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Abstract

Current works on facial action unit (AU) recognition typically
require fully AU-labeled training samples. To reduce the re-
liance on time-consuming manual AU annotations, we pro-
pose a novel semi-supervised AU recognition method lever-
aging two kinds of readily available auxiliary information.
The method leverages the dependencies between AUs and ex-
pressions as well as the dependencies among AUs, which are
caused by facial anatomy and therefore embedded in all facial
images, independent on their AU annotation status. The other
auxiliary information is facial image synthesis given AUs, the
dual task of AU recognition from facial images, and there-
fore has intrinsic probabilistic connections with AU recogni-
tion, regardless of AU annotations. Specifically, we propose a
dual semi-supervised generative adversarial network for AU
recognition from partially AU-labeled and fully expression-
labeled facial images. The proposed network consists of an
AU classifier C, an image generator G, and a discrimina-
tor D. In addition to minimize the supervised losses of the
AU classifier and the face generator for labeled training data,
we explore the probabilistic duality between the tasks us-
ing adversary learning to force the convergence of the face-
AU-expression tuples generated from the AU classifier and
the face generator, and the ground-truth distribution in la-
beled data for all training data. This joint distribution also
includes the inherent AU dependencies. Furthermore, we re-
construct the facial image using the output of the AU clas-
sifier as the input of the face generator, and create AU la-
bels by feeding the output of the face generator to the AU
classifier. We minimize reconstruction losses for all training
data, thus exploiting the informative feedback provided by the
dual tasks. Within-database and cross-database experiments
on three benchmark databases demonstrate the superiority of
our method in both AU recognition and face synthesis com-
pared to state-of-the-art works.

Introduction
Both facial expression and facial action units (AUs) are used
to describe facial behavior. Ekman’s six basic expressions
(i.e., anger, disgust, fear, happiness, sadness, and surprise)
are commonly used to describe facial expressions. There
are also many compound expressions, although their num-
ber and definition is not universally agreed upon. As the
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number and the definitions of AUs are absolutely clear in
Ekman’s facial action coding system (FACS) (Friesen and
Ekman 1978), we focus on AU recognition in this paper.

Compared to expressions, which describe global facial be-
havior, AUs represent subtle local facial changes and are
thus should be annotated by experts. To reduce reliance
on AU labels, we propose a semi-supervised AU recogni-
tion method, which trains AU classifiers from partially AU-
annotated images.

Each AU is controlled by one or more facial muscles.
AUs are closely related due to underlying facial anatomy.
For example, inner brow raiser (AU1) and outer brow raiser
(AU2) almost always appear together, since they are both re-
lated to the muscle group frontalis. Such AU dependencies
exist regardless of whether or not a facial image has been
annotated, and thus can be leveraged for semi-supervised
AU recognition. AUs are also strongly related to expres-
sions. For example, Du et al. (Du, Tao, and Martinez 2014)
found that people usually lower their jaws (AU26) when
they show surprise, while the lip corner puller (AU12) rarely
appears in sad faces. Prkachin et al.(Prkachin 1992) found
that the pain expression is primarily conveyed by six AUs
(AU4, AU6, AU7, AU9, AU10, and AU43). The emotion fa-
cial action coding system (EMFACS) (Friesen and Ekman
1983) lists expression-dependent AU combinations. Both
expression-dependent and expression-independent AU rela-
tions are crucial to learn AU classifier. Expression labels are
easier and less time-consuming to annotate than AU labels.
Therefore, we prefer to learn AU classifiers from partially
AU-annotated facial images with full expression labels.

AU recognition from facial images and face synthesis
from the AU labels are dual tasks with intrinsic probabilistic
connections. Such connections are independent of annota-
tion status. Dual tasks help each other when they are trained
together (Xia et al. 2017). Therefore, we consider the AU
recognition task and the face synthesis task simultaneously,
leveraging their links to improve the results of both tasks.

In this paper, we propose a dual semi-supervised gener-
ative adversarial network (DSGAN) to jointly learn an AU
classifier and a facial image generator. The joint distribution
of the input and the output from the AU classifier should be
the same as that from the generator. This is referred to as
probabilistic duality (Xia et al. 2017). Through adversarial
learning, we force the joint distributions of the inputs and
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outputs from both the classifier and the generator to con-
verge to the ground-truth distribution, which is embedded
in the AU-expression-labeled training data. Such distribu-
tion includes AU dependencies. Furthermore, we reconstruct
facial images by feeding the output of the AU classifier
to the face generator, and minimize the reconstruction loss
for all training data. Similarly, the face generator followed
by the AU classifier forms a loop to reconstruct AUs. We
also minimize the reconstruction loss for all training data.
Thus, we explore the informative feedback provided by two
dual tasks. Supervised losses are further minimized for AU-
labeled training data.

Related Work
Dual Learning
Many learning tasks take dual forms (Xia et al. 2017). For
example, an English-to-French translation task is the dual
task of French-to-English translation task. AU recognition
from facial images and face synthesis from AU labels are
dual tasks. The primal task and the dual task form a closed
loop, generating informative feedback signals that benefit
both tasks.

Dual learning was first proposed by He et al. (He et al.
2016). They proposed dual learning to handle a neural ma-
chine translation problem from unpaired two monolingual
corpora. Specifically, they simultaneously trained English-
to-French and French-to-English translators from monolin-
gual English and French corpora. Sentences of one language
are translated by one translator and reconstructed by the
other. Their proposed dual learning approach evaluates the
similarity between sentences translated from the source lan-
guage to natural sentences in the target language, and the
extent to which reconstructed sentences are consistent with
the original sentences. Dual learning allows two translators
from monolingual English corpora and monolingual French
corpora to be optimized simultaneously.

Unlike the aforementioned unsupervised dual learning,
Xia et al. (Xia et al. 2017) proposed dual supervised lean-
ing (DSL) from paired data. They minimized the empirical
risk of dual tasks under a necessary condition, i.e., proba-
bilistic duality, which means that the joint distribution of the
input and the output of one task should be equal to that of its
dual task. They minimized the distance of the two distribu-
tions. In order to represent the joint distribution of the input
and the output, the marginal distribution of the input must be
estimated. This may lead to errors in the learning process.

Unlike the above two works, which explore dualities at the
data level, Xia et al. (Xia et al. 2018) also proposed model-
level dual learning to explore dualities by sharing partial pa-
rameters of dual models.

Until now, there has not been any research on dual learn-
ing in semi-supervised scenarios. In this paper, we propose a
dual semi-supervised learning approach for AU recognition
from partially AU-labeled facial images. Specifically, we
formulate AU recognition and face synthesis as dual tasks
and train the two tasks simultaneously, utilizing their con-
nections. We leverage adversarial loss to force convergence
between the distributions of the input and the output from

the AU classifier and the facial image generator, and the
ground-truth-labeled training data. Furthermore, we intro-
duce two reconstruction losses for all training data to utilize
the constraints of one task for its dual task, and two super-
vised losses for labeled training data.

Unlike DSL, which requires fully labeled training data,
the proposed dual semi-supervised learning scenario only
needs partially labeled training data. Instead of minimiz-
ing the distance of two joint distributions directly, which
requires the estimation of the marginal distribution of the
input, the proposed approach uses an adversarial strategy to
exploit the probabilistic duality, thus avoiding the estimation
of marginal distribution.

AU Recognition
A comprehensive survey of work on AU recognition can be
found in (Martinez et al. 2017). In this section, we focus
on works studying AU recognition training from partially
AU-labeled images. Current semi-supervised AU recogni-
tion work can be categorized into two approaches accord-
ing to the availability of expression labels: semi-supervised
AU recognition with the help of expressions, and semi-
supervised AU recognition without expressions.

For semi-supervised AU recognition scenarios without
expressions, label smoothness or AU dependencies are ex-
ploited to handle missing AUs. For example, Song et al.
(Song et al. 2015) developed a Bayesian group-sparse com-
pressed sensing (BGCS) model to encode sparsity and
co-occurrence structure of AUs for AU recognition. This
method can be naturally extended to semi-supervised sce-
narios by marginalizing over the unobserved values as part
of the inference procedure. Wu et al. (Wu et al. 2015) pro-
posed a multi-label learning method with missing labels
(MLML). They handled the missing labels by enforcing con-
sistency between the predicted and provided labels, as well
as the local smoothness among the label assignments. Wu et
al. (Wu et al. 2017) proposed a deep AU recognition network
from partially AU-annotated data. They utilized a restricted
Boltzmann machine (RBM) model to capture AU label dis-
tribution from given AU labels. The objective is to simul-
taneously maximize the log likelihood of the AU classifier
with regard to the learned label distribution while minimiz-
ing the error between predicted AUs and ground-truth AUs
for AU-labeled samples.

Expression-dependent AU dependencies are exploited to
complement missing AUs for semi-supervised AU recogni-
tion methods enhanced by expressions. Wang et al. (Wang,
Gan, and Ji 2017) constructed a Bayesian network (BN) to
capture the relations among facial expressions and AUs as
well as relations among AUs, and then use expression labels
as hidden knowledge to complement the missing AU labels.
In the testing phase, AU labels are inferred by combining
the AU-expression relationships encoded in the BN and the
AU measurements obtained from a basic classifier (SVM).
Ruiz et al. (Ruiz, Van de Weijer, and Binefa 2015) proposed
the semi-hidden task learning (SHTL) method for AU recog-
nition from partially AU-labeled images and an extra-large
set of facial images labeled only with expressions. Their ap-
proach uses an AU classifier from facial images and an ex-
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Figure 1: The framework of the proposed dual semi-supervised GAN, consisting of three modules: a discriminatorD, a classifier
C, and a generator G.

pression classifier from AUs. Weak supervisory information
from expression labels can be propagated to the AU clas-
sifier via the expression classifier for samples lacking AU
annotations. In their approach, the expression classifier is
trained from the expression labels and the pseudo-AU la-
bels sampled according to relations between expressions and
AUs. Wang et al. (Wang, Peng, and Ji 2018) proposed an
RBM prior (RBM-P) model to learn the joint distribution
of all considered AUs conditioned on each expression, with
the pseudo-AU labels sampled from the summarized domain
knowledge. In this approach, the AU classifiers are trained
by maximizing the log likelihood of the AU classifier with
regard to the learned expression-conditioned AU label prior
while minimizing the supervised loss from partially labeled
data. Peng et al. (Peng and Wang 2018) summarized the do-
main knowledge and sampled pseudo AU labels as Wang
et al. (Wang, Peng, and Ji 2018) did. Then, they minimized
the distance between the distribution of the predicted AU
labels and the pseudo-AU labels through a recognition ad-
versarial network (RAN). For AU-labeled samples, an extra
supervised loss is incorporated into the full objective. Zhang
et al. (Zhang et al. 2018) proposed a multiple AU classi-
fier learning method (LP-SM) that incorporates the domain
knowledge (represented as the inequality relations among
the AU probabilities) into the objective as the constraints.
They simultaneously learned multiple AU classifiers and AU
labels of training samples through an iterative optimization
algorithm. The AU labels in the loss of AU classifier are
ground truth AU labels for AU-labeled samples and esti-
mated AU labels for samples without AU annotations.

The above works demonstrate the potential for AU depen-
dencies to improve semi-supervised AU recognition. How-
ever, none of them considers the connections between AU
recognition and face synthesis. The primary task and its dual
task can provide effective information to each other, since
they have intrinsic probabilistic connections. Therefore, we
propose a semi-supervised AU recognition method that
leverages both the inherent AU dependencies and imbedded
connections of dual tasks.

Compared to related works, our contributions are as fol-
lows: (1) We are the first to leverage face synthesis to

improve AU recognition. (2) We propose a dual semi-
supervised GAN for AU recognition.

Problem Statement
Let Ω = T ∪ U denote the training set, where T =
{xi, yi,Eixy}Ni=1 contains N training samples with feature
vectors x ∈ Rd, expression label Exy and AU labels y ∈
{1, 0}l, d is the dimension of x and l is the number of AUs.
U = {xj ,Ejx}Mj=1 contains M training samples annotated
with expression labels only. Let X = {xi,Eix}Ni=1 store all
feature vectors in T and their corresponding expression la-
bels, and B = {yi,Eiy}Ni=1 store all AU labels in T and
their corresponding expression labels. A = X ∪ U stores
all training feature vectors and their corresponding expres-
sion labels. Given T and U , our goal is to jointly train an
AU classifier C : Rd → {1, 0}l and a facial image genera-
tor G : {1, 0}l → Rd. Thus we can explore the connections
between the two tasks to complement the missing AU labels
and boost the performance of both tasks. We use facial fea-
ture points as feature vectors x , which is the input of AU
classifier and the output of face generator, to represent facial
image.

Proposed Approach
Figure 1 illustrates the framework of our proposed ap-
proach. Specifically, sample {x,Ex} is sampled from A.
Through the AU classifier C, we get the predicted AU la-
bels ŷ = C(x). Similarly, sample {y,Ey} is sampled from
B. Through the facial image generator G, we get the gener-
ated feature vector x̂ = G(y, z), where z ∼ pz(z) is random
noise. The predicted AU label ŷ is inputted into the gener-
ator G, and the output G(ŷ, z) is the reconstruction of x.
Similarly, the generated feature x̂ is inputted into classifier
C, and the outputC(x̂) is the reconstruction of y. According
to the above procedure, three kinds of losses are considered:

Adversarial loss. As shown in Figure 1, the pseudo
feature-AU-expression tuples {x, ŷ,Ex} and {x̂, y,Ey}
generated byC andG respectively are regard as “fake” sam-
ples and are sent to discriminator D for judgement. D also
samples true data {x, y,Exy} from T as “real” samples. To
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Algorithm 1 The training of dual semi-supervised GAN in AU recognition and face synthesis
Require: Training set T , A, and B, max number of training step K, batch size s, hyper parameters α, λc, λcl, λg , and λsup.
Ensure: Classifier C and generator G

1: Randomly initialize parameters θd, θc, and θg of discriminator D, classifier C, and generator G, respectively.
2: for k = 1, 2, ...,K do
3: Sample mini-batch of s samples {(xdi , ydi ,Exydi )}si=1 from T , sample mini-batch of s samples {(xci ,Exc

i
)}si=1 from A,

sample mini-batch of s samples {(ygi ,Eygi )}si=1 from B, sample mini-batch of s noise samples {zi}si=1 from pz(z).
4: Update discriminator D by descending its gradient:

∇θd

[
−1

s

s∑
i=1

(
logD(xdi , y

d
i ,Exydi ) + α log(1−D(xci , C(xci ),Exc

i
)) + (1− α) log(1−D(G(ygi , zi), y

g
i ,Eygi ))

)]
5: Sample mini-batch of s samples {(xci ,Exc

i
)}si=1 from A, s1(s1 ≤ s) of which are annotated with AU labels,

{(xcj , ycj ,Exc
j
)}s1j=1, sample mini-batch of s noise samples {zi}si=1 from pz(z).

6: Update classifier C by descending its gradient:

∇θc

[
− 1

s

s∑
i=1

logD(xci , C(xci ),Exc
i
) +

λc
s

s∑
i=1

||xci −G(C(xci ), zi)||1 +
λcl
s1

s1∑
j=1

CE(C(xcj), y
c
j)

]

7: Sample mini-batch of s samples {(xgi , y
g
i ,Eygi )}si=1 from T , sample mini-batch of s noise samples {zi}si=1 from pz(z).

8: Update generator G by descending its gradient:

∇θg

[
−1

s

s∑
i=1

logD(G(ygi , zi), y
g
i ,Eygi ) +

λg
s

s∑
i=1

CE(C(G(ygi , zi)), y
g
i ) +

λreg
s

s∑
i=1

||xgi −G(ygi , zi)||1

]
9: end for

explore the duality between the two tasks and the dependen-
cies among facial features, AUs, and expressions, we reduce
the distance between the joint distribution of the generated
pseudo feature-AU-expression tuples and the distribution of
ground-truth tuples through the following adversarial loss:

Ladv =E(x,y,Exy)∼T [logD(x, y,Exy)]+

αE(x,Ex)∼A[log(1−D(x,C(x),Ex))]+

(1− α)E(y,Ey)∼B,z∼pz(z)[log(1−D(G(y, z), y,Ey))]
(1)

Where α ∈ (0, 1) weighs the importance of the distri-
bution of pseudo-data generated by C in the mixed distri-
bution. We set α = 0.5 in our experiments to balance the
distributions of pseudo-tuples generated from C and G. The
discriminator D tries to maximize this loss, while classifier
C and generator G try to minimize it. Since the objectives
for D, C, and G are different, we define Ldadv = Ladv , and
the Lcadv for C and Lgadv for G as follows:

Lcadv = −E(x,Ex)∼A[logD(x,C(x),Ex)] (2)

Lgadv = −E(y,Ey)∼B,z∼pz(z)[logD(G(y, z), y,Ey)] (3)
Reconstruction loss. The AU recognition task and the

face synthesis task emerge as dual forms. Considering the
constraints of the dual task on the primary task, we apply a
reconstruction loss (Yi et al. 2017; Zhu et al. 2017) to both
AU classifier C and facial image generator G. As shown in
Figure 1, the reconstruction losses forC (Lcrec) andG (Lgrec)
are as follows:

Lcrec = E(x,Ex)∼A,z∼pz(z)[||x−G(C(x), z)||1] (4)

Lgrec = E(y,Ey)∼B,z∼pz(z)[CE(C(G(y, z), y)] (5)
We adopt L1 distance for Lcrec, and CE in Lgrec represents

cross-entropy loss, since the AU labels are binary vectors.
Standard supervised loss. Since all samples in T are

annotated with AU labels, standard supervised loss should
be included in the whole objective for AU-labeled data
{x, y,Exy}. The supervised losses for C (Lcl) and G (Lreg)
are defined as:

Lcl = E(x,y,Exy)∼T [CE(C(x), y)] (6)

Lreg = E(x,y,Exy)∼T,z∼pz(z)[||x−G(y)||1] (7)
Full objective. Finally, the objectives forD,C, andG are

respectively written as:

LD = −Ldadv
LC = Lcadv + λcLcrec + λclLcl
LG = Lgadv + λgLgrec + λregLreg

(8)

Where λc and λg are weight coefficients of reconstruction
loss for C and G, respectively, and λcl and λreg are weight
coefficients of supervised loss for C and G, respectively. As
in the training procedure of Vanilla GAN (Goodfellow et al.
2014), D, C, and G are updated alternately: C and G are
fixed, D is updated, D and G are fixed, C is updated, D and
C are fixed, G is updated. The process repeats until conver-
gence. The training procedure is shown as Algorithm 1.

DiscriminatorD, classifierC, and generatorG are param-
eterized through a four-layer feedforward network. We im-
plement the proposed method using the TensorFlow frame-
work. Any gradient-based learning rule could be used to
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update parameters for the optimization method. We use the
Adam (Kingma and Ba 2014) algorithm to optimize D, C,
and G in our experiments. Other hyper parameters, such as
weight coefficients λc, λcl, λg , and λsup, training step K,
and batch size s, vary by databases, and are determined by a
validation set.

Compared to other recent works of GAN variations, Du-
alGAN (Yi et al. 2017) is the most similar to the proposed
DSGAN, although there are some important differences.
To handle dual generative tasks, DualGAN consists of two
GANs. DualGAN is trained from unpaired data of two do-
mains. Through adversarial learning, DualGAN makes the
distribution of the generated data from one domain converge
to the distribution of the true data of another domain. It uses
the reconstruction loss to utilize the constraint of one task
to its dual task. Unlike DualGAN, which handles unpaired
data of two domains, the proposed DSGAN handles paired
data for partially labeled samples. It considers the joint dis-
tribution of the two domains (combined with expression la-
bel), but not the marginal distribution of one domain. There-
fore, there is only one discriminator in our framework but
not two discriminators as DualGAN has. We also consider
reconstruction loss as DualGAN does. In addition, DSGAN
uses the annotations of labeled samples to provide supervi-
sory information during learning.

Experiments
Experimental Conditions
Three benchmark databases are used in our experiments.
The Extended Cohn-Kanade database (CK+) (Lucey et
al. 2010) is a posed expression database from which we
select 309 apex frames from 309 sequences of 106 sub-
jects that are annotated with both AU and one of six ba-
sic expressions. Following the same AU selecting strategy
as Peng et al.’s work (Peng and Wang 2018). We consider
12 AUs (AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU12,
AU17, AU23, AU24, and AU25) with occurrence frequen-
cies greater than 10%. The MMI database (Pantic et al.
2005) is another posed expression database. We use 171
apex frames from 171 sequences of 27 subjects. Like the
CK+ database, frames are annotated with both AUs and one
of six expressions. We consider 13 AUs (AU1, AU2, AU4,
AU5, AU6, AU7, AU9, AU10, AU12, AU17, AU23, AU25,
and AU26) with occurrence frequencies greater than 10%.
The UNBC-McMaster Shoulder Pain Expression Archive
database (Pain) (Lucey et al. 2011) is a spontaneous database
containing 200 video sequences from 25 subjects perform-
ing “pain” or “no pain” expressions. Prkachin and Solomon
Pain Intensity (PSPI) (Prkachin and Solomon 2008) is used
to evaluate the pain intensity. Similar to (Peng and Wang
2018), frames with PSPI>4 are regard as “pain”, and frames
with PSPI=0 are regard as “no pain”. We select all pain and
no pain frames (7319 frames in total) from 30 sequences of
17 subjects in which pain frames are present. We consider
the six AUs related to pain expression, i.e., AU4, AU6, AU7,
AU9, AU10, and AU43.

We use the feature points provided by the database con-
structers as features on the CK+ and Pain databases. Fea-

Table 1: Within database experimental results of semi-
supervised AU recognition with five missing rates on the
three databases. (Bold numbers indicate the best perfor-
mance.)

methods 0.1 0.2 0.3 0.4 0.5

CK+

MLML .6152 .6115 .6052 .6278 .6515
BGCS .7205 .7178 .7117 .7032 .6957
DSGANne .8141 .8018 .7923 .7844 .7824
BN .7738 .7835 .7837 .7817 .7808
SHTL .5997 .5958 .5931 .5957 .5940
RBM-P .8186 .8148 .7948 .8053 .7868
RAN .8114 .8059 .7986 .7993 .7916
DSGAN .8287 .8184 .8057 .8015 .7917
DSGANnr .8131 .8062 .8032 .7929 .7838

MMI

MLML .5063 .4806 .4793 .4651 .4323
BGCS .4667 .4559 .4491 .4350 .4466
DSGANne .5672 .5583 .5489 .5349 .5218
BN .4897 .4792 .4725 .4659 .4378
SHTL .5437 .5331 .5332 .5317 .5301
RBM-P .5489 .5348 .5355 .5344 .5312
RAN .5510 .5392 .5405 .5328 .5299
DSGAN .5732 .5609 .5550 .5464 .5373
DSGANnr .5634 .5519 .5467 .5368 .5264

Pain

MLML .2101 .2222 .1786 .1566 .1461
BGCS .4700 .4621 .4787 .4647 .4497
DSGANne .5145 .5002 .4970 .5026 .4939
BN .2654 .3027 .2505 .2445 .1831
SHTL .3266 .3184 .3091 .3005 .2929
RBM-P .5288 .5155 .5101 .5087 .5020
RAN .5072 .5034 .4955 .4854 .4724
DSGAN .5368 .5279 .5187 .5161 .5195
DSGANnr .4992 .4965 .4784 .4535 .4355

ture points are not provided on the MMI database, so we
extracted them with IntraFace (De la Torre et al. 2015). We
use 49, 49, and 66 feature points on the CK+, MMI, and Pain
databases, respectively. We normalize feature points through
an affine transformation to make the eye centers fall on the
appropriate positions for all images and use Gaussian nor-
malization for each feature dimension. We evaluate our re-
sults using average F1 score (↑, the higher the better) of all
AUs for AU recognition and root mean square error (RMSE)
(↓, the lower the better) for facial feature synthesis.

We conduct within-database experiments via five fold
subject-independent cross-validation and cross-database ex-
periments. To simulate semi-supervised scenarios, we ran-
domly exclude AU labels with certain probabilities, i.e., 0.1,
0.2, 0.3, 0.4, and 0.5, and conduct each experiment five
times. The proposed method employs expression labels as
auxiliary information to enhance the learning of the dual
tasks. We compare the proposed method to a method that
does not use the help of expression labels, referred to as
DSGANne. This method only considers the joint distribu-
tion of features and AUs in Equations 1, 2, and 3.

In addition, we compare the proposed method with re-

8831



lated works. For AU recognition, the proposed DSGAN and
DSGANne are compared to BGCS, MLML, BN, SHTL,
RBM-P, and RAN on within-database experiments, and to
SHTL, RBM-P, and RAN on cross-database experiments. To
retain experimental integrity, we copy the results of RBM-
P, SHTL, BGCS, MLML, and BN from (Wang, Peng, and
Ji 2018), as their experimental conditions are identical to
ours. Since Zhang et al. (Zhang et al. 2018) conducted semi-
supervised experiments on the CK+ database with a missing
rate of 0.5 only and Wu et al. (Wu et al. 2017) did not con-
duct experiments on the CK+, MMI, and Pain databases, we
do not compare our results to theirs.

For face synthesis, we compare the proposed method with
the discriminative RBM (DRBM) (Larochelle and Bengio
2008), in which the visible layer contains feature and AU la-
bel vectors. We infer facial features from the input AU labels
through the Gibbs sampling method.

Experimental Results and Analyses of
Within-Database Experiments
The within-database experimental results of the semi-
supervised AU recognition task on the three databases are
shown in Table 1. Among the first eight methods, the first
three (i.e., MLML, BGCS, and DSGANne) do not take ad-
vantage of expressions; the latter five learn the AU classifier
with the help of expressions. As for last method, we will an-
alyze it in later section(Evaluation of Reconstruction Loss).
From Table 1, we can obtain the following observations.

First, on the whole, methods considering expressions per-
form better than methods ignoring expression labels. For ex-
ample, DSGAN performs better than DSGANne in all cases,
indicating that expression is explicitly helpful for AU recog-
nition, since expression and AUs are strongly related. When
AUs are missing, expression labels can provide weak super-
visory information.

Second, DSGANne performs better in all scenarios than
the other two methods that don’t take expression into ac-
count (MLML and BGCS). For example, when the miss-
ing rate is 0.1, the performance of DSGANne on the CK+
database is 12.99% and 32.33% higher than that of BGCS
and MLML, respectively, which demonstrates the superi-
ority of the proposed method. Although expression labels
are not present, the joint distribution of features and AUs
captured from partial samples with ground-truth AU labels
can provide weak supervisory information for samples with-
out AU annotations. BGCS and MLML do not utilize the
distribution to constrain AU predictions of training sam-
ples when samples lack AU annotations. More importantly,
BGCS and MLML only consider the AU recognition task,
while DSGANne considers and trains the face synthesis task
and AU recognition simultaneously, thus achieving better
performance.

Third, compared to BN, SHTL, RBM-P, and RAN, the
proposed DSGAN performs best in most cases. For exam-
ple, when the missing rate is 0.1, the performances of DS-
GAN are 17.05%, 5.43%, 4.43%, and 4.03% higher than
that of BN, SHTL, RBM-P, and RAN respectively, demon-
strating the effectiveness of DSGAN. BN can only explore
pairwise dependencies among AUs, while DSGAN consid-
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Figure 2: Cross-database experiment results of semi-
supervised AU recognition.

ers the joint distribution of features, AUs, and expression,
capturing global dependencies among all AUs. Since SHTL
trains the AU recognition task and expression classification
task separately, any expression classifier errors propagate to
the AU classifier. We consider both tasks in our work and
train them simultaneously. Both RBM-P and RAN only con-
sider the joint distribution of AUs conditioned on expres-
sion. Our method realizes the relations between features and
AU labels and considers the joint distribution of features,
AUs, and expression. Furthermore, all four methods only
handle the AU recognition problem. Our model recognizes
that the intrinsic connections between AU recognition and
face synthesis are very helpful for learning both tasks. We
optimize the dual tasks to achieve better performance.

Finally, when comparing DSGANne to the four methods
considering expression (i.e., BN, SHTL, RBM-P, and RAN),
we find that the proposed DSGANne performs better than
some of them. Specifically, DSGANne performs better than
BN and SHTL on the CK+ database; better than all four
methods on the MMI database; and better than BN, SHTL,
and RAN on the Pain database. This further demonstrates
that the proposed method successfully exploits the duality
between the two tasks to enhance the learning of the AU
classifier.

Experimental Results and Analyses of
Cross-Database Experiments
The results of cross-database experiments are shown in Fig-
ure 2. When the methods are trained on the CK+ and MMI
databases (the first two columns of Figure 2), the proposed
DSGAN performs best in most cases. Especially for the ex-
periments that test on the Pain database, which are diffi-
cult scenarios for AU recognition since the emotion setting
of the Pain database is different from that of the CK+ and
MMI databases, the better performances of DSGAN demon-
strate the better generalization ability of DSGAN. Although
DSGANne is not assisted by expressions, it takes full advan-
tage of the duality between face synthesis and AU recogni-
tion task, thus still performing better than SHTL in all cases.

When the methods are trained on the Pain database (the
last column of Figure 2), the proposed method performs
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Table 2: Comparison to state-of-the-art fully supervised
methods.

CK+ MMI UNBC

MC-LVM .7707 - .6345
SVM-HMM - .6712 -
HRBM .7147 - .5942
FFD - .6652 -

DSGAN .7917 .5373 .5195

poorly. DSGAN is inferior to SHTL in two scenarios and in-
ferior to RBM-P when testing on the CK+ database. When
training on the Pain database, SHTL achieves the best per-
formance since it uses not only the partially available AU
labels in the Pain database, but also expression labels in an
extra-large facial image database with six basic emotion set-
tings. Furthermore, we only consider six AUs on the Pain
database. This may not be enough AUs for the face synthe-
sis task, so its assistance is not significant.

Comparisons to Fully-Supervised Methods
We also compare the proposed semi-supervised method
(with 0.5 missing rate) to fully-supervised methods. On
the CK+ and Pain databases, we compare our method to
MC-LVM (Eleftheriadis, Rudovic, and Pantic 2015) and
HRBM (Wang et al. 2013). On the MMI database, we com-
pare DSGAN to SVM-HMM (Valstar and Pantic 2012) and
FFD (Koelstra, Pantic, and Patras 2010). The results of
HRBM are from (Eleftheriadis, Rudovic, and Pantic 2015).
The results are shown in Table 2. Since the experimental
conditions of these methods are different from ours, these
comparisons are only for reference.

Table 2 shows that DSGAN performs worse than other
methods on the MMI and Pain databases. This is expected,
since only half the samples in our training set are annotated
with AU labels, while the other four methods use fully AU-
labeled training samples. Supervisory information of AU la-
bels is very helpful tool for learning the AU classifier. It’s
surprising that DSGAN performs better than MC-LVM and
HRBM on the CK+ database. This demonstrates the effec-
tiveness of the proposed method for leveraging the face syn-
thesis task and expression labels.

Evaluation of Reconstruction Loss
In order to evaluate the contribution of reconstruction loss,
we remove the reconstruction loss in the full objective
(DSGANnr) by setting λc = λg = 0. We then conduct
experiments on the three databases and compare with DS-
GAN. The results of DSGANnr are shown in Table 1, which
shows that DSGANnr performs worse than DSGAN in all
scenarios. The reconstruction loss reflects the constraint of
the dual task to the primary task. When reconstruction loss is
removed, AU recognition performance typically decreases.
The deterioration tends to be gradual, particularly on the
Pain database. This indicates that the role of reconstruction
losses is more important as the number of missing AU labels
increases.

Table 3: RMSE of DRBM and the proposed methods for face
synthesis.

CK+ MMI Pain

DRBM 1.3866 1.8061 3.0192
DSGAN 0.9687 0.9866 2.5238
DSGANne 1.0002 1.0056 2.5563
DSGANnr 1.0103 1.0177 2.5476

Experimental Results and Analyses of Facial Image
Synthesis
In this section, we evaluate the performance of the face
generator with RMSE. Table 3 lists the results of the pro-
posed methods (DSGAN, DSGANne, and DSGANnr) with
missing rate set to 0.2, and the results of compared method
(DRBM) on the three databases. From Table 3, we can ob-
tain the following observations. First, the proposed meth-
ods all perform better than DRMB, even though DRBM
uses fully AU-labeled data. DSGAN performs best on the
three databases, demonstrating the superiority of the pro-
posed method for face synthesis tasks. We explore the du-
ality between two tasks and utilize the AU recognition task
to enhance the face synthesis task. The better performance
of DSGAN compared to DSGANne, and DSGANnr demon-
strates the contributions of expression labels and recon-
struction losses. Second, the methods perform best on the
CK+ database. The performances on the MMI database are
slightly worse than that on the CK+ database, but the per-
formances on the Pain database are poorest by far. This may
be because fewer AUs and more feature points are consid-
ered on the Pain database. Six AUs may be insufficient to
generate 66 feature points.

Conclusion
In this paper, we propose a novel dual semi-supervised
method (DSGAN) to handle AU recognition and face syn-
thesis simultaneously. We consider the joint distribution of
features, AUs, and expression, and propose an adversarial
framework to explore the global dependencies among them
and the probabilistic duality between two tasks. Expression
labels can be used as auxiliary information to improve the
performances of the learning system, and few framework
changes are needed when expression labels are unavailable.
Two reconstruction losses are leveraged to utilize the con-
straint of dual task to primary task. Standard supervised
losses are added to the full objective for samples with AU an-
notations. Our method achieves better results than state-of-
the-art methods on both within-database and cross-database
experiments, demonstrating its superiority.
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