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Abstract

With the breakthrough of deep learning, lip reading technolo-
gies are under extraordinarily rapid progress. It is well-known
that Chinese is the most widely spoken language in the world.
Unlike alphabetic languages, it involves more than 1,000 pro-
nunciations as Pinyin, and nearly 90,000 pictographic charac-
ters as Hanzi, which makes lip reading of Chinese very chal-
lenging. In this paper, we implement visual-only Chinese lip
reading of unconstrained sentences in a two-step end-to-end
architecture (LipCH-Net), in which two deep neural network
models are employed to perform the recognition of Picture-
to-Pinyin (mouth motion pictures to pronunciations) and the
recognition of Pinyin-to-Hanzi (pronunciations to texts) re-
spectively, before having a jointly optimization to improve
the overall performance. In addition, two modules in the
Pinyin-to-Hanzi model are pre-trained separately with large
auxiliary data in advance of sequence-to-sequence training to
make the best of long sequence matches for avoiding ambi-
guity. We collect 6-month daily news broadcasts from China
Central Television (CCTV) website, and semi-automatically
label them into a 20.95 GB dataset with 20,495 natural
Chinese sentences. When trained on the CCTV dataset, the
LipCH-Net model outperforms the performance of all state-
of-the-art lip reading frameworks. According to the results,
our scheme not only accelerates training and reduces over-
fitting, but also overcomes syntactic ambiguity of Chinese
which provides a baseline for future relevant work.

Introduction
Lip reading is the task of decoding what is being said from
the movement of a speaker’s mouth, which plays an impor-
tant role in speech comprehension and human communica-
tion. It is a proverbially difficult skill, and very challeng-
ing for humans, especially applied to the Chinese language.
Chinese lip reading actuations, besides the face, lip, tongue
and teeth, are actually latent and hard to disambiguate. For
example, it is intrinsically ambiguous at the Pinyin letter
level - different letters share exactly the same lip shape (e.g.
‘m’ and ‘f’, ‘p’ and ‘b’). However, these ambiguities can be
largely solved when using a language model to capture the
context and inherent relationship in a sentence.

Automatic lip reading has enormous practical applica-
tions: speech recognition in noisy environment, silent dic-
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tation in public places, improved hearing, silent-movie pro-
cessing, and so on. Now, such automation is promising due
to the progress across computer vision tasks: the application
of deep neural network models and the use of large datasets
for training. Recently, proposed deep learning architectures
surpass professional lip readers by a large margin, at least for
the constrained vocabulary defined by the database (Chung
et al. 2017) (Assael et al. 2016).

Existing lip reading approaches can be classified into two
categories according to their modeling units: (1) words-
based (Wand, Koutnik, and Schmidhuber 2016) and (2)
phonemes or visemes-based (Assael et al. 2016). A phoneme
is the smallest distinguishable unit of sound which continu-
ously form a spoken word and a viseme is its corresponding
visual equivalent. The former approach is considered more
related to tasks of single word detection, recognition and
classification, while the latter to large vocabulary continuous
speech recognition and sentence-level classification. How-
ever, the majority of related works focus on English or other
languages, as opposed recognising to Chinese sentence-level
sequences.

In this paper, we present LipCH-Net, which is to the
best of our knowledge, the first unconstrained sentence-level
Chinese lip reading model. Linguistically, Chinese is not
English. In English, all words are made up of 26 letters,
and the exact word can be roughly determined according
to its pronunciation. On the contrary, the elements of Chi-
nese pronunciation are composed of 23 initials, 24 vowels
and 4 kinds of intonation marks. On average, each syllable
corresponds to almost 3-90 different Hanzi. Moreover, there
exist homophones and polyphones for most Hanzi. Accord-
ing to a survey (Tian 2012), Chinese is the language with the
largest information entropy, which means each basic unit in
Chinese carries much more information than any other lan-
guages. Thus, extracting discriminative features from this
highly ambiguous language is a critical but challenging task
for Chinese lip reading.

Based on the distinct characteristics of Chinese, we imple-
ment Chinese lip reading in a two-step architecture, in which
two different neural models are employed to solve the recog-
nition of Picture-to-Pinyin and Pinyin-to-Hanzi respectively
before being jointly optimized to improve the overall per-
formance finally. During experiments, we tried many tricks
(such as scheduled sampling, attention mechanism, and so
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on) to enhance the robustness and overall performance of
LipCH-Net. The empirical results show that our strategies
can accelerate training and greatly overcome intrinsic ambi-
guity of Chinese.

We totally spent 15 days to collect and label 6-month
news with 20,495 Chinese sentences from CCTV website
(the most famous daily news TV program in China). During
experiments, LipCH-Net can achieve 50.2% and 58.7% ac-
curacies in sentence-level and Pinyin-level task respectively,
which surpass the results of all state-of-the-art lip reading
frameworks trained on CCTV dataset.

Our main contributions are as: (1) We are the first to solve
Chinese lip reading which is harder than that of English or
other languages. Our experimental results provide a base-
line for future related Chinese lip reading work. (2) The pro-
posed LipCH-Net model takes lip regions alone as input and
transcribes them to Hanzi sequence, without audio auxiliary
information. (3) We collect a Chinese dataset for lip reading
including over 20,000 natural sentences from CCTV web-
site, which has already been a useful resource for this com-
munity. In addition, we are constantly enlarging and com-
pleting it. The data will be released as a resource for evalua-
tion.

Related work
Audio-Visual Speech Recognition (AVSR): The fields of
lip reading and AVSR are closely associated. (Mroueh,
Marcheret, and Goel 2015) applies a deep neural network to
classify phoneme using an audio-visual dataset. (Noda et al.
2015) applies a pre-train CNN to extract visual features and
mHMMS to do fusion and classification. As with lip read-
ing, a number of efforts have been made to develop AVSR
to word recognition application.

Lip Reading: Before the advent of deep learning,
most lip reading works are based on hand-extracted fea-
tures, which are usually modeled by HMM-based pipeline
(Potamianos et al. 2003). Optical flow, SVM classifiers and
active appearance models have also been proposed. The tra-
ditional lip reading literatures are too vast to adequately
cover, so we refer readers to (Zhou et al. 2014) for an an-
alytic review.

More recent deep learning methods either for engineer-
ing ‘deep’ features (Thangthai et al. 2015) or for making
end-to-end frameworks. In (Huang and Kingsbury 2013),
Deep Belief Networks are applied for audio-visual recogni-
tion, which generate 21% relative improvement over a base-
line audio-visual GMM/HMM system. In (Petridis and Pan-
tic 2017), deep bottleneck features (DBF), which are ex-
tracted from deep autoencoder, are concatenated with dis-
crete cosine transform (DCT) features, and the overall ar-
chitecture is trained jointly with a Long Short-Term Memory
(LSTM) classifier. (Wand, Koutnik, and Schmidhuber 2016)
proposes a fully LSTM framework with HOG input fea-
tures to recognise short phrases, which achieves superior re-
sults compared to traditional methods on the GRID dataset.
(Chung and Zisserman 2016) trains a two-stream ConvNet
architecture to learn mouth features, which are taken as in-
puts to LSTM. Their work is to make an audio-visual max-
margin matching for word classification, which is far from a

Figure 1: Examples of Chinese phrase, Pinyin and Hanzi.
Here, we use different colored boxes to represent them: Yel-
low box: intonation mark; Green box: Pinyin sequence; Blue
dotted box: single Hanzi.

lip reading task. (Assael et al. 2016) applies a spatiotempo-
ral CNN with Bi-LSTM and Connectionist Temporal Classi-
fication (CTC) (Graves and Gomez 2006). Their prediction
is speaker-independent performance and limited on the con-
strained grammar of 51 word vocabulary, which is not en-
tirely natural sentence-level work. (Chung et al. 2017) pro-
poses WLAS network, which uses audio signal to augment
English lip reading results. Their best character and word
recognition results are 60.5% and 49.8% when only using
lip pictures for input.

Characteristics of Chinese
Overview. In this section, we give our deep consideration
of particular characteristics of the Chinese language before
modeling Chinese lip reading.

The Chinese character, usually called Hanzi, is a visual
symbol of the unity of “shape, sound and meaning”. A single
Hanzi possesses abundant information and signifies a certain
meaning only when grouped with others to form a phrase.
For example, the phrase in Fig.1, composed of three separate
Hanzi in blue dotted box, indicates the specific meaning of
“Chinese people” in English. The same Hanzi can combine
with different others to express different meanings. “zhōng”
can join with “Jiān” or “Děng” together to form new phrases
for expressing “middle” and “medium” respectively.

Pinyin: Chinese Pinyin (phonetic symbol of Chinese
character) has been used as a tool to assist the pronunciation
of Hanzi since 1955. It is similar to the phonetic symbol in
English, but more different from them. Pinyin is consisted of
three basic components: initial, vowel and intonation mark.
Removing irregular pronunciations and adding 4 kinds of in-
tonation marks, the total number of Pinyin is nearly 1,000.
Nevertheless, there are more than 90,000 Hanzi in Chinese,
and 3,000 of them are most used.

Syllable: Syllable is the basic unit of language that can be
distinguished through hearing. In Chinese, each individual
Hanzi is an independent syllable symbol. As shown in Fig.1,
three different Hanzi in blue dashed box represent the syl-
lables of “zhōng”, “guó”, “rén” respectively. Whereas, one
identical syllable (i.e. pronunciation) corresponds to at least
3 but at most 120 Hanzi. In addition, homophones account
for more than 85% among all Hanzi (91,251).

With so many pronunciations and Pinyin possibilities, as
well as polyphones and homophones, Chinese is an ambigu-
ous language with its unique characteristics. To overcome
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Figure 2: The Picture-to-Pinyin model. The input is contin-
uous lip-pictures which will be transformed into gray-scale
images at first. There are 5 convolutional layers (96, 256,
512, 512, 512) with 3x3 kernels and batch normalization are
utilized in each ConvNet layer.

the ambiguity in translating sentence, we split Pinyin-to-
Hanzi model into two modules and use large additional data
to pre-train them with tricks separately. Instead of improv-
ing the recognition of single Hanzi, this strategy can make
the best of long sequence matches with natural broken sen-
tences and increase the robustness of the model.

LipCH-Net
Picture-to-Pinyin model
Different from other image recognition tasks, lip reading
should be able to capture the slight changes in mouth pic-
tures. Fig. 2 displays the configuration of our Picture-to-
Pinyin model. It is a combination of convolutional, residual
and LSTMs networks with CTC loss.

• ConvNet: First set of the model utilizes convolutional lay-
ers to the preprocessed lip frames. Convolutional layers
can capture short-dynamics of the lip region. It is based
on the VGG-M model (Chatfield et al. 2014), which has
a fairly good classification performance on ImageNet and
is fast to train during experiments.

• ResNet: The building blocks of residual network (He et
al. 2016) are composed of two convolutional layers with
BN and ReLU. Its skip connections facilitate information
propagation. The output of ResNet (modified to 14-layer)
is a single dimensional tensor each timestep. We did not
employ pre-trained models, because they are optimized
for specific diverse tasks.

• LSTM: We stack 2-layer LSTMs to absorb the features
generated from ResNet. For its optimization criterion,
three methods are tried during experiments. The first
method is to add a softmax layer after the LSTMs out-
put, when the overall sequence is encoded by the LSTMs.
It is feasible to propagate the errors back to the first
timestep of the sequence during backpropagation. The
second method is to make the criterion for each timestep,
which is similar to the application of LSTMs in speech
recognition. Instead of viseme labels, the Pinyin label is
repeated at every 3 timestep. The last approach is to apply
CTC loss. After experimentation with three approaches,

our conclusion is that the last method leads to much
higher Pinyin accuracy.

• CTC: According to (Maas et al. 2015), CTC loss can
eliminate the need for aligning input training data to tar-
get outputs. It is utilized in Picture-to-Pinyin to automat-
ically segment pictures and Pinyin sequences, which has
a better performance even than traditional hidden markov
model. Given a discrete distribution over Pinyin sequence
which is supplemented with “blank” label, CTC defines
the probability of a sequence by counting over all possi-
ble sequences that are regarded as equivalent to this se-
quence. This deals with variable-length sequences and re-
moves the need for the alignment at the same time. Let L
represents the Pinyin letter labels, and L̄ = L ∪^ repre-
sents the blank-supplemented ones where ^ is the blank
token. Define the mapping Γ: L̄? → L?, which removes
blank tokens and deletes adjacent duplicate Pinyin letters
when given a string over L̄. For a sequence y ∈ L?,
CTC computes P (y|x) =

∑
P (v1, . . . , vK |x)(s.t.v ∈

Γ−1(y), |v| = K), where K is the number of timesteps
in the sequence model. For example, if K = 3, CTC com-
putes the probability of “ni” as p(nni) + p(nii) + p(^
ni)+p(n ^ i)+p(ni ^), which is calculated efficiently
through dynamic programming.
As shown in Fig.2, the lip pictures are transformed into

gray-scale ones before feeding to the feature extractor. Con-
vNet takes every 5 lip pictures as a input, moving 2 frames at
each timestep. If the number of lip pictures is n, the length of
input sequence will be b(n − 4)/2c. Based on pixels inside
lip pictures X = x1, x2, x3, . . . , xt (xi involves 5 gray lip
pictures), residual network computes 256-dimensional im-
age features for every input timestep as follows:

vi = K[Res(CNNθc(xi))] + b (1)

where CNN(xi) transforms picture xi into 512-
dimensional vector before passing to the residual part. The
matrix K has the dimension h× 256, where h is the size of
the embedding space of LSTMs. Then, the LSTMs absorb
the vi and transform it into a h′-dimension vector v′i. Simul-
taneously, it generates a state vector s at the last t timestep.
The LSTMs network can be denoted as:

(v′i, hi) = LSTMs(vi, hi−1)

s = ht
(2)

We should emphasize that there is a full connection layer
between LSTMs and CTC loss to transform feature v′i into
26-dimensional vector.

Pinyin-to-Hanzi model
Picture-to-Hanzi model is based on RNN transducer with the
attention mechanism (Bahdanau, Cho, and Bengio ), which
has given state-of-the-art results in a variety of sequence pro-
cessing tasks recently.

According to (Gehring et al. 2017), it is hard to train a
sequence-to-sequence model when the number of timesteps
is too large. Therefore, we separate the Pinyin-to-Hanzi
model into two language modules, encoder and decoder
(Fig. 3), to overcome ambiguity when translating Pinyin
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Figure 3: The Pinyin-to-Hanzi model. The red dashed line
works when Picture-to-Pinyin and Pinyin-to-Hanzi model
are jointly optimized to improve the overall LipCH-Net per-
formance.

sequence into Hanzi sentence. We apply two dependent
attention mechanisms Attentione and Attentiond in the
encoder and decoder module. Note that Attentione only
works during the overall training of LipCH-Net when given
the feature vectors v′ and state vector s. Before having a
jointly sequence-to-sequence optimization, encoder and de-
coder are trained respectively with supplementary data. Ex-
perimental results show that Gated Recurrent Unit (GRU)
performs better with lower perplexity value and converges
faster than LSTMs in Pinyin-to-Hanzi model.

During the training process of encoder, the input and la-
bels are both Pinyin sequence. We convert the Pinyin se-
quence C = c1, c2, c3, . . . , cl into embedding space before
passing them through weighted connections to compute the
output vector sequence O = o1, o2, o3, . . . , ol. Each output
vector oi is used to parameterize a predictive distribution
Pr(ci+1|oi) over the possible next input ci+1. The encoder
modeling objective is to maximize the total log probability
of the training sequence

∑l−1
i=0 logPr(ci+1|c≤i).

During the training of decoder, the input and labels are
both Hanzi sequence. The attention vectors are mixed with
the output states to generate the Hanzi vectors rk which
compress the information necessary to generate the next
timestep output. The probability distribution of the output
Hanzi is computed by a full connection layer with softmax
as follows:

tk, gk = GRU(gk−1, ek−1, rk−1)

rk = t ·Attentiond(t, gk)

P (ei|e<i) = softmax(f(tk, rk))

(3)

At every step k, tk is output vectors, gk is state vectors, rk is
context vectors, and ek is the output. In the end, we employ
the parameters preserved during the separate training proce-
dure of the encoder and decoder to initialize our sequence-
to-sequence Pinyin-to-Hanzi model.

During experiments, we have found that the attention
mechanism is indispensable for the sequence-to-sequence
system to work. When lacking of it, the model seems to
forget previous useful information and generates the output
sentence which is very little relevant to the input sequence.
The benefits are clearly shown in the experimental results
section.

Lip Sequence

14-layer ResNet

2-layer LSTMs Encoder-Atte

Decoder-Attd

Softmax

Attentiond

Attentione

ConvNet

ReLU

MeanPooling

Figure 4: The block-diagram of LipCH-Net architecture.

LipCH-Net Architecture
Our whole architecture, summarised in Fig. 4, combines
the two key components: “Picture-to-Pinyin” and “Pinyin-
to-Hanzi” to make a joint optimization. During the training
time of LipCH-Net, CTC loss in the Picture-to-Pinyin part is
removed. The output of each LSTMs unit (i.e. feature vec-
tor) in Picture-to-Pinyin is fed into the corresponding GRU
unit of encoder in Pinyin-to-Hanzi one by one. Meanwhile,
the state vector s and feature vectors v′ are put into the GRU
and Attentione unit directly. Here, Attentione has the sim-
ilar processing procedure to Attentiond as Equations 3.

Dataset
Lip reading datasets are plentiful (AVLetters(Matthews et
al. 2002), AVLetters2(Cox et al. 2008), OuluVS1(Zhao,
Barnard, and Pietikainen 2009), OuluVS2(Anina et al.
2015), GRID(Wand, Koutnik, and Schmidhuber 2016),
BBCTV(Chung et al. 2017)). However, there is no pub-
lic Chinese lip reading data. In this section, we show the
multi-stage pipeline to semi-automatically collect a large-
scale Chinese dataset.

We adopt a variety of CCTV new broadcast recorded be-
tween April and October in 2016. The use of CCTV pro-
grams are based on the following facts: (1) CCTV programs
involve many anchors and abundant contents; (2) all speak-
ing anchors are sitting at the center on screen during the pro-
grams and shot changes are less frequent; (3) all anchors
speak standard Mandarin at an appropriate speed. Here, we
give a brief of some key procedures.

• Video Clip: Individual statement clips in programs are
detected by comparing color histograms across consec-
utive pictures (Ope 2016). Then, the CORELX9 (COR
2015) is used to convert each video clip into frame pic-
tures, following the criteria of 25 pictures per second.

• Text Processing: According to the talking content in each
clip, we download the corresponding manuscripts from
the website and save them as a separate TXT file. The
content in TXT file is divided into lines based on the stan-
dard that sentence in each line has a clear meaning with
no more than 25 Hanzi. Files are additionally checked by
two persons to ensure their credibility and accuracy.
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• Timestamp Tag: We use OksrtClient (Oks 2016), which
supports the automatic alignment between video and Chi-
nese text with more than 95% accuracy, to align video
clips and TXT file. OksrtClient can generate the start and
end timestamps of each sentence and save them simulta-
neously.

• Alignment: According to the time interval between the
start and end time of each sentence, as well as the sample
rate of 25fps, we automatically locate and map the corre-
sponding lip pictures of each sentence.

• Lip Detect: According to the facial landmarks, extracted
by face recognition API of OpenCV (Ope 2016), lip re-
gion is cropped with size of 120*120. Some tricks such
as magnifying the pictures and constraining the regions
are used to improve the accuracy up to 100%.
Using this pipeline, we have collected a labeled 20.95GB

Chinese dataset, including 20,495 natural Chinese sentences
along with the corresponding lip pictures. The training, val-
idation, and test data are divided according to the proportion
of 7:1:2. Each sub-data contains all different speakers which
makes the model to be speaker agnostic.

Experiment and Evaluation
In this section, we evaluate our LipCH-Net and training
strategies. We also compare our model to the state-of-the-
art lip reading architectures on CCTV dataset.

Data Cleaning We remove special symbols (such as @,
!, ∗, ?, <) in labels and delete the sentence with less than 5
Hanzi. Moreover, sentences are grouped into subsets accord-
ing to the length of 5-10, 11-15 and 16-25 Hanzi, including
9,452, 7,619 and 2,868 sentences respectively.

Evaluation protocol LipCH-Net is assessed on the in-
dependent test data. In experiments, we compute Pinyin-
level Accuracy Rate (PAR), Hanzi Accuracy Rate (HAR)
and Perplexity value. PAR and HAR are defined as 1 −
errorrate = 1− (d+i+r)/m, where d, i, r is the amount
of deletions, insertions and replacements to obtain
from the reference to the hypothesis, respectively. m is the
amount of Pinyin letters (PAR) or Hanzi (HAR) in the refer-
ence. Perplexity is a measurement of probability distribu-
tion, and a low perplexity value indicates the distribution is
good at predicting the output.

Experiments of Picture-to-Pinyin
Preprocessing: Before training the Picture-to-Pinyin model,
each Chinese sentence label is transformed into its corre-
sponding Pinyin sequence. For example, the Chinese sen-
tence in Fig.4 is translated into “jin tian tian qi hen hao”. Be-
cause the mechanism of CTC requires input sequences are
longer than the output labels, we remove the blank spaces as
“jintiantianqihenhao”. In addition, the sample whose input
sequence is shorter than its label is also eliminated.

Training strategy: Convergence ability of ConvNet and
LSTMs is inconsistent and different. In the training time,
ConvNet is provided with the Batch Normalization (BN),
while LSTMs not. Thus, we apply different learning
rate to promote two different networks converge simul-
taneously. Moreover, LSTMs are trained with gradient

Table 1: Pinyin accuracies (PAR) using temporal convolu-
tion (TemConv).

Network PAR
Nt1 3D + ResNet + TemConv + CTC 35.1%
Nt2 AlexNet + ResNet+ TemConv + CTC 32.6%
Nt3 IncepV2 + ResNet + TemConv + CTC 37.4%
Nt4 VGG-M + ResNet + TemConv + CTC 41.2%
Nt5 VGG-M + DNN + TemConv + CTC 36.7%

Table 2: Pinyin accuracies (PAR) using different
LSTMs/GRUs.

Netwotk PAR
Nt6 VGG-M + ResNet + 1-LSTMs + CTC 40.1%
Nt7 VGG-M + ResNet+ 2-LSTMs + CTC 44.2%
Nt8 VGG-M + ResNet + Bi-LSTMs + CTC 41.4%
Nt9 VGG-M + ResNet + 2-GRUs + CTC 34.8%

clipping which drop large gradient so as to greatly avoid the
bad convergence problem. Experimental results indicate the
initial learning rate of 0.1 in ConvNet and 0.001 in LSTMs
can make the Picture-to-Pinyin model fully converge.

Evaluation:
To evaluate the contribution of each individual module

in the model, we start by applying a simpler one than the
proposed LipCH-Net. In Table.1, Nt1 utilize 3D convolu-
tion instead of 2D, which is followed by the ResNet. We re-
place LSTMs with two temporal convolutional layers, each
of which is followed by BN, ReLU and max-pooling with
a factor of 2. The results of the same configuration, but
with AlexNet/IncepV2/VGG-M are also listed in Table.1
(Nt2/3/4). Then, we use 6 fully connected hidden layers with
BN and ReLU (Nt5) instead of the ResNet part to evaluate
its effectiveness. The DNN progressively changes the fea-
ture size as 512-256-128-64-128-256.

In order to verify the performance of LSTMs, we use them
to replace temporal convolutions. In Table.2, Nt6 utilize 1-
layer LSTMs, while Nt7 utilize 2-layer LSTMs. Bidirec-
tional LSTMs have been applied in some sequence learning
tasks (Chorowski et al. 2015) due to its ability to generate
output based on future content as well as the past content. In
experiments, we also tried bidirectional LSTMs instead of
unidirectional ones (Nt8). Experimental results show that it
took longer training time, while offering no distinct perfor-
mance improvement. This is probably because the Pinyin-
to-Hanzi model with attention mechanism is also based on
the whole input sequence and provide extra local focus. The
results of the same configuration, but with GRUs are rep-
resented as Nt9. While training the LSTMs, the VGG-M
and ResNet remain fixed. Thus, these four networks are not
trained in end-to-end fashion.

In Table.3, we evaluate different loss methods as men-
tioned in Picture-to-Pinyin model part. Nt10 and Nt11 have
the same configuration of Nt7, but with a softmax layer and
making the criterion for each timestep to calculate the loss.
Finally, we apply end-to-end training method for the overall
network. The last Nt12* is the same as Nt7, but trained end-
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Table 3: Pinyin accuracies (PAR) using different loss or
training methods.

Network PAR
Nt10 VGG-M + ResNet + 2-LSTMs + Softmax 29.7%
Nt11 VGG-M + ResNet + 2-LSTMs + CET 35.4%

Nt12* VGG-M + ResNet + 2-LSTMs + CTC 46.3%

to-end, using the weight of Nt7 as initialization parameters.
We calculate the average confusion values of initials in

the output Pinyin sequence, and visualize them as shown
in Fig.5. It is quite clear that each initial basically has at
least three highly similar confusing pronunciations, which
can combine with different vowels to indicate various sylla-
bles. Meanwhile, it shows the ambiguity and high challenge
of Chinese lip reading recognition.

Discussion and error analysis: Some summaries can
be made from the results listed above. Firstly, the VGG-M
makes absolute improvement over other models. In addition,
CNN exhibits strong ability of feature extraction and the use
of 3D instead of 2D does not work much better especially
in Chinese lip reading task. By applying ResNet instead of
6-layer DNN, a further 4.5% absolute improvement is at-
tained. Moreover, we find the LSTMs offer 3.0% better ac-
curacy compared to temporal convolutional network, which
demonstrates the expressive power of LSTMs in model tem-
poral sequences again. By training Nt7 with an end-to-end
fashion (Nt12*), we get a 2.1% improvement, which indi-
cates the importance of end-to-end training method towards
achieving higher Pinyin recognition accuracy.

Experiments of Pinyin-to-Hanzi
Training strategy: We download extra CCTV manuscripts
from January 1st, 2015 to June 15th, 2017 to serve as
auxiliary data. In the same way, we sort and group the
sentences into three subsets for pre-training according to
their length. The total number of Hanzi and sentence in the
auxiliary data is 20,972,355 and 1,215,697. In order to
improve model robustness, Pinyin sequences in auxiliary
data are replaced or deleted randomly to simulate the gen-
erated ones from Picture-to-Pinyin model which are not ab-
solutely correct. The final random error rate is chosen from
0 to 0.25.

In the training of recurrent neural network, the ground
truth of previous timestep is treated as the next timestep in-
put. However, during the inference, the ground truth is ab-
sent which leads to worse performance since the model was
not trained with poor predictions at some timesteps. To elim-
inate this discrepancy between training and inference, we
apply Scheduled sampling approach proposed by (Bengio
et al. 2015). At training time, the sampling rate from the
previous output is selected from 0 to 0.20. We find that the
model would become unstable once the rate greater than 0.2.

Evaluation: Parameter initialization range is selected
from -0.02 to +0.02 and the initial learning rate is 0.001.
During pre-training, the translation model yields nearly 95
percent accuracy with abundant auxiliary data. We test the
performance of combining different RNNs with various cell

Figure 5: The confusion matrix of initials.

Table 4: Performance of LipCH-Net on CCTV news with
different training strategies. LR: learning rate; CL: curricu-
lum learning; AD: auxiliary data; SS: scheduled sampling;
HFW: high frequency words; BS: beam search; PAR: Pinyin
accuracy; HAR: Hanzi accuracy.

Models Strategy PAR HAR Perplexity
- 46.3% - 3.29

Picture-to-Pinyin Different LR 48.7% - 3.01
Different LR+CL 52.5% - 2.87
- - 35.4% 7.54
AD - 39.8% 3.71

Pinyin-to-Hanzi AD+SS - 40.2% 3.09
AD+SS+Attd - 45.7% 2.94
- 43.7% 34.5% 12.06
HFW 49.8% 40.8% 7.90

LipCH-Net HFW+BS 50.4% 42.7% 5.82
HFW+BS+CL 52.6% 43.1% 3.32
HFW+BS+CL+Atte 58.7% 50.2% 2.46

units and layers. The best perplexity value in the experi-
ment can decline to 2.69 when using 2-layer 1024-GRU unit.
Due to the memory of GTX 1080 GPU used for training is
only 8G, 2-layer 512-GRU which can produce the perplexity
value with 2.94 is applied in Pinyin-to-Hanzi model finally.

Experiments of Lip Reading Model
Training strategy: We calculate high frequency words and
phrases in the dataset and split out the corresponding lip
pictures. The LipCH-Net is pre-trained with these high fre-
quency words in the beginning to learn priori knowledge.
Similar to (Chan et al. 2016), decoder in the Pinyin-to-Hanzi
part is executed with beam search of width 6. In Fig.6,
[C] shows there are no obvious benefits when increasing the
width more than 6 in Chinese lip reading task.

Inspired by the strategy of curriculum learning in
(Chung et al. 2017), we start training on short sentences with
5-10 Hanzi and then make the sequence length grow as the
network trains. We observe that the convergence rate on the
training set is a few times faster, and it also largely reduces
overfitting.

Evaluation: Our implementation is based on the Tensor-
flow library. The network is trained using stochastic gradi-
ent descent on 4 Nvidia GTX 1080 GPU with 8GB memory
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Figure 6: Alignment between the video frames and the Pinyin sequence ([a(1)])/ Hanzi sequence ([a(2)]). [b] is example of
some LipCH-Net results. GT: ground truth; Att./NA: prediction with/without attention mechanism. [C] is the effect of beam
width on Hanzi Accuracy Rate.

Table 5: The comparison results of LipCH-Net with other existing frameworks on CCTV news as well as their respective details.
Lipreading Model Architecture Data & Language AiC(%) AiS(%) AiP(%)

WLAS(Chung et al. 2017) CNN+LSTM+Attention BBCTV & English 49.8% 36.7% 51.0%
(Assael et al. 2016) STCNN+BiLSTM+CTC. GRID & English 93.4% 28.9% 41.6%

(Wand, Koutnik, and Schmidhuber 2016) NN+LSTM GRID & English 79.6% 16.7% 30.5%
(Noda et al. 2014) CNN+GMM+HMM. JAVD & Japanese 37% 18.6% 35.7%

(Garg, Noyola, and Bagadia 2016) CNN+LSTM MIRACL-VC & English 76% 29.15% 47.3%
LipCH-Net CNN+LSTM+GRU+CTC CCTV& Chinese – 50.2% 58.7%

and Intel Xeon processor E5-2620 with 32GB memory. The
initial learning rate of 0.001 was applied and decreased by
shrinking three times, if the training error did not increase
for 10,000 iterations. Training was stopped when the vali-
dation error did not increase for 2,000 iterations. The total
end-to-end model was trained for around 4 days.

All the training strategies discussed previous can make
contributions to the performance. The detailed results are
given in Table.4. We observe that curriculum learning
and attention mechanism offer absolute improvement in
PAR and HAR. In Fig.6, [a(1)] visualises the alignment of
the Pinyin letter “Huan ying da jia lai can guan zhong guo”
with the corresponding video frames, [a(2)] is the alignment
of its equivalent Chinese sentence (i.e. the seventh one in
Fig.6[b]) with the video frames. It demonstrates that atten-
tion mechanism makes straightforward alignment between
the input video frames and hypothesis output. [C] shows
some examples where the LipCH-Net model successfully
deciphers the sentences when applied attention mechanism.

Comparison
Table. 5 shows comparative paradigms including their
proposed recognition languages (“Data&Language”) and
model components (“Architecture”). The accuracies listed
in column “AiC” are mentioned in their papers evalu-
ated on their own dataset. The results listed in column
“AiS”(sentence-level) and “AiP”(Pinyin-level) are the best
accuracies they can generate on Chinese lip reading dataset
during the whole retraining procedure. In the five compar-
ative models, only WLAS is about sentence level predic-
tion. When retrained on CCTV news, WLAS makes worse
performance because there is no audio part in our data
which can help to improve the model performance demon-
strated in (Chung et al. 2017). The other four models all
work on word classification. Thus, we employ the high fre-

quency words and phrases in CCTV news as their training
data. When retrained on CCTV news, each model retains its
original structure and the labels of output units are trans-
formed to Pinyin letter sequence to get the average Pinyin-
level (AiP) accuracy. Then, the generated Pinyin sequences
are translated into Chinese sentences or phrases to get the
average sentence-level (AiS) accuracy via our Pinyin-to-
Hanzi model. As the results show, LipCH-Net can achieve
50.2%(sentence-level) and 58.7%(Pinyin-level) accuracies
which are better than Google’s work (36.7% and 51.0% cor-
respondingly). The comparison results show that the design
of the model should consider language characteristics, espe-
cially intrinsic ambiguity of Chinese.

Conclusion and Discussion

In this paper, we introduce LipCH-Net, the first end-to-end
model that can transcribe lip picture sequence to Chinese
sentence. In the training time, two different neural network
models are applied to solve the recognition of Picture-to-
Pinyin and Pinyin-to-Hanzi respectively before jointly opti-
mizing. The end-to-end model removes the need to segment
video into phrases when predicting a sentence. LipCH-Net
surpasses the performance of all previous lip reading net-
works on Chinese lip reading CCTV dataset. In future work,
there are several extensions to this work which we hope to
investigate: (1) we aim to apply LipCH-Net to a composite
audio-visual model, in which audio information can assist
with recognition accuracy and visual information can help
improve model robustness in noisy environment. (2) we will
employ LipCH-Net to larger datasets to demonstrate the sug-
gestion in (Amodei et al. 2015) that recognition performance
can be improved with more data; (3) we will explore the ap-
plication of LipCH-Net in different dialects, such as Can-
tonese, rather than only in Mandarin.
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