly better.

EER %
Dataset MultiMod UCI
# Test Vec. 1 5 1 5
D-Vector 175+£05 | 70+15 || 153+14 | 114+23
Intel 27.0+07 | 242+14 || 282+02 | 240£1.3

Table 2 provides the results of the comparison experi-
ments. D-Vectors surpasses the Intel method by 10% on both
datasets using just 1 sample to produce test vectors. If 5 sam-
ples are used the difference in performance becomes much
more pronounced. The D-Vector approach benefits greatly
from the additional data, reducing EER by 10% on the Mul-
tiMod dataset and 4% on UCI, whereas the Intel method
does not benefit nearly as much.

Finally, the models for the UCI experiments had to be
trained on the MultiMod dataset due to its small number
of subjects. Despite being trained on a different dataset,
the models from each approach generalized and transferred
well. This supports our hypothesis that the D-Vectors au-
tomatically extracts and learns discriminative features that
generalize well.

Multiple Similarity Scores

A novelty of our D-Vector framework over the original for-
mulation (Variani et al. 2014) is the use of two additional
similarity measures, L? and z-score, as opposed to only co-
sine similarity. In development we found the additional mea-
sures increased robustness of the approach to across differ-
ent data modalities. Table 4 shows the EER obtained using
the three different scoring measures individually and in com-
bination on all the datasets and modalities we evaluated. The
cosine score performs the best of all three individual mea-
sures for most datasets. However, on the UCI dataset, the
L? metric provides significantly better accuracy than cosine.
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Figure 4: D-Vector verification accuracy for one sample test
vector while varying the signature size for both modalities.
Accuracy here is the inverse of EER.

In combination, the three measures do generally improve
the overall accuracy while never significantly increasing the
ERR beyond what the single best measure achieves. To un-
derstand why, we measured the correlation, shown in Table
3, of the various scoring measures on the MultiMod dataset
for both keystroke and mobile gate data. The results show
that while the scores can be quite correlated, they each of-
fer some additional information. Further, the results in Table
4 clearly show that all three measures can be used together
with no significant loss and increased robustness over indi-
vidual measures.

Table 3: Correlation coefficients between the three similarity
measures on the MultiMod dataset.

Keystroke Mobile Gait
Score z L2 cos z L2 cos
z 1 0.726 | 0.693 1 0.606 | 0.196
L2 0.726 1 0.770 || 0.606 1 0.261
cos 0.693 | 0.770 1 0.196 | 0.261 1

Table 4: EER of using similarity measures individually and
combined.

EER %
Dataset/Modality cosine L? Z-score Combined
MultiMod/Keystroke || 11.8 +£0.3 | 144 +0.6 | 133 £0.8 | 11.5+0.2
Clarkson/Keystroke || 16.1+0.9 | 27.6 £3.7 | 23.0+19 | 153+ 1.0
MultiMod/Gait 18.0+0.5 | 308 +£0.7 | 31614 | 17.5£0.5
UCI/Gait 193+20 | 150£14 | 21.1£1.1 | 153+14

D-Vector Performance Considerations

In the next series of experiments, we examine multiple as-
pects of the D-Vectors approach that impact performance.
The first of these factors is the amount of data used to pro-
duce an enrollment signature. Ideally, an enrollment signa-
ture requires minimal data to increase the practicality of the
approach. Figure 4 shows the effect of increasing the number
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Figure 5: D-Vector verification accuracy for five sample en-
rollment signatures while varying the test vector sample size
for both modalities. Accuracy is the inverse of EER.

of samples in an enrollment signature on verification accu-
racy in both domains using the MultiMod dataset. Accuracy
of the approach increases significantly until the signature is
about five samples. Afterwards, there appears to be marginal
returns for increasing the size of the signatures. Even signa-
tures composed of a single sample are accurate and further
demonstrate the data efficiency of the approach.

Next, we examine the effect of increasing the number of
samples used as test vectors for performing verification. As
with enrollment signatures, we seek to minimize the data.
Figure 5 illustrates the performance of D-Vectors for both
domains in the MultiMod dataset with enrollment signa-
tures comprised of five samples. Increasing the number of
samples used as test vectors can significantly improve accu-
racy, especially for gait verification. Improvements become
marginal beyond five samples.

Finally, it is worth noting the performance increases that
can be achieved by fusing results from different modalities.
If multiple biometric modalities are available, such as in
MultiMod, we can combine the predictions to improve over-
all accuracy. Using Bayes’ theorem with a uniform prior we
can fuse the predictions as an ensemble. In our MultiMod
dataset this ensemble achieves significantly greater perfor-
mance, 2.5% EER, than either single modality test.

Conclusion

We have presented D-Vectors as a general purpose frame-
work for training and employing DNN-based models for
biometric verification problems. In support of this claim,
we have described two novel approaches for performing
keystroke and mobile gait verification with this framework.
Further, we have provided a thorough empirical study that
conclusively demonstrates our framework outperforms SOA
approaches in both domains and showed that any number of
these D-Vector modalities can be combined to improve ac-
curacy. Finally, our models are able to perform this analysis
using orders of magnitude less data than SOA approaches,
enabling the practical use of behavioral biometrics.
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