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Abstract

Target model update plays an important role in visual object
tracking. However, performing optimal model update is chal-
lenging. In this work, we propose to achieve an optimal tar-
get model by learning a transformation matrix from the last
target model to the newly generated one, which results into
a minimization objective. In this objective, there exists two
challenges. The first is that the newly generated target model
is unreliable. To overcome this problem, we propose to im-
pose a penalty to limit the distance between the learned target
model and the last one. The second is that as time evolves,
we can not decide whether the last target model has been
corrupted or not. To get out of this dilemma, we propose a
reinitialization term. Besides, to control the complexity of
the transformation matrix, we also add a regularizer. We find
that the optimization formula’s solution, with some simplifi-
cations, degenerates to EMA. Finally, despite the simplicity,
extensive experiments conducted on several commonly used
benchmarks demonstrate the effectiveness of our proposed
approach in relatively long term scenarios.

Introduction
Visual object tracking is a fundamental task of computer vi-
sion and has many practical applications such as in moni-
toring and auto-driving (Smeulders et al. 2014; Zhang et al.
2015; Wu, Lim, and Yang 2013; Han, Sim, and Adam 2017;
Wang et al. 2018; Wang, Zhou, and Li 2018a; 2018b). The
objective of object tracking is to online locate an arbitrary
target with only initial object’s bounding box given, which
implies that there is no prior information about the target
in the offline phase. This requires that the target’s model
should be online constructed from the given bounding box
and updated on the fly with predicted ones in successive
video frames. Therefore, model update plays a crucial role
in object tracking algorithms.

However, in visual object tracking, model update is chal-
lenging, since there are distractors and other corrupted situa-
tions such as occlusion and blur. The target model generated
based on the current video frame may be unreliable, which
risks corrupting the initial model when used for updating.
Besides, what is even worse is the accumulation of small er-
rors. The small errors such as background pixels included

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in the bounding box may accumulate with continuously up-
dating, which will eventually degrade the target model and
make the tracker drift away. The big corruption sources may
be eliminated by some specialized techniques such as oc-
clusion and/or blur detection, but the accumulation of small
errors is hard to avoid.

Recently, there have been works (Bertinetto et al. 2016a;
2016c; Tao, Gavves, and Smeulders 2016) that explore the
possibility of performing no model update at all. In those
methods, visual object tacking is formulated as an one-shot
learning problem. Despite the simplicity, encouraging re-
sults are achieved. Essentially, those methods learn to derive
a general model regardless of target variations with large of-
fline datasets. In principle, they intend to learn an invariant
and discriminative feature extractor such that the target is
stable and separable from background in the feature space
(Li et al. 2018). However, learning such an extractor that can
produce an invariant and discriminative representation is in-
trinsically difficult. Because as time evolves, the appearance
of the target may change drastically and even become irrel-
evant with that of the given sample. For example, initially
given a frame containing a closed book, when it is opened
up in successive frames, its appearance becomes irrelevant.
As a result, those methods may fail to extract a relevant fea-
ture and eventually lose the target. If there is model update,
those kind of failure could be avoided. Besides, with model
update, we may be free of the large scale datasets for offline
training in those algorithms.

The most popular update policy is exponential moving av-
erage (EMA). This approach basically adds up all online col-
lected training samples with an exponential decayed weight
for each sample. It can be implemented in a “moving” man-
ner, and thus there is no need to keep the historical samples.
Therefore it can be both memory and computation efficient.
However, it is ad-hoc and its effect is limited. In this work,
we seek a more complicated update method.

We propose to learn a transformation matrix from the last
target model to the one just predicted, which results in a
least square optimization objective. Since the predicted tar-
get model is not reliable, we impose a penalty to limit the
dissimilarities between the learned target model and the last
target model. Because this objective is convex, we set its
gradient to zero to find the solution, which degenerates to
EMA and the penalty factor corresponding to the EMA’s
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update rate. In other words, the naive EMA can be inter-
preted in an optimization point of view, which serves as a
new insight into EMA. In other literatures, the effectiveness
of EMA is interpreted in a aggregation theory point of view
(Bolme, Draper, and Beveridge 2009). In addition to this,
with the convenience of this math formula representation,
we can easily incorporate other terms into this objective.

The first term is the regularization, which seems trivial but
in our experiments we find that it has positive effect on the
performance. In addition, because of its existence, we can
apply other advanced techniques such as kernel trick (Hen-
riques et al. 2015).

The second one is the reinitialization. The above objective
can also be interpreted in a manifold learning perspective,
i.e., the target models at different time-steps form a man-
ifold path, and our learned target model must keep close
enough to the endpoint of the manifold path while adapt-
ing to the target model newly generated in the current video
frame. However, as time evolves, the manifold path becomes
very long and the endpoint is far away from start point. Then
there comes an ambiguity dilemma. On the one side, the sit-
uation, i.e., the large distance between the start point and
endpoint, is reasonable, because that the target appearance
may have largely changed and we need to adapt to it. On
the other side, this occasion should be avoided, and we need
to return to the start point, as the endpoint may have been
corrupted by small errors’ accumulation or other big pollu-
tion sources. We can not decide which side the real case is.
Inspired by the solution in PageRank (Page et al. 1999) algo-
rithm, we propose to randomly select one side to jump out
of this dilemma. Further, since the random solution is not
deterministic, we take a weighted hybrid decision instead.

In summary, we propose an optimization objective for tar-
get model update, which can be degenerated with some sim-
plifications to EMA. With the convenience of this fashion,
it is flexible to incorporate regularization term and further
apply other advanced techniques such as kernel trick. In ad-
dition, to overcome the degradation of the target model, we
also propose a reinitialization term. Finally, our method can
take place of EMA seamlessly, which will further bring per-
formance improvement.

Related Work
In this section, we mainly introduce related tracking algo-
rithms on model update. For a more comprehensive sur-
vey, interested readers can refer to (Yilmaz, Javed, and Shah
2006; Smeulders et al. 2014; Kristan et al. 2016).

EMA. Averaging of filters is first employed in (Bolme,
Draper, and Beveridge 2009), which is motivated by the ag-
gregation theory, i.e., bagging. Particularly, the exact filters
can be viewed as weak classifiers, the averaging of which
can form a stronger classifier. Later in (Bolme et al. 2010),
the averaging is adopted in an online vision, where the his-
torical filters’ weights are exponential decayed, thus this
variant is called exponential moving average (EMA). Since
then, EMA is broadly utilized in correlation filter related
object tracking algorithms (Henriques et al. 2015). Recent
years, it has been found that EMA can also be employed
in Siamese network related tracking methods (Valmadre et

al. 2017). We propose to minimize a square error to learn
a best transformation matrix, motivated by the fact that the
target model need to adapt to the variation of the object and
the newly generated target model is unreliable. We find the
solution of this formula’s base form equals to EMA, which
implies that EMA can be interpreted in an optimization point
of view.

Imposing Restrictions on Model Update. There is a crit-
ical problem related to stability-plasticity dilemma in model
update (Li et al. 2018). On the one hand, model update
should be plastic to effectively absorb new variations from
tracked target. On the other hand, it needs to be stable to
avoid being corrupted when small errors accumulate. Note
that there are differences between the dilemma explained
here and the one described by us. The former is a common
plight in model update, in contrast, the later is a situation that
we do not know which action to perform when the manifold
path is far away from the start point. In the other words, the
later is more specific than the former.

To alleviate this problem, Lain et.al. keep the initial tar-
get model as a reference, and they update to the latest target
model only when its predicted parameters are close enough
to those learnt by the reference model (2004). They take a
threshold to decide whether it is close enough. Similar meth-
ods are taken in (Guo et al. 2017) that learns a transform
matrix from the initial target model directly to the latest one.
Inspired by those two, Li et.al. adopt an anchor loss while
training their GRU based model update module (2018).

Those techniques are intrinsically similar with the reini-
tialization term employed by us, i.e., all of them follow the
principle that limits the manifold path not to go too far away
form the start point. But, their specific practices are differ-
ent. Facing the ambiguity dilemma, we propose to randomly
select one way to jump out, and later to make it practical, we
take a hybrid decision. Besides, our method can be viewed
as a re-weighting process, which up-weights the initial tar-
get model adaptively as the manifold path grows. In contrast,
above techniques limits the distance by a threshold control-
ling the nearness between two groups of predicted parame-
ters, a transforming matrix only from the initial model to the
latest one, or an anchor loss in offline training process.

Performing Cross-check. Another strategy to overcome
the model corruption problem is to do cross-check on the
collected training samples. In (Bolme et al. 2010), the Peak
to Sidelobe Ratio (PSR) is employed for occlusion and
tracking failure detection. When the occlusion or tracking
failure is detected, they perform no model update. In (Bhat et
al. 2018), a similar approach is adopted to measure the qual-
ity of the prediction. Suha et.al. propose to learn a classifier
for occlusion detection and update the model only when the
occlusion level is low (2011). In (Babenko, Yang, and Be-
longie 2011), to avoid mislabeled online training samples,
they employ a multiple instance learning algorithm to up-
date the target model. In (Li et al. 2017), they apply a patch
based method to mitigate the effects of background infor-
mation. In (Danelljan et al. 2016), an unified formulation
is proposed for jointly learning the target models and their
weights. Although this algorithm shows encouraging perfor-
mance, its solution must be iteratively solved, which limits
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its applications in real-time situations. Our reinitialization
term can also be viewed as a re-weighting process as men-
tioned above, but it only re-weights two weights, i.e., one
for the initial target model and the other for the latest target
model, which brings little computation overhead.

Short- and Long-term Memory. A mixture model con-
sisting of three components, i.e., a stable component respon-
sible for long-term variations, a two-frame transient compo-
nent for capturing short-term variations, and an outlier pro-
cess is proposed in (Jepson, Fleet, and El-Maraghi 2003).
Inspired by Atkinson-Shiffrin Memory Model, Hong et.al.
propose to form a short-term store and a long-term store to
collaboratively process the object tracking task (2015).

RNNs Based Model Update Modules. Yang and Chan
propose a LSTM memory module to cope with model update
problem for Siamese network based methods (2017). How-
ever, this memory module barely brings improvement on the
performance. Later in (Yang and Chan 2018), they provide
an improved version, where the LSTM no longer acts as the
memory module but serves as a memory controller, which
controls the assembling, reading and writhing of candidate
target models. The improved version shows its effectiveness
in various of benchmarks. In (Li et al. 2018), a GRU based
meta-learner for learning how to update the target model is
proposed. This approach shares some similarities with Yang
and Chan’s method, but during offline training they utilize
an anchor loss, which is crucial for successfully learning.

Methods
Primal Objective
In the online tracking process, when a new frame comes, a
typical model matching based object tracking algorithm first
detects the most similar region with the target model. Next
based on the detected region it generates a new target model,
then with which it updates the original target model. The
most commonly used update policy is exponential moving
average (EMA),

Tt = (1− η)Tt−1 + ηEt, (1)

where Tt denotes the learned target model in time step t, Et
is the naive target model generated purely from the detected
region in frame t and η is the update rate.

EMA can be viewed as a linear interpolation between cur-
rent and historical target models, and the weights of past tar-
get models are exponential decayed. The update process in
EMA can be highly efficient since it needs no iterative opti-
mization nor extra memory. However, this method is ad-hoc
and can hardly handle more complex situations such as oc-
clusion and blur. Instead, we seek a more complicated and
effective method to update the target model. We propose fol-
lowing optimization objective,

W′ = argmin
W

{||Tt−1 ∗W− Et||2+

λ||Tt−1 ∗W− Tt−1||2 + µ||W||2},
(2)

where ∗ denotes circular convolution, λ is the penalty fac-
tor and µ is the regularizer. Eq. 2 learns an optimal trans-
formation matrix W′ from the previous target model Tt−1

Figure 1: Illustration of our method. Each point denotes the
target model T at different time steps. Those target mod-
els form a manifold path. The objective of our method is to
learn a Tt which adapts to the newly generated target model
Et while keeping close enough to Tt−1. When the manifold
path becomes long, as indicated by the color, we can not de-
cide whether Tt−1 has been corrupted or not. Therefore we
could either return to T0 by chance (a) or take a mixture of
T0 and Tt−1 (b) to get out of this dilemma.

to approximate the newly generated target model Et. The
newly generated target model Et is not reliable, as there are
distractors and occlusion, thus we add a penalty in Eq. 2 to
force the learned target model not to change too much from
the previous target model Tt−1. Finally, the current target
model can be obtained by

Tt = Tt−1 ∗W′. (3)

Ambiguity Dilemma
Eq. 2 can be interpreted in a manifold learning point of view
as illustrated in Fig. 1 (a). We want to learn an optimal target
model Tt between Tt−1 and Et such that it is close enough
to Et to capture the appearance variations of the target, as
well as not too far away from Tt−1 to ensure the smooth-
ness of the manifold path. In other words, we need to find
the best location of Tt in order to minimize the distance be-
tween Tt−1 and Et with a distance weight λ controlling the
smoothness of the manifold path.

In this light, as tracking proceeds, there occurs an ambi-
guity dilemma. There exists a t1, when t > t1, the manifold
would go sufficiently far away form the start point T0. This
may attribute to two reasons: (a) the appearance of the target
has significantly changed and (b) the target model Tt−1 is
corrupted by non-target pixels such as background.

The first case is reasonable, and we may continue to com-
pute the target model Tt along the manifold path. On the
contrary, the second case should be avoided, since the cur-
rent manifold path is corrupted, and we need to create a new
path. In the task of object tracking, the most reliable target
model is T0 as it is given. Thus under the second circum-
stance, we could return to the start point to create a new
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manifold path. However, the problem is that when the dis-
tance between T0 and Tt−1 is sufficiently large, there is no
way to know which case it belongs to. Therefore we could
not decide which action to perform.

Random-walk Reinitialization
To jump out of above dilemma, we could randomly select
one action to perform, which process is illustrated in Fig. 1
(a). In PageRank algorithm (Page et al. 1999), there is a sim-
ilar dilemma, where there are loops among web page while
computing the rank. Lawrence et.al. offer chances to jump
out of those loops. In our problem, we could perform in a
similar way to decide whether to continue to walk along the
manifold path or just return to the start point. Formally, we
add a reinitialization term in Eq. 2 as follows,

W′ = argmin
W

{||Tt−1 ∗W− Et||2+

λ((1− I(p))||Tt−1 ∗W− Tt−1||2+

I(p)||Tt−1 ∗W− T0||2) + µ||W||2},

(4)

where I(p) = 1 with some probability p.

Weighted Hybrid Decision
Eq. 4, however, is not applicable. Since it randomly chooses
one action to perform in every time step while updating the
target model, its result is not deterministic, which is fatal in
real applications. To deal with the problem, we could take
a mixture of T0 and Tt−1, which is stated in Fig.1 (b). For-
mally, we define g(p) as a map of p to replace I(p), where
g(p) ∈ {x|x ∈ R and x ∈ [0, 1]}. Then Eq. 4 becomes

W′ = argmin
W

{||Tt−1 ∗W− Et||2+

λ((1− g(p))||Tt−1 ∗W− Tt−1||2+

g(p)||Tt−1 ∗W− T0||2) + µ||W||2}.

(5)

Eq. 5 is deterministic, and thus it is applicable in practical
applications, and in some way it overcomes the target model
degradation problem.

We define p as a metric of Tt−1 and T0 to measure the
length of the manifold path. Specifically, in this paper we
take cosine distance as p, i.e.,

p = 1− |ver(T0)Hver(Tt−1)|√
(ver(T0)Hver(T0))(ver(Tt−1)Hver(Tt−1))

,

(6)
where ver() denotes the vectorization operation, and TH is
the Hermitian transpose of T, i.e., TH = (T∗)T and T∗ is the
complex conjugate of T.

We define g(p) as a power function to properly weight the
two side of the ambiguity dilemma. When the manifold path
is short, i.e., p is small, the target model should aggressively
adapt to the change of the target appearance, and thus g(p)
should be small. In contrast, when the manifold path is long,
i.e., p is large, the target model may be corrupted and we
should up-weight the initial target model T0, which requires
large g(p). Therefore, g(p) should be positive related to p

and in this work we set g(p) as

g(p) =

{
(αp)k, if (αp)k 6 1,
1, if (αp)k > 1,

(7)

where α > 0 and k > 1 are hyper-parameters.

Solution
Primal Solution. Since Eq. 5 is convex, we can derive a
closed form solution. In most of tracking algorithms, Tt ∈
Rn. We could convert a n dimensional tensor to an one di-
mensional vector by vectorization operation. Therefore in
the following, we take the one dimensional vector to derive
the solution and use lower case to represent for correspond-
ing vectors. Let Xt be a matrix containing all circulant shifts
of tt as is in (Henriques et al. 2015), then Eq. 5 becomes,

w′ = argmin
w
{||Xt−1w− et||2+

λ((1− g(p))||Xt−1w− tt−1||2+

g(p)||Xt−1w− t0||2) + µ||w||2}.

(8)

To find w′, define
l =||Xt−1w− et||2 + λ((1− g(p))||Xt−1w− tt−1||2

+ g(p)||Xt−1w− t0||2) + µ||w||2.
(9)

Setting ∂l
∂w = 0, we have the solution,

w′ =((1 + λ)XT
tXt + µI)−1XT

t (

et + λ((1− g(p))tt−1 + g(p)t0)).
(10)

However, above equation needs to compute large matrix’s
inversion, which is known time-consuming, therefore we
should find other alternatives. Following (Henriques et al.
2015), by using the circulant matrix’s property,

Xt = Fdiag(̂tt−1)FH, (11)
where F is the DFT matrix, and the hatˆdenotes the DFT of
a vector, the solution can be derived as

ŵ =
t̂t−1 � (êt + λ((1− g(p))̂tt−1 + g(p)̂t0))

(1 + λ)̂t∗t−1 � t̂t−1 + µ
, (12)

where � denotes the element-wise multiplication and t̂∗t−1

is the complex conjugate of t̂t−1.
Kernelization. The kernel trick can also be applied as

with (Henriques et al. 2015). Specifically, expressing w as

w =
∑
i

αiϕ(tit−1), (13)

where tit−1 is the ith row of circulant matrix Xt−1, we can
find

α̂ =
êt + λ((1− g(p))̂tt−1 + g(p)̂t0)

(1 + λ)k̂
tt−1tt−1

+ µ
, (14)

where the hatˆagain denotes DFT and ktt−1tt−1 is the first
row of the kernel matrix K with elements

Kij = k(tit−1, t
j
t−1) = ϕT(tit−1)ϕ(tjt−1). (15)

Then the target model tt can be written as

t̂t =
k̂

tt−1tt−1 � (êt + λ((1− g(p))̂tt−1 + g(p)̂t0))

(1 + λ)k̂
tt−1tt−1

+ µ
. (16)

Finally, we can perform IDFT to convert t̂t back to its origi-
nal spatial space.
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Relationship with EMA
In Eq. 16, setting µ = 0 and g(p) = 0, we will get

t̂t =
êt + λt̂t−1

1 + λ
. (17)

DFT has linear property (Gonzalez and Woods 2001), there-
fore Eq. 17 equals to

tt =
λ

1 + λ
tt−1 +

1

1 + λ
et, (18)

which is the same with EMA in Eq. 1 with η = 1
1+λ . In

other words, our method can be viewed as an extension of
EMA with regularization and reinitialization, and we name
our method as Re2EMA.

Experiments
In this section, we first provide a comprehensive study about
our method. After that we present comparison results with
other related object tracking algorithms.

Experimental Setups
Implementation Details. As a common practice with cor-
relation filters, to employ the cyclic assumption, we need
to weight Tt−1, T0, and E0 by a cosine window to convert
them to Fourier domain (Henriques et al. 2015). For correla-
tion filter related algorithms, the target models are already in
Fourier domain, thus we could directly take Eq. 16 to get the
solution. But for Siamese network related methods, the tar-
get models are originally in spatial domain. To convert them
to Fourier domain, we need to multiply a cosine window.
However, this operation will cause an information loss. To
overcome this problem, we set µ = 0 in Eq. 16 to get

T̂t =
Êt + λ((1− g(p))T̂t−1 + g(p)T̂0)

1 + λ
. (19)

As mentioned earlier, DFT has linear property, then Eq. 19
becomes

Tt =
Et + λ((1− g(p))Tt−1 + g(p)T0)

1 + λ
. (20)

The above equation is in spatial domain, and we could em-
ploy it in Siamese network related algorithms. Note that ac-
tually Eq. 20 discards the regularization term, which is a
compromise to the information loss limitation.

Evaluation Metrics. For OTB family (Wu, Lim, and
Yang 2015) and TColor-128 (Liang, Blasch, and Ling 2015)
datasets, we take one-pass evaluation (OPE) with precision
and success plots metrics. The precision plot measures the
distance between the predicted and the ground-truth cen-
ter locations under different thresholds (at a threshold 20 is
called DP). The success plot measures the overlap ratios of
the predicted and the ground-truth bounding boxes, where
the area under the curve (AUC) is computed as an overall
performance measurement.

Methods AUC (%)
BACF (2017) 63.24

Reg. Rei.

BACF Re2EMA

7 7 62.77
3 7 62.85
7 3 64.76
3 3 65.18

kernel
linear 65.18

Gaussian 65.22
polynomial 65.42

Table 1: Ablation study of proposed regularization and reini-
tialization terms, with performances of different kernels.
Reg.: regularization term. Rei.: reinitialization term.

Ablation Study
In this subsection, we take OTB-2015 (Wu, Lim, and Yang
2015) as a validation set and BACF (Galoogahi, Fagg, and
Lucey 2017) as a baseline method to analyze each proposed
component. Note that BACF already employs EMA to up-
date their target model, therefore considering the relation-
ship of EMA and our method Re2EMA, we set λ ≈ 1

η − 1,
and only tune µ, α and k in OTB-2015.

Regularization and reinitialization term are effective.
Table 1 shows the ablation analysis of the proposed two
terms. With both terms, our method is 1.94% better than
BACF baseline, which is a significant improvement. To in-
vestigate the source of this improvement, we conduct several
experiments. Firstly, to ensure that the improvement does
not come from any other resources, e.g., λ or the form of
the formula, we run our method without both terms, which
leads to 62.77% in AUC. This result is a little lower than that
of EMA, which two in our expectations should be the same,
since our method in the simplest form equals to EMA. This
is due to the update rate η is 0.013, and in our method we
set λ = 76.0 for numerical propose, i.e., λ does not strictly
equal to 1

η − 1. Next, we run our method with only the regu-
larization term, and it results in 62.85%, which suggests that
regularization term has positive effect on performance but is
not the main contributor. Finally, we run our approach with
only the reinitialization term to get 64.76% in AUC, which
indicates that the reinitialization term contributes most to the
improvement of performance.

The above ablation experiments clearly show that the
reinitialization term proposed by us has a great impact on
the tracking results, which also indicates that the degrada-
tion of target model is a severe problem in model update.

Linear kernel function is preferred. We also list the im-
pacts of different kernel functions in Table 1. From the table,
we can find that polynomial kernel performs the best, and the
linear kernel behaves the worst. This result suggests that in
BACF, polynomial kernel is the best choice. However, poly-
nomial kernel involves two extra hyper-parameters, which
may cause our method over complicated. To stay simplic-
ity, we may choose Gaussian kernel as a trade off, which
only requires one extra hyper-parameter. Unfortunately, we
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OTB-2015 OTB-50 TColor-128
Methods speed DP AUC DP AUC DP AUC

(fps.) (%) (%) (%) (%) (%) (%)
KCF 236 69.66 48.46 61.06 40.70 55.79 39.18
+Re2 239 71.71 49.30 62.07 41.42 56.01 39.58

∆ +2.05 +0.84 +1.01 +0.72 +0.22 +0.40
Staple 39 77.50 58.63 66.26 50.60 66.42 50.49
+Re2 29 82.03 62.26 72.73 54.60 69.50 52.01

∆ +4.53 +3.63 +6.47 +4.00 +3.08 +1.52
SRDCF 6 77.63 60.19 70.42 53.60 65.08 48.83
+Re2 6 80.07 62.55 72.88 55.50 66.42 50.14

∆ +2.44 +2.36 +2.46 +1.90 +1.34 +1.31
BACF 16 82.37 63.24 76.82 58.04 65.87 50.20
+Re2 15 83.21 65.18 78.81 60.75 66.45 51.33

∆ +0.84 +1.94 +1.99 +2.71 +0.58 +1.13
SiamFC 29 76.79 59.49 67.93 52.14 69.40 50.74

+Re2 30 80.14 62.24 72.03 55.43 70.99 51.89
∆ +3.35 +2.75 +4.10 +3.29 +1.59 +1.15

CFNet 27 73.86 57.02 68.63 51.88 60.91 45.78
+Re2 30 76.04 59.08 68.97 52.36 61.83 46.30

∆ +2.18 +2.06 +0.34 +0.48 +0.92 +0.52

Table 2: Experiment results of before and after applying
Re2EMA on several benchmarks. ∆ denotes the perfor-
mance gain. +Re2 means taking Re2EMA as the target
model update method in baseline tracking algorithms. The
speed is averaged on TColor-128 dataset.

find that in KCF (Henriques et al. 2015) Gaussian kernel
performs worst and linear kernel behaves similar with poly-
nomial kernel. Therefore, to ensure efficiency and effective-
ness, we prefer linear kernel and take it as a default option
for all our experimented tracking approaches.

Map function g(p) is important. We plot the optimized
g(p) in Fig. 2, from which we find g(p) is similar with a
threshold decision function, i.e.,

q(p) = u(p− a) =

{
0, if p < a,
1, if p > a,

(21)

where a is a threshold and u(p − a) is the shifted unit step
function. Therefore g(p) can be viewed as a soft threshold
decision function. Then how does q(p) perform? We find
that employing q(p) results in 63.16% in AUC, which is 2.02
percentage points lower than that of g(p) (65.18%). This
comparison result suggests that a soft decision function is
much better. From the Fig. 2, we can also find that the tran-
sition point when the function value first becomes 1 of g(p)
(P1 in Fig. 2) arrives earlier than that (P2 in Fig. 2) of q(p).
An explanation to this phenomenon is that at the same level
of corruption of the component Et, the algorithm should re-
turn to T0. Since in our method we apply a soft threshold
decision function g(p), i.e., we allow a larger proportion of
T0 earlier, to arrive at the same level corruption of Et with
that in using q(p), the transition point should come earlier.

Baseline Comparisons
In this section, we select some representative trackers from
both correlation filter and Siamese network families as
our baseline methods. From correlation filter family, we

Figure 2: Plot of g(p) and threshold decision function q(p).
g(p) can be viewed as a soft threshold decision function.

Figure 3: Precision and success plots on OTB-2015. Only
top 10 trackers are shown. The legend on the left figure con-
tains DP, while on the right is AUC instead.

choose KCF (Henriques et al. 2015), Staple (Bertinetto et
al. 2016b), SRDCF (Danelljan et al. 2015) and BACF (Ga-
loogahi, Fagg, and Lucey 2017). From Siamese network
family, we select SiamFC (Bertinetto et al. 2016c) and
CFNet (Valmadre et al. 2017). Note this version of SiamFC
is actually the baseline-conv5 in (Valmadre et al. 2017),
which is an improved variant. Those baseline approaches all
take EMA as their target model update method. Note also
that we do not apply regularization term in SRDCF, SiamFC
and CFNet due to the information loss limitation. Similar
with the last section, we take OTB-2015 as a validation set
to tune hyper-parameters, i.e., α, k, and µ, leaving others un-
changed. After being selected on OTB-2015, they are kept
fixed across all the experiments. The comparison results are
summarized in Table 2, Fig. 3 and Fig. 5.

OTB family datasets. On OTB-50 and OTB-2015
datasets, our method brings significant improvement on
performance for all those baseline algorithms. As men-
tioned earlier, those baseline approaches all originally em-
ploy EMA, thus those performance improvements attribute
to our proposed regularization and reinitialization terms.

OTB-2015 has tagged its test sequences with 11 attributes,
including Illumination Variation (IV), Scale Variation (SV),
Occlusion (OCC), Deformation (DEF), Motion Blur (MB),
Fast Motion (FM), In-Plane Rotation (IPR), Out-of-Plane
Rotation, Out-of-View (OV), Background Clutters (BC),
and Low Resolution (LR). We plot the performance gain af-
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Figure 4: Trackers’ performance gain after applying our tar-
get model update method under different attributes of se-
quences on OTB-2015. ∆ represents the performance gain.

Figure 5: Precision and success plots on TColor-128. Only
top 10 trackers are shown. The legend on the left figure con-
tains DP, while on the right is AUC instead.

ter applying our method on different attributes of video se-
quences in Fig. 4. Our method brings positive effect for most
of attributes, and under some severe occasions such as OCC,
SV, MB, and OV, most trackers still get large performance
improvement, which is owing to our reinitialization strategy.

TColor-128 dataset consists of 128 color videos. All the
baseline trackers get significant performance improvement
after applying Re2EMA, while the tracking speed being al-
most the same. Note we do not tune hyper-parameters on
this dataset, thus this results more impartially validate the
effectiveness and efficiency of our method.

Comparison with the Real-time State-of-the-arts
We compare BACF equipped with Re2EMA against other
three real-time state-of-the-art trackers in Table 3. At first,
there is a performance gap between ECOhc and BACF. But
after employing our method, BACF is able to achieve com-
parable results with ECOhc, which demonstrates the effec-
tiveness of our method.

Comparison with Other Related Methods
We present the comparison results with some related tar-
get model update methods in Table 4. MemTrack (Yang and
Chan 2018), LU (Li et al. 2018) and our method bring sim-
ilar performance improvements. However, the former two

Methods
ECOhc EAST LMCF BACF BACF
(2017) (2017) (2017) (2017) Re2EMA

AUC (%) 64.9 62.9 58.0 63.2 65.2

Table 3: Comparison results with three real-time state-of-
the-art trackers on OTB-2015 dataset.

Model Update Methods Metric
SiamFC EMA RFL LU Mem. Re2 AUC (%)
(2016c) (2010) (2017) (2018) (2018) ours

3 58.2
3 3 59.5*
3 3 58.1
3 3 62.0
3 3 62.6
3 3 62.2

Module - LSTM GRU LSTM Mat.

Details
Off. Train No Yes Yes Yes No
Off. Data No Yes Yes Yes No
Device C G G G C

Table 4: Comparison with some related target model up-
date methods on OTB-2015. * The reported AUC of
SiamFC+EMA (baseline-conv5) is 58.8 in (Valmadre et al.
2017), but we find higher performance can be achieved af-
ter adjusting the updating rate η. Off.: offline. Mem.: Mem-
Track. Mat.: transformation matrix w. Device: the required
type of device to run the corresponding target model update
method. C: CPU. G: GPU.

approaches employ RNNs as their model update modules,
which need to be trained in an offline phase with large hand-
annotated datasets. Besides, currently their methods could
only be integrated with Siamese network family trackers. In
contrast, our method requires no offline training and could
also be employed by correlation filter related tracking algo-
rithms. Therefore our method is more efficient and the ap-
plication is wider.

Conclusion
We propose to learn a transformation matrix to achieve an
optimal target model, which results into a minimization ob-
jective. To overcome the unreliability problem of the newly
generated target model, we propose to impose a penalty. Fur-
ther, to alleviate the degradation level of the target model, we
propose a reinitialization term. Finally to limit the complex-
ity of the transformation matrix, we also add a regularizer.
Despite the simplicity, extensive experiments demonstrate
the efficiency and effectiveness of the proposed approach.
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