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The training of many existing end-to-end steering angle
prediction models heavily relies on steering angles as the
supervisory signal. Without learning from much richer con-
texts, these methods are susceptible to the presence of sharp
road curves, challenging traffic conditions, strong shadows,
and severe lighting changes. In this paper, we consider-
ably improve the accuracy and robustness of predictions
through heterogeneous auxiliary networks feature mimick-
ing, a new and effective training method that provides us
with much richer contextual signals apart from steering di-
rection. Specifically, we train our steering angle predictive
model by distilling multi-layer knowledge from multiple
heterogeneous auxiliary networks that perform related but
different tasks, e.g., image segmentation or optical flow esti-
mation. As opposed to multi-task learning, our method does
not require expensive annotations of related tasks on the tar-
get set. This is made possible by applying contemporary
off-the-shelf networks on the target set and mimicking their
features in different layers after transformation. The auxil-
iary networks are discarded after training without affecting
the runtime efficiency of our model. Our approach achieves
a new state-of-the-art on Udacity and Comma.ai, outper-
forming the previous best by a large margin of 12.8% and
52.1%1, respectively. Encouraging results are also shown on
Berkeley Deep Drive (BDD) dataset.

Introduction
Autonomous driving is conventionally formulated and
solved as a collection of sub-problems, including percep-
tion, decision, path planning, and control (Paden et al. 2016).
Recent approaches address the problem in an end-to-end
manner, in which a convolutional neural network (CNN) is
trained end-to-end to map raw visual observations (e.g., im-
ages or videos) obtained from a single front-facing camera
directly to steering commands (Bojarski et al. 2016).

Steering angle is often used as the sole supervisory sig-
nal for training a network (Bojarski et al. 2016; Pomer-
leau 1989). Some studies improve the training by multi-task
learning (Chowdhuri, Pankaj, and Zipser 2017; Yang et al.
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1We compare the mean absolute error against the top entry ‘ko-
manda’ on Udacity leaderboard (Udacity 2018), which uses a 3D
CNN with LSTM.

2018), i.e., requiring the network to predict additional labels
such as vehicle speed and steering torque. These supervisory
signals are informative but do not ensure effective represen-
tation learning to capture rich environmental contexts, e.g.,
physical scene constraints or coexistence of scene objects,
which are crucial for driving. Without such spatial and ob-
ject awareness, existing methods often fail in challenging
cases that involve severe lighting changes, strong shadows,
sharp turns, or busy traffic. In Fig. 1(a), we show some of
the challenging cases on which a baseline fails.

A plausible way to solve the problem above is by widen-
ing the scope of multi-task learning from speed or torque to
more complex tasks such as scene segmentation, lane detec-
tion, or optical flow estimation. These tasks capture scene
structure and object motion that likely benefit steering an-
gle prediction. However, introducing side tasks for multi-
task learning requires one to collect extra task-specific an-
notations for the target scene, a process that is both labori-
ous and expensive. An alternative approach is to pre-train a
network with related tasks such as scene segmentation and
fine-tune the model to the steering angle prediction task.
This method relaxes the need of target scene annotations
since pre-training can exploit data collected from a different
scene. Our experiments, however, show that this indirect ap-
proach only improves steering angle prediction marginally.

In this study, we train our model, FM-Net, with a new and
effective technique that brings drastic improvement to the
performance of end-to-end steering angle prediction. Unlike
multi-task learning, our method does not require additional
annotations of side tasks on target scene. This is made possi-
ble by drawing inspiration from Hinton et al.’s seminal work
on knowledge distillation (Hinton, Vinyals, and Dean 2015).
In contrast to (Hinton, Vinyals, and Dean 2015) that dis-
tils knowledge in an ensemble of large models into a single
small model, we propose ‘heterogeneous auxiliary networks
feature mimicking’, which allows the learning of a steering
angle predictive model by distilling knowledge from hetero-
geneous off-the-shelf networks. Specifically, there are many
strong and state-of-the-art networks such as PSPNet (Zhao
et al. 2017) for segmentation, and FlowNet2 (Ilg et al. 2017)
for optical flow estimation. Applying these networks on the
target data can generate features that are highly indicative of
the final prediction of steering angles. This is evident from
the embedding of these features shown in Fig. 1(b). As can
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Figure 1: (a) Failure cases of baseline model. A baseline
model (3D CNN + LSTM) (Udacity 2018) that is trained
with steering angle alone tends to fail in challenging cases.
(b) Deep feature embeddings of auxiliary networks. The
embedding of features extracted from PSPNet (Zhao et al.
2017) and FlowNet2 (Ilg et al. 2017). Each point corre-
sponds to a deep feature vector of a video frame. Every point
is encoded by colour so that points to the most positive steer-
ing angle are lilac and points with the most negative steering
angle are aqua. As can be observed, features at different lay-
ers are highly indicative of steering angle prediction.

be observed, both high- and low-layer features are structured
and meaningful. Clearly, the high and middle levels contain
direct hints for angle prediction. Low-level features are more
scattered but they still show well-clustered embeddings.

In this work, we aim to train a more accurate steering
angle predictive model by enforcing it to approximate the
multi-layer representation of those well-established auxil-
iary networks. In contrast to (Hinton, Vinyals, and Dean
2015), we find an entirely different application of mimicking
heterogeneous networks for learning rich contexts. In addi-
tion, we explore the use of deep features extracted from dif-
ferent layers of auxiliary networks as targets beyond the log-
its (the inputs to the final softmax) as proposed by (Hinton,
Vinyals, and Dean 2015). We summarize the contributions
of this paper as follows:
1) We present an effective training method that drastically
improves the performance of end-to-end steering angle pre-
diction through mimicking features from well-established
and cheap-to-access auxiliary networks. The auxiliary net-
work is only used in the training stage and brings no com-
putation cost during the deployment.
2) We demonstrate through extensive and systematic ex-
periments that mimicking can be conducted simultaneously
from heterogeneous auxiliary networks. In addition, mim-
icking can be performed at multiple layers of an auxiliary
network while still benefiting the main network. This allows
our main network to acquire rich contexts of different na-
tures and spatial resolutions.
3) The mimicking process is non-trivial as the original fea-
tures extracted from different layers of auxiliary networks
are high-dimensional. We show effective ways of pooling
these features to a lower dimension for regularizing and
training a 3D CNN for steering angle prediction.

img
steer
vs
gt-vs
gt-seg
aux-out(1) (2) (3) (4)

Figure 2: Four main paradigms of learning steering angle
prediction. Each subfigure shows the training sources and
prediction tasks. Six abbreviations in the legend denote im-
age sequence, steering angle, vehicle state, ground-truth ve-
hicle state, ground-truth segmentation labels and output fea-
tures of auxiliary networks, respectively. The last paradigm
4 is proposed in this paper. A dotted line means that the cor-
responding source is dropped after training.

Apart from auxiliary network mimicking, we show that
both network choice and initialization play a crucial role
in prediction performance. The deepest network in the lit-
erature is fewer than 10 layers (Bojarski et al. 2016). We
advance the state-of-the-art by proposing a 50-layer 3D
ResNet. We inflate our 3D convolutional network from a
2D ImageNet model. This initialization scheme, which was
originally proposed for action recognition (Carreira and
Zisserman 2017), provides us with a strong ResNet-based
model for representation learning and mimicking. Extensive
experiments are conducted on two public datasets, namely,
Udacity (Udacity 2018) and Comma.ai (Santana and Hotz
2016). Our method surpasses previous methods by a large
margin and records a new state-of-the-art in steering angle
prediction, with a mean absolute error (MAE) of 1.62 and
0.70 and root mean square error (RMSE) of 2.35 and 0.98.

Related Work
End-to-end learning for self driving. Learn-to-steer with
end-to-end optimization was first demonstrated in (Pomer-
leau 1989). The study utilized a shallow neural network to
predict actuation from images. Although the driving condi-
tions were quite simple, its appealing performance show-
cased the possibility of applying neural networks to au-
tonomous driving. A similar idea is later presented by ex-
ploiting a deep CNN to output steering commands from im-
ages (Bojarski et al. 2016). Due to its good prediction re-
sults achieved in highway driving, the structure (a network
with a normalization layer, five convolutional layers, and
three fully connected layers) has become the base model for
many studies (Xu et al. 2017; Chi and Mu 2017). We found
that there is a lack of new models publicly available for our
problem. Most of the models are fewer than 10 layers and
do not adopt a contemporary architecture like ResNet (He et
al. 2016). In this study, we contribute a 50-layer 3D ResNet
model for steering angle prediction and make it available to
the research community2.

Currently, there are four main paradigms adopted for
training an end-to-end steering angle prediction model (see
Fig. 2). A direct mapping of image sequences to steering

2Code is available at https://cardwing.github.io/projects/FM-
Net
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angles is the simplest form. Researchers soon found that
using steering commands as the sole supervisory signal is
too weak to train deep networks. Some studies incorpo-
rated multi-task learning in the pipeline (Chi and Mu 2017;
Xu et al. 2017; Yang et al. 2018; Chowdhuri, Pankaj, and
Zipser 2017) to prevent over-fitting and improved the pre-
diction accuracy of steering angles. The second and third
paradigms in Fig. 2 correspond to these variants. For in-
stance, Chowdhuri et al. (Chowdhuri, Pankaj, and Zipser
2017) proposed a light-weight Z2Color network and exe-
cuted steering commands by utilizing vehicle-state indica-
tors (behavioral modalities) as secondary input data besides
image sequences. To supplement visual inputs, in (Yang et
al. 2018) the steering prediction and speed prediction were
simultaneously learnt in the framework of multi-task learn-
ing. To leverage auxiliary tasks for feature learning, Xu et
al. (Xu et al. 2017) developed a FCN-LSTM framework,
which learnt jointly from steering loss and image segmen-
tation loss. However, this method needs extra labels for the
auxiliary segmentation task. Our proposed framework learns
directly from off-the-shelf models without any extra labeling
for target scene apart from the ground-truth steering angles.
It belongs to the last paradigm in Fig. 2. The main difference
between our scheme and multi-task learning is that extra la-
bels are not needed during training and image sequences are
the sole input of the network.
Network and feature mimicking. Network mimicking is
originally introduced for small networks to distil knowledge
from an ensemble of large networks for network acceler-
ation and compression (Hinton, Vinyals, and Dean 2015;
Ba and Caruana 2014) by forcing a small network to mimic
outputs of large networks. In (Romero et al. 2014) the mim-
icking idea was applied in image classification, where a stu-
dent network was required to learn the intermediate output
of a teacher network. This mimicking strategy is also known
as feature mimicking. Li et al. (Li, Jin, and Yan 2017) fur-
ther extended feature mimicking into object detection tasks,
where a small network was used to mimic spatially sam-
pled features of large networks. Despite the progress made
in feature mimicking, existing mimicking approaches are
limited to transferring knowledge from large networks to a
small network, and these networks share a common task. In
(Saurabh, Judy, and Jitendra 2016), feature mimicking was
used to teach a new CNN for a new image modality (like
depth images), by teaching the network to reproduce the
mid-level semantic representations learned from a well la-
beled image modality. In this work, we demonstrate the pos-
sibility of transferring knowledge between large networks
that perform heterogeneous tasks. We also explore feature
mimicking at different layers of a teacher network to distil
richer information for learning.

Methodology
Preliminary
The general objective of steering angle prediction is to pre-
dict the angle p given a video frame x. Typically, one would
use a video clip, x = (x1, x2, . . . , xN ) as input to encap-
sulate the temporal information, and then learn a function

F : x 7→ p for prediction. Recent studies use convolutional
networks as F for end-to-end prediction. Multi-task learn-
ing (Chowdhuri, Pankaj, and Zipser 2017; Yang et al. 2018)
assumes additional targets apart from steering angles. Ex-
amples of such targets include speed of the vehicle, steer-
ing wheel torque, or GPS trajectory. It can also take a richer
form such as a sequence of scene segmentation maps. Here,
we use bl to denote the l-th additional target label. The func-
tion becomes F : x 7→ (p, {bl}Ll=1), where L is the number
of additional tasks.

In this study, we follow existing practices to train the
proposed FM-Net to make prediction on steering angle,
speed of the vehicle, and steering wheel torque. The
ground-truth and metadata are readily available from many
benchmark datasets such as Udacity (Udacity 2018) and
Comma.ai (Santana and Hotz 2016). The key difference of
our work is that we regularize the learning of our model by
requiring it to approximate the features extracted from dif-
ferent layers of heterogeneous auxiliary networks. We intro-
duce our method in the next section.

Multi-layer Feature Mimicking from
Heterogeneous Networks
We first provide an overview of our framework that is shown
in Fig. 3. We denote the main network FM-Net as M . It
is a 50-layer 3D ResNet with a Long-Short-Term Memory
(LSTM) module (Sak, Senior, and Beaufays 2014). We pro-
vide architectural details of this network in the next subsec-
tion. At each time step, a sequence of N video frames x
is fed to the main network. Fully-connected layers are in-
troduced after the convolutional layers to transform the fea-
ture maps to a compact feature vector. To further capture
temporal dynamics, which is crucial for smooth angle pre-
diction, a LSTM module is added thereafter. Three vehicle
state indicators, namely steering angle, speed of the vehicle,
and steering wheel torque are predicted according to the ex-
tracted feature vectors and predicted vehicle state indicators
of the last time step. These previous vehicle states will con-
tribute to the prediction of our network. We next detail our
approach on heterogeneous feature mimicking.
Auxiliary networks. In our approach, apart from the main
network, we assume a set of K heterogeneous auxiliary net-
works A = {A1, A2 . . . AK} during training stage. These
auxiliary networks are chosen from off-the-shelf networks
that achieve strong performance in their respective task,
e.g., PSPNet (Zhao et al. 2017) for image segmentation and
FlowNet2 (Ilg et al. 2017; Hui, Tang, and Loy 2018) opti-
cal flow estimation. In this study, we use two auxiliary net-
works, i.e., PSPNet and FlowNet2. They represent a well-
suited choice of auxiliary networks as PSPNet captures the
scene semantical structure while FlowNet2 encapsulates in-
formation on moving objects. It is interesting to see that both
networks have strong generalization capability when they
are applied on the unseen target data, as shown in Fig. 4
and Fig. 1(b). Mimicking features from both of these net-
works contribute to performance improvement of the main
network, as we will show in our experiments. Note that al-
though we show two auxiliary networks in our study, one
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Figure 3: Feature Mimicking from Heterogeneous Auxiliary Network. The main network is FM-Net that takes an archi-
tecture of 3D ResNet + LSTM. The two auxiliary networks are PSPNet (Zhao et al. 2017) and FlowNet2 (Ilg et al. 2017;
Hui, Tang, and Loy 2018). Transformation layers are introduced to ensure a low yet compatible spatial dimension for feature
mimicking at 〈low-middle-high〉 mimicking paths. The input is a sequence of images and the prediction outputs are steering
angles, speed of vehicle, and steering wheel torque. The details of the architecture and mimicking paths are shown in Table 1.
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Figure 4: Auxiliary networks PSPNet and FlowNet2 show
satisfactory generalization on unseen target data.

can easily generalize to more networks. These auxiliary net-
works will be discarded after training.

Given an auxiliary network Ak, we can extract features
from its different feature layers. Formerly, we denote fea-
tures extracted from j-th layer of Ak as fjk. We use NAk

to denote the number of layers from which features are ex-
tracted from Ak. Here, fjk can be feature maps (output of
convolution layers) or feature vectors (output of fully con-
nected layers). To perform multi-layer feature mimicking,
we pair each of the NAk

layers of Ak with a correspond-
ing layer of the main network M . Similar to the way we
obtain fjk from the auxiliary network, we extract features
at designated layers of the main network and obtain fea-
tures ej for its j-layer. To examine the usefulness of differ-

Table 1: The different dimensions (w×w× c, where w×w
is the size of feature maps and c is the number of chan-
nels) produced by the transformation layers at 〈low-middle-
high〉 mimicking paths. Here, the output dimension of PSP-
Net is the same for Udacity and Comma.ai, but different on
FlowNet because PSPNet normalizes the input image to the
same resolution so there is no discrepancy of output dimen-
sions on Udacity and Comma.ai.

Auxiliary Mimicking Output Dimension (w × w × c)
Networks Path Udacity Comma.ai

FlowNet
Low 32 × 40 × 16 12 × 20 × 32

Middle 8 × 10 × 32 12 × 20 × 32
High 8 × 10 × 32 3 × 5 × 64

PSPNet
Low 30 × 30 × 16

Middle 30 × 30 × 16
High 30 × 30 × 3

ent layers more conveniently, we assume three paired levels
〈low-middle-high〉 from both the main network and auxil-
iary networks. These three levels are chosen according to
the network depth (for high-level mimicking) and the size
of receptive fields (for low- and middle-level mimicking).
While our current design is shown effective, this is by no
means the only option. More levels can be attempted. With
different designs of transformation layers (described next),
features of different scales are applicable too. In the experi-
mental section, we will systematically examine the benefits
of mimicking different individual level of features.
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Transformation layers. We need to address two issues dur-
ing the process of feature mimicking. Firstly, the source fea-
tures generated by auxiliary networks are of high dimension-
ality. For instance, the output dimension of the first convolu-
tion block of PSPNet is 179×179×128. Simply approximat-
ing the features would cause difficulty in training the main
network. Secondly, we wish to retain the spatial informa-
tion encoded in the feature maps extracted from both main
network and auxiliary networks. The spatial information is
crucial to provide contextual information of a driving scene.

To address the two issues, we propose to insert two trans-
formation layers between each of the 〈low-middle-high〉
mimicking paths, as shown in Fig. 3. A transformation layer
Φ is designated for the main network, whilst another type of
transformation layer Ψ is designed for auxiliary networks.
The common goals of these transformation layers are (1) to
reduce the dimensionality of the original feature maps, and
(2) to retain sufficient spatial information of the original fea-
ture maps. The parameters in these transformation layers are
learned in the training process and add little extra computa-
tion to training.

For the transformation layer Φ of main network, we use
1×1 convolution operation to reduce the number of channels
and an upsampling/downsampling operation to alter the size
of features. For the transformation layer Ψ of auxiliary net-
works, we employ an average pooling operation to reduce
the number of channels and an upsampling/downsampling
operation. If the sizes of main network’s features or auxil-
iary networks’ features are the same as the targeted sizes,
then we do not perform upsampling/downsampling opera-
tion. Note that average pooling is used instead of 1× 1 con-
volution because we need a deterministic target for training
the FM-Net. Average pooling meets this purpose while com-
pacting the redundant features of auxiliary networks.
Loss. The overall loss comprises of three terms:

L =Lsteer(p, p̂)︸ ︷︷ ︸
steering loss

+
∑L

l=1
αlLmulti(bl, b̂l)︸ ︷︷ ︸

multi-task loss

+
∑K

k=1

∑NAk

j=1
βkLmimic(Φ(ej),Ψ(fjk))︸ ︷︷ ︸

mimicking loss

).
(1)

The first term is the steering angle prediction loss, which
is typically defined as a L2 loss, and p̂ are angle predictions
produced by the main network. The second term is the multi-
task loss, where b̂l are predictions on the l-th task. Note
that there are a total of L tasks. In our case, L = 2 as we
have speed and torque predictions as the additional tasks.
The third term is the feature mimicking loss, which we use
L2 loss. Transformation operations are represented as Φ(·)
and Ψ(·). The parameters αl and βk balance the influence
of multi-task loss and feature mimicking loss on the final
prediction task.

Network Initialization and Multi-Stage Training
From our experiments, we found that a good initialization
is important to the convergence of a very deep 3D CNN
since the parameters of the network are significantly more

in comparison to a 2D network. In our experiments, with-
out a proper initialization, the FM-Net (50-layer 3D ResNet)
suffers from convergence problem and even yields a result
poorer than a shallow network. In this work, we follow (Car-
reira and Zisserman 2017) to initialize our network. Specifi-
cally, we first load the weights of a 2D ResNet-50 model that
has been pre-trained on ImageNet (Krizhevsky, Sutskever,
and Hinton 2012) in our 3D network. We then copy the
weights of a w × w kernel w times along the time dimen-
sion and normalize the weights by w so that a sequence of
video frames will get the same response as it goes through
a 2D network. Besides, the stride of both convolution layers
and max-pooling layers is set as 1 in the temporal dimension
so that the input sequence length does not decrease.

After initialization, we train the network based on
Eqn. (1). We found that a multi-stage training scheme works
well in practice. In particular, the loss defined in Eqn. (1)
contains three terms. In the first stage, we optimize FM-
Net based on the first two termsLsteer andLmulti. In the sec-
ond stage, we train the network by using all the terms includ-
ing Lmimic. Introducing Lmimic at the very beginning of the
training yields slightly inferior results to the proposed two-
stage strategy. We conjecture that feature mimicking from
heterogeneous networks (i.e., optimizing against Lmimic) a
relatively harder and more complex task in comparison to
learning steering angles, speed, and torque. Thus the main
network should behave relatively well in steering angle pre-
diction before performing feature mimicking, else feature
mimicking would be less efficient.

Experiments
Datasets. We perform evaluations on two standard bench-
marks widely-used in the community, namely Udac-
ity (Udacity 2018) and Comma.ai (Santana and Hotz 2016)
for evaluation. They are the largest steering angle prediction
datasets by far. Note that the Berkeley Deep Drive (BDD)
dataset (Yu et al. 2018) provides vehicle turning directions
(i.e., go straight, stop, turn left / right) instead of steering
wheel angles. Nonetheless, we conducted experiments on
this dataset and provide the results. We show that hetero-
geneous feature mimicking still helps even in a much larger
dataset (BDD dataset provides more than 7 M video frames).

The Udacity dataset is mainly composed of video frames
taken from urban roads. It provides a total number of
404,916 video frames for training and 5,614 video frames
for testing. This dataset is challenging due to severe light-
ing changes, sharp road curves and busy traffic. The images
of Comma.ai dataset are mainly captured from highway and
urban roads. It contains 11 video clips within 7.5 hours driv-
ing. Busy traffic conditions make this dataset challenging.
Note that there is no official and publicly available partition
setting for this dataset. For fair comparisons, we benchmark
our method and variants using a common setting. Specifi-
cally, we use 5% of each of the 11 clips for validation and
testing, chosen randomly as a continuous chunk. The re-
maining frames are used for training. As pre-processing, we
downsample the clips by a factor of two in time and remove
video frames whose speed is less than 15 m/s to discard
erroneous steering readings. As a result, we obtain a total
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number of 341,663 frames for training and 23,642 frames
for testing. We release the data partitions on our project
page. Some typical frames of these two datasets are shown
in Fig. 5.
Implementation details. To facilitate the training of our
network, the pixel values of input video frames are nor-
malized to lie in [-1, 1]. Frames in Udacity are resized to
160 × 160. We follow the common practice (Udacity 2018)
to use video clips of 10 frames each as inputs (i.e.,N = 10).
The balancing parameters αl is set as 1.0 for both the speed
and torque prediction tasks, while βk is set as 0.2 for all aux-
iliary networks. In Udacity, three vehicle states, i.e., steering
angle, torque and speed are used as targets, while we only
use steering angle and speed in Comma.ai, since it does not
provide steering torque. A training batch for our network
contains 16 video clips. The learning rate is set as 10−4 in
first 30 training episodes and reduced to 10−6 thereafter.
Evaluation metrics. We follow existing studies and use
mean absolute error (MAE) and root mean square error
(RMSE) as metrics.

Comparative Evaluations
We compare the proposed method with state-of-the-art ap-
proaches on two publicly available datsets, i.e., Udacity and
Comma.ai. The results are summarized in Table 2.
Udacity. We compare with (Kim and Canny 2017) based
on the results reported in their paper. We obtain the re-
sults of (Udacity 2018) by using its codes shared by the top
team on official Udacity GitHub3. All baselines use the same
train/test partition. The baseline 3D CNN + LSTM (Udacity
2018) is the best existing method on this dataset. It is evi-
dent from Table 2 that a deeper model (our 50-layer ResNet)
is advantageous than 3D CNN. In particular, the MAE is
reduced from 2.5598 to 1.9167, a relative improvement of
25%. Adding LSTM to model the temporal information fur-
ther improves the result of 3D ResNet from MAE of 1.9167
to 1.7147. The best result is yielded by the proposed FM-
Net, which is based on 3D ResNet + LSTM but further en-
hanced with heterogeneous feature mimicking.
Comma.ai. Making comparisons on this dataset is more
challenging as there are no official or publicly available
train/test partition settings. Owing to this reason, we did
not include the results reported by Kim et al. (Kim and
Canny 2017) in Table 2 to avoid unfair comparison. Based
on our own partition setting, we run the code of the best
baseline in Udacity, i.e., 3D CNN + LSTM (Udacity 2018),
on this data and report its results. Again, 3D ResNet and
3D ResNet + LSTM outperform the shallower baselines,
and FM-Net with heterogeneous feature mimicking achieves
the best performance. Noticeably, with feature mimicking,
we bring down the MAE by 12% (from 0.7989 to 0.7048),
which is significant.
BDD100K. As can be seen from Table 2, it is apparent
that feature mimicking can bring considerable performance
gains to 3D ResNet + LSTM and outperforms all previous
algorithms. The results validate the effectiveness of our pro-
posed feature mimicking method.

3https://github.com/udacity/self-driving-car/.

Table 2: Comparison with state-of-the-art methods on Udac-
ity, Comma.ai and BDD100K datasets. † indicates the results
are copied from (Kim and Canny 2017). Note that the pro-
posed FM-Net is based on 3D ResNet+LSTM but further
enhanced with heterogeneous feature mimicking.

Method Udacity
MAE RMSE

CNN + FCN† (Bojarski et al. 2016) 4.1200 4.8300
CNN + LSTM (Kim and Canny 2017) 4.1500 4.9300
CNN + Attention (Kim and Canny 2017) 4.1500 4.9300
3D CNN (Udacity 2018) 2.5598 3.6646
3D CNN+LSTM (Udacity 2018) 1.8612 2.7167
3D ResNet (ours) 1.9167 2.8532
3D ResNet+LSTM (ours) 1.7147 2.4899
FM-Net (ours) 1.6236 2.3549

Method Comma.ai
MAE RMSE

3D CNN (Udacity 2018) 1.7539 2.7316
3D CNN + LSTM (Udacity 2018) 1.4716 1.8397
3D ResNet (ours) 1.5427 2.4288
3D ResNet+LSTM (ours) 0.7989 1.1519
FM-Net (ours) 0.7048 0.9831

Method Accuracy on BDD100K
FCN + LSTM (Xu et al. 2017) 82.03%
CNN + LSTM (Xu et al. 2017) 81.23%
3D CNN + LSTM (Udacity 2018) 82.94%
3D ResNet + LSTM (ours) 83.69%
FM-Net (ours) 85.03%

Qualitative results. We show qualitative results of FM-Net
with and without feature mimicking in Fig. 5. It can be ob-
served that FM-Net with heterogeneous feature mimicking
yields much stable manoeuvre in driving albeit challenging
road conditions including curved roads and extremely dark
scenes. The observations are consistent on both Udacity and
Comma.ai datasets.

Ablation Study
The effectiveness of heterogeneous feature mimicking.
We summarize the performance of mimicking features from
different layers of auxiliary networks in Table. 3. We have a
few observations. (1) Feature mimicking is beneficial since
the one without feature mimicking results in the lowest
performance. (2) High-level feature mimicking (PH+FH)
brings slightly more benefits than mid- (PM+FM) and low-
level (PL+FL) feature mimicking judging from RMSE. This
may be explained from the observation that high-level fea-
tures contain more semantical meanings than those of mid-
and low-levels, as supported by the feature embeddings
shown in Fig. 1(b). Another reason could be that it is more
fruitful to regularize the high-level features of FM-Net rather
than the mid- and low-level features. (3) Comparing PH +
PM + PL and FH + FM + FL, we see no obvious differ-
ence between using either PSPNet or FlowNet2 as the sole
auxiliary network although the results obtained from using
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Figure 5: Qualitative results of FM-Net with and without heterogeneous feature mimicking (FM) on (a) Udacity and (b)
Comma.ai test sets. The top row shows steering angles over time (x axis denotes frame and y axis represents steering angle).
Ground-truth (gt) is represented in blue line. We selected a few representative examples to highlight the advantages of using
feature mimicking. The bar charts in the second row provide closer observations on the predictions and errors (represented by
the error bar).

Table 3: Performance comparison of mimicking features
from different layers of auxiliary networks. We use “P” and
“F” to denote PSPNet and FlowNet, respectively. The abbre-
viation is used along with “L” and “M” and “H” to represent
〈low-middle-high〉. For instance, PSPNet feature mimicking
(high-level) is abbreviated as “PH”. Full feature mimicking
means “PH + PM + PL + FH + FM + FL”.

Method Udacity Comma.ai
MAE RMSE MAE RMSE

Without feat. mimick 1.7147 2.4899 0.7989 1.1519
PH + FH 1.6826 2.4013 0.7514 1.0836
PM + FM 1.6928 2.4659 0.7749 1.0836
PL + FL 1.6869 2.4521 0.7627 1.1204
PH + PM + PL 1.6653 2.3847 0.7315 1.0574
FH + FM + FL 1.6573 2.3746 0.7259 1.0215
With full feat. mimick 1.6236 2.3549 0.7048 0.9831

FlowNet2 is marginally better. (4) The best performance is
achieved when we use both auxiliary networks and activate
the 〈low-middle-high〉mimicking paths. Mimicking features
at different levels from different networks help FM-Net to
capture more diverse contextual information, e.g. object mo-
tion and scene structure, at different feature resolutions.

Table 3 studies some representative combinations of mim-
icking paths. Next, we further examine the performance of
FM-Net when we only allow a single mimicking path chosen
from 〈low-middle-high〉 of an auxiliary network. The results
are shown in Fig. 6. It is observed that high-level mimicking
paths are generally superior to the mid- and low-level paths.
It is interesting to learn that regularizing low-level features
with mimicking brings more benefits than mid-level features
do. This is an intriguing observation that worths further in-
vestigations.
Feature mimicking v.s. pre-training. Pre-training is an al-
ternative approach to introduce a side task indirectly with-
out performing annotations on the target set – we can pre-
train the FM-Net using the same image segmentation task
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Figure 6: Comparative results of activating a single mim-
icking path chosen from 〈low-middle-high〉 of an auxiliary
network.

on Cityscape dataset (Cordts et al. 2016) as in the PSP-
Net and subsequently fine-tune FM-Net on the steering an-
gle prediction task. In this way, we wish to observe if the
network could still benefit from the segmentation task. We
compare feature mimicking with this approach and report
the results in Table 4. We include FM-Net without both
Cityscape pre-training4 and feature mimicking as a baseline.
In this comparison, the FM-Net variant with feature mim-
icking only mimics features from PSPNet (i.e., PH+PM+PL
in Table 3). All three methods in Table 3 used ImageNet
initialization. As can be observed, pre-training only yields
very marginal improvement. By contrast, feature mimicking
brings a higher gain to FM-Net. The results suggest that this
naı̈ve pre-training scheme may not be the most effective way
in our problem context: (1) the side task pre-training em-

4The mIOUs of FM-Net with Cityscape pre-training only
(ResNet-50, with Large FOV, without data augmentation, ASPP
and CRF) in the validation and testing set of Cityscape are 67.2 and
66.4, respectively, which are comparable with the state-of-the-art
method (Chen et al. 2018) (ResNet-101, with data augmentation,
Large FOV, ASPP and CRF, validation: 71.4, testing: 70.4).
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Table 4: Comparing heterogeneous feature mimicking and
network pre-training. Variants (A) without both Cityscape
pre-training and feature mimicking, (B) with Cityscape pre-
training only, and (C) with feature mimicking only.

FM-Net Udacity Comma.ai
MAE RMSE MAE RMSE

Variant A 1.7147 2.4899 0.7989 1.1519
Variant B 1.7125 2.4614 0.7842 1.0908
Variant C 1.6653 2.3847 0.7315 1.0574

ploys Cityscape, which introduces a domain gap when we
applied the pre-trained network on Udacity and Comma.ai;
(2) the network structure of FM-Net is not optimal for direct
learning from the image segmentation task. Feature mim-
icking alleviates the two aforementioned issues as it approx-
imates PSPNet’s features by using target data as input. And
it focuses to approximate 〈low-middle-high〉 features well
rather do well on the segmentation tasks itself, thus network
architecture becomes a less crucial issue.

Conclusion
Contextual learning from side networks is a meaningful ex-
ploration not attempted before. We have presented a novel
scheme of training very deep 3D CNN for the task on end-
to-end steering angle prediction. Specifically, we found that
approximating multi-level features from heterogeneous aux-
iliary networks provide strong supervisory signals and reg-
ularization to the main network. In our experiments, we
have shown that PSPNet and FlowNet2 help our FM-Net
to learn better in capturing contextual information such as
scene structure and object motion. With the proposed hetero-
geneous feature mimicking, the proposed FM-Net achieves
a new state-of-the-art on both Udacity and Comma.ai.
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Paden, B.; Čáp, M.; Yong, S. Z.; Yershov, D.; and Frazzoli, E. 2016.
A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on Intelligent Vehicles 1(1):33–
55.
Pomerleau, D. A. 1989. Alvinn: An autonomous land vehicle in a
neural network. In NIPS, 305–313.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and
Bengio, Y. 2014. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550.
Sak, H.; Senior, A.; and Beaufays, F. 2014. Long short-term mem-
ory recurrent neural network architectures for large scale acous-
tic modeling. In Fifteenth annual conference of the international
speech communication association.
Santana, E., and Hotz, G. 2016. Learning a driving simulator. arXiv
preprint arXiv:1608.01230.
Saurabh, G.; Judy, H.; and Jitendra, M. 2016. Cross modal distil-
lation for supervision transfer. In CVPR, 2827–2836.
Udacity. 2018. https://github.com/udacity/self-driving-car/. Ac-
cessed: 2018-02-20.
Xu, H.; Gao, Y.; Yu, F.; and Darrell, T. 2017. End-to-end learning
of driving models from large-scale video datasets. In CVPR, 2174–
2182.
Yang, Z.; Zhang, Y.; Yu, J.; Cai, J.; and Luo, J. 2018. End-to-end
multi-modal multi-task vehicle control for self-driving cars with
visual perception. In ICPR.
Yu, F.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; and
Darrell, T. 2018. BDD100K: A diverse driving video database with
scalable annotation tooling. arXiv preprint arXiv:1805.04687.
Zhao, H.; Shi, J.; Qi, X.; Wang, X.; and Jia, J. 2017. Pyramid scene
parsing network. In CVPR, 2881–2890.

8440


