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Abstract

This paper addresses Weakly Supervised Object Localization
(WSOL) with only image-level supervision. We model the
missing object locations as latent variables, and contribute a
novel self-directed optimization strategy to infer them. With
the strategy, our developed Self-Directed Localization Net-
work (SD-LocNet) is able to localize object instance whose
initial location is noisy. The self-directed inference hinges on
an adaptive sampling method to identify reliable object in-
stance via measuring its localization stability score. In this
way, the resulted model is robust to noisy initialized object
locations which we find is important in WSOL. Furthermore,
we introduce a reliability induced prior propagation strategy
to transfer object priors of the reliable instances to those un-
reliable ones by promoting their feature similarity, which ef-
fectively refines the unreliable object instances for better lo-
calization. The proposed SD-LocNet achieves 70.9% Cor-
Loc and 51.3% mAP on PASCAL VOC 2007, surpassing the
state-of-the-arts by a large margin.

1 Introduction
Weakly Supervised Object Localization (WSOL) refers to
localizing objects with only image-level labels that indicate
presence of an object, and has been extensively studied (Cin-
bis, Verbeek, and Schmid 2014), (Song et al. 2014b), (Wang
et al. 2014). However, WSOL still remains challenging due
to the gap between classification and localization. Success-
ful classification may only need to grasp some discrimina-
tive details of an object (e.g., the face of a human instance),
while localization is more demanding and requires to pre-
dict accurate spatial extent of the whole object. To mitigate
this gap, current approaches (Jie et al. 2017), (Li et al. 2016),
(Tang et al. 2017) usually model the missing object locations
as latent variables, and alternate between updating the la-
tent variables and learning a classifier based on current latent
variables. Nevertheless, learning the parameters of a model
with latent variables often requires solving a non-convex op-
timization problem, and is prone to get stuck in local minima
if the latent variables were not properly initialized.

In this work, we take the object location as latent vari-
able (whose initial value can be estimated from off-the-shelf
WSOL models) and consider how to address the learning
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Figure 1: Given a collection of noisy labeled instances, our
goal is to automatically discover those well localized in-
stances (a) and propagate such priors to those noisy labeled
instances (b) for better localization.

difficulties caused by noisy initialized latent variables. Intu-
itively, different images present different levels of difficulty
in object localization due to the variational viewpoints, oc-
clusions and backgrounds. The model is able to successfully
localize objects in some easy images, even it is trained from
noisy labeled instances. The localizations on these easy im-
ages provide valuable information and can be exploited as
priors that are easily obtained. Therefore we propose to use
such prior knowledge to assist latent variable inference on
difficult images. Motivated by such progressive inference
strategy, we develop a Self-Directed Localization Network
(SD-LocNet), which is able to automatically figure out the
easy images during network training and harness the corre-
sponding localizations for latent variable update. Since the
latent variables are updated automatically from the easy im-
ages to those difficult ones, we refer this process as self
directed localization. As illustrated in Fig. 1, SD-LocNet
makes use of the localizations from easy images as object
priors to direct the discovery of the corresponding category
in difficult images, thus improves the localization perfor-
mance on the whole image set.

Our proposed SD-LocNet consists of two core modules.
The first one is the adaptive sampling module, which tar-
gets at mining reliable object instances1, taken as reliable
latent variables, for network training. We propose an effec-
tive criterion, named Localization Stability Score (LSS), to
measure the reliability of a candidate positive sample being

1If an object is easy to localize, we term the object as the reli-
able instance and the corresponding image as the easy image. Oth-
erwise, they are defined as unreliable instance and difficult image.
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the ground truth object, and update the latent variables with
samples having the highest LSS. Meanwhile, we use LSS
to reweight each instance during network training. In this
way, we can put more emphasis on the reliable instances and
decrease the contributions of those unreliable ones, making
the model robust to noisy labeled instances. As the train-
ing process proceeds, the model gains increasingly stronger
localization ability, and is able to better discover reliable in-
stances, which in turn improves the localization model.

Our adaptive sampling is reminiscent of self-paced learn-
ing (Kumar, Packer, and Koller 2010), (Ouyang et al. 2018)
and curriculum learning (Bengio et al. 2009) in which easier
images are first selected for training. However, self-paced
learning usually treats samples with lower loss on current
model as easier ones. Comparatively, our adaptive sam-
pling is based on the proposed Localization Stability Score
measuring the reliability of candidate positive samples by
inspecting the states among consecutive training epoches,
which is based on the localization stability instead of the
classification loss. Besides, the instances are mined from im-
ages and updated during each iteration, which differs from
self-paced learning where the used images are kept fixed.

The second module of SD-LocNet is the reliability in-
duced prior propagation, which targets at directing the lo-
calization on difficult images. We find that emphasizing too
much on reliable instances usually slows down the train-
ing process because they provide smaller gradients. Further-
more, decreasing weights of unreliable instances would lead
to sampling bias, resulting in poor localization on difficult
images. To mitigate this issue, we incorporate unreliable in-
stances into model training via propagating object priors of
the reliable instances. The intuition is that for instances from
the same category, their visual representations should be
similar. Instead of penalizing the unreliable instances with
smaller decision loss, we enforce them to be similar to the
representative clusters dominated by the reliable instances.
In this way, the mined instances are encouraged to have large
intra-class similarity, which can relieve overfitting and better
guide the localization on difficult images.

To sum up, this paper contributes a novel learning strategy
for WSOL, which intentionally selects reliable instances for
model training, and propagates the object priors of the reli-
able instances to the unreliable ones for better localization.
This strategy is further instantiated to a Self-Directed Lo-
calization Network (SD-LocNet) based on fast RCNN (Gir-
shick 2015). Its effectiveness has been validated experimen-
tally. Notably, we achieve 70.9% localization CorLoc and
51.3% detection mAP on PASCAL VOC 2007 benchmark,
which surpasses the state-of-the-arts by a large margin.

2 Related Work
Most previous works formulate WSOL as a Multiple In-
stance Learning (MIL) (Dietterich, Lathrop, and Lozano-
Pérez 1997) task, in which labels are assigned to bags (a
group of instances) instead of an individual instance. These
methods typically alternate between learning a discrimina-
tive representation of the object and selecting the object
samples based on this representation (Cinbis, Verbeek, and
Schmid 2014), (Nguyen et al. 2009), (Vijayanarasimhan and

Grauman 2008). However, MIL is sensitive to initialization
and easy to get stuck in local minima. To solve this issue,
many efforts have been devoted to improving the initializa-
tions (Li et al. 2016), (Song et al. 2014b), (Wang et al. 2014),
or designing robust optimization methods to alleviate the de-
pendency on the initially mined object instances (Bilen, Ped-
ersoli, and Tuytelaars 2015), (Cinbis, Verbeek, and Schmid
2014), (Joulin and Bach 2012), (Song et al. 2014a). How-
ever, these methods treat each image equally important and
do not consider the intrinsic properties of images.

Another line of research in WSOL develops new CNN ar-
chitectures and learns to localize objects in an end-to-end
manner. These approaches are based on the principle of ag-
gregating pixel-level confidences for image-level loss mod-
eling (Oquab et al. 2015), (Zhou et al. 2016), (Zhu et al.
2017), and gets the final localization from the heatmap de-
rived from the network. However, they tend to emphasize
the discriminative details and fail to distinguish multiple ob-
jects from the same category. Notably, (Bilen and Vedaldi
2016) proposes a WSDDN model which directly aggregates
region-level scores for image-level loss and conveniently en-
ables localization based on the region scores. Based on this
WSDDN model, some works exploit context information
(Kantorov et al. 2016) and MIL refinement (Tang et al. 2017)
to further improve the localization.

3 Self-Directed Localization Network
This section provides details of our proposed Self-Directed
Localization Network (Sec. 3.1), as well as the associated
training methodology (Sec. 3.2).

3.1 Model Design
A high-level overview of the proposed SD-LocNet model
is shown in Fig. 2. The model is built on the fast RCNN
(Girshick 2015) architecture. We present the following novel
designs to enable the learning of a localization model from
noisy labeled object instances.

Latent Variable Initialization Since the object-level an-
notations are not available in WSOL, we treat the missing
annotations as latent variables and formulate the localiza-
tion model learning as inferring the latent variables. With-
out loss of generality, we choose the outputs of WSDDN
(Bilen and Vedaldi 2016) for latent variable initialization.
Given an image x with a set of region proposals R and
image-level label y ∈ {1,−1}C , where yc=1 indicates the
presence of an object from class c, WSDDN explicitly com-
putes image-level classification loss Lcls(φc(x,wcls), yc)
via aggregating region proposal classification scores xrc , i.e.,
φc(x,wcls) =

∑|R|
r=1 x

r
c . Here wcls denotes parameters of

the non-linear mapping from input x to classification output
φc(x,wcls), and xrc represents the probability score of re-
gion r belonging to category c. For an image x with yc = 1,
we choose instance rc that scores highest among xrc as the
instance-level bounding box for latent variable initialization.
Please refer to (Bilen and Vedaldi 2016) for more details.
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Figure 2: An overview of SD-LocNet. It starts from noisy labeled instances whose object bounding boxes (latent variables) are
not accurate, and updates the latent variables with reliable instances discovered by adaptive sampling. These reliable instances
are used to direct the localization on difficult images via optimizing similarity loss Lsim of instances from the same category.

Adaptive Sampling The initial latent variables inevitably
include noisy labeled instances. Our proposed model aims at
improving their localizations by latent variable update along
with model training. As noisy labeled instances are detri-
mental for network learning, they should be expelled and
emphasis should be placed on the clean and reliably labeled
ones for robust model learning. To this end, we define a Lo-
calization Stability Score (LSS) to effectively measure the
reliability (whether it is well localized) of the mined object
instance online along with network training. If a candidate
positive sample scores consistently high among consecutive
training epoches, it is regarded as containing the object of
interest with a high probability.

Specifically, given a training image x with label yc = 1,
and the candidate positive samplesRp, whereRp ⊂ R. For
each region r ∈ Rp, denote the model probability outputs at
current iteration during epoch t as P t(r|x, yc). We compute
the LSSHt

lss(r|x, yc) as follows. Instead of relying on static
scores at current iteration (Kumar, Packer, and Koller 2010),
we utilize the probability scores {P t−ti(r|x, yc)}t0ti=1 pre-
dicted among continuous t0 epoches for reliability compu-
tation. Ht

lss(r|x, yc) is estimated by the ratio of the mean
probabilities {P t−ti(r|x, yc)}t0ti=1 and their standard vari-
ance, as follows:

Ht
lss(r|x, yc) =

P
t−ti

(r|x, yc)√
var[P t−ti(r|x, yc)] + εV

, (1)

where var[P t−ti(r|x, yc)] is the variance of predicted prob-
abilities for instance r over the past t0 consecutive epoches,
and εV is a constant (set as 1) to restrict the scores
within range (0, 1). Note that the overhead of computing
Ht

lss(r|x, yc) is very small since we need not do any extra
forward or backward propagation in the neural network. The
probability P t(r|x, yc) is computed online by forward prop-
agation and we update the latent variable for the following
back propagation at current iteration. Specifically, the sam-
ple rp with the highest Ht

lss is chosen as the newly discov-
ered object instance for back propagation:

Lcls(rp|x, yc) = −logP t(rp|x, yc). (2)

Reliability Induced Prior Propagation Giving larger
weights to reliable instances enables the network robust to
noisy labeled instances, but unfavorably discards instances
from difficult images and harms sample diversity. We empir-
ically find that simply relying on the classifier model does
not work well on transferring the object priors of reliable
instances to help discover objects in difficult images. This
would make the network overfit reliable instances from easy
images and underperform in localization on difficult images.

In order to effectively localize objects in difficult images,
we propagate object priors from reliable instances to guide
the discovery of the same category objects in the difficult im-
ages. Towards this goal, we devise a reliability induced prior
propagation module that explicitly imposes similarity con-
straint among the reliable instances and the mined instances
from difficult images. Specifically, for a category c, suppose
we have the mined object instances rip for image xi with
image label yic = 1 and reliability scores Hlss(rip|xi, yic).
The category specific priors are obtained by a weighted k-
means clustering performed on features φ(xi, rip), weighted
by Hlss(rip|xi, yic). In this way, we obtain K representa-
tive clusters Cc = {C1, ..., CK} for category c. The similarity
constraint is represented as the minimal Euclidean distance
between the mined new instance φ(x, rp) and the represen-
tative clusters Cc:

Lsim(φ(x, rp), Cc) = min
k=1,...,K

||φ(x, rp)− Ckc ||2. (3)

Multi-context Features Context information plays an im-
port role in object localization. In fast RCNN, RoI pool-
ing is performed on a fixed layer (conv5 layer), which can
be treated as covering a fixed range of context informa-
tion. However, the optimal context information varies w.r.t.
different scenes. To enrich varying context representation,
we add two extra convolutional layers (conv6 and conv7
layer, as shown in Fig. 2) to the end of the last convolu-
tional layer (conv5 layer) with parameters 3× 3× pI × pO,
where pI and pO denote the number of input and output
channels. In this case, each added layer together with conv5
layer is followed by an ROI pooling and two fully con-
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Algorithm 1 SD-LocNet for WSOL

Input: Training set xi ∈ X with image-level labels yi ∈ Y ,
training epoch T , latent variable update starting epoch T0,
and number of clusters K;
Latent Variable Initialization: For each image x with
label yc = 1, and region proposals R, initialize the latent
variable with rc, where rc ∈ R;
For epoch t = 1 to T do

Forward Propagation: For each image x ∈ X , forward
x and its sampled region proposals Rb to produce region
probability scores P (Rb|x, y);

if t >= T0
Update Latent Variable:
1). Compute Localization Stability Score

Ht
lss(r|x, yc) for r ∈ Rp and yc=1 as Eq. (1);

2). Update latent variable with region rp, rp =
argmax
ri∈Rp

Ht
lss(ri|x, yc);

end if
Back Propagation: For each proposal r ∈ Rb, back

propagate the loss L(Cc, tc, v|x, c, r) defined in Eq. (4)
based on current latent variables;

Update Clusters: For each category c, computing clus-
tering centers Cc = {C1, ..., CK} based on current net-
work and latent variables;
end for

Output: Localization model M .

nected layers independently, producing fixed length vec-
tors φi(x, r), i = 1, 2, 3 for each region r ∈ R. The
vectors are concatenated to form the final representation
φ(x, r) = [φ1(x, r) φ2(x, r)φ3(x, r]. In this way, φ(x, r)
covers context with different ranges, which we refers to as
multi-context features. At below, we will investigate its ef-
fectiveness in improving object localization.

3.2 Training
We develop SD-LocNet by integrating the above novel de-
signs. Training SD-LocNet requires appropriately designing
latent variable update and category prior update strategies.
The whole training procedure is summarized in Algorithm
1, and is introduced below.

Multi-task Loss Putting the above different modules to-
gether gives a multi-task loss objective for model training.
Given an image x, each sampled region r is labeled with
a class c, a similarity constraint prior Cc, and a bounding
box regression target v based on current latent variables (We
treat the mined instance rp in Eq. (2) as ground truth, and
follow the positive/negetive sample definitions as in (Gir-
shick 2015)). We use the following multi-task loss L to
jointly train classification and cluster similarity, as well as
the bounding-box regressor:

L(Cc, tc, v|x, c, r)=Hlss{Lcls(r|x, c) + [c ≥ 1]Lloc(t
c, v)}

+ [c ≥ 1]λ(1−Hlss)Lsim(φ(x, r), Cc),
(4)

where Lcls and Lsim are the classification and similar-
ity losses defined in Eq. (2) and Eq. (3), and Hlss is the
LSS score defined in Eq. (1). The localization regression

term Lloc is a robust smooth L1 loss between the tuple of
pseudo ground truth bounding-box regression targets v, and
the predicted tuple tc for class c (Girshick 2015). The Iver-
son bracket indicator function [c ≥ 1] evaluates to 1 when
c ≥ 1 and 0 otherwise. We only impose similarity and re-
gression constraints upon foreground classes with c ≥ 1,
where c = 0 means the background class. The parame-
ters λ control the relative contributions of each component.
By default, we set λ = 1e−4, and thus all loss terms are
roughly equally weighted. The classification loss Lcls (as
well as bounding box regression loss Lloc) and similarity
loss Lsim are scaled with weight factorHlss and 1−Hlss, re-
spectively, such that the similarity loss penalizes less on re-
liable instances and more on unreliable instances (vice versa
for the loss Lcls). The classification term aims to distinguish
the positive class from the others, while the similarity con-
straint term promotes intra-class similarity. The parameter
Hlss adapts the contribution of each term in updating the
latent variables.

Updating Latent Variables A key component of using
Hlss as reliability measurement is to avoid network over-
fitting, since overfitting may result in trivial solution that al-
ways chooses the initial regions as the mined objects, and
makes the latent variable update ineffective. To solve this
issue, we fix the order of training images fed into the net-
work in each epoch, thus ensuring adequate training samples
from other images during the latent variable update. Fur-
thermore, we intentionally process images at different scales
during the past t0 epoches, which ensures that the network
never sees identical samples during reliability measurement.
Meanwhile, it is not necessary to store the prediction history
of all previous epoches for reliability measurement. In prac-
tice we set t0 as 4, and the overhead memory is constant.
In order to avoid bad latent variable update, we exclude the
first few epoches when measuring sample reliability and do
not update the latent variables for these epoches.

Updating Clusters and Regression Targets Since the re-
gion features vary along with the network training, an ideal
clustering strategy should be recomputing the features of the
mined instances and running k-means clustering during each
iteration. However, it is time-consuming and infeasible for
network training. For trade-off, we only update the clusters
after each epoch, as well as the bounding-box regression tar-
gets. We experimentally find that such approximate updating
strategy works well in improving localization performance.

Choosing Candidate Positive Samples Following fast-
RCNN, we use mini-batch sampling to generate region pro-
posal features. Our latent variable update is based on current
sampled region proposals, without any extra forward prop-
agation, which requires the sampled regions to contain the
object of interest as likely as they can be. However, sam-
pling more regions for each mini-batch brings only negli-
gible improvement (Shrivastava, Gupta, and Girshick 2016)
but greatly increases training cost. To make a compromise,
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Table 1: Effects of various design modules for Localization.

Baseline
WSDDN?

√ √ √ √ √ √ √

Multi-context?
√ √ √ √ √ √

Fast RCNN?
√ √ √ √ √

SD-LocNet
Multi-context?

√ √ √ √

Adaptive Sampling?
√ √

Prior Propagation?
√ √

CorLoc (%) 55.1 58.6 61.7 62.9 65.7 63.1 67.4

we select the candidate positive regions based on the WS-
DDN (Bilen and Vedaldi 2016) outputs, and only retrain the
top Rp regions based on the probability scores of the corre-
sponding category. These regions are fixed during each mini-
batch sampling and forwarded for latent variable update.

4 Experiments

We choose two pretrained models for experiments: 1) VGG-
CNN-M (Chatfield et al. 2014), denoted as model M, for
“medium”; 2) VGG-VD (Simonyan and Zisserman 2014)
(the 16-layer model), denoted as model L, for “large”. Our
model contains multi-branch features, which nearly triples
the network parameters. For efficiency, we reduce the pa-
rameters on the fully connected fc layers via a truncated
SVD decomposition (Girshick 2015). Specifically, each fc
layer with parameters W ∈ d× 4096 (d is the dimension of
input features) is decomposed into two sub-layers fc-1 and
fc-2, with weights W1 ∈ d× 1024 and W2 ∈ 1024× 4096.
We copy the parameters of the reduced fc layers to each path
for network initialization. This leads to roughly the same
number of parameters as the original network. All experi-
ments choose edge boxes (Zitnick and Dollár 2014) to gen-
erate |R| ≈ 2000 region proposals per image on average,
and choose five-scales with s = {384, 512, 640, 768, 896}
for training and testing. We denote the length of its shortest
side as the scale s of an image, and cap the longest side at
1,500 pixels to avoid exceeding GPU memory. During net-
work training, each SGD is constructed from N = 1 images
with mini-batch sizeRb = 256, whereRp = 100 proposals
are fixed and the others are randomly sampled.

4.1 Experiments on PASCAL VOC 2007 and 2012

We perform experiments on two PASCAL VOC bench-
marks: PASCAL VOC 2007 (Everingham et al. 2010) and
VOC 2012 (Everingham et al. 2015), which are widely used
for WSOL evaluation. PASCAL VOC 2007 contains 9,963
images spanning 20 object classes, with 5,011 images used
for trainval and the rest 4,952 for test. PASCAL VOC 2012
contains 11,540 images for trainval and 10,991 for test. We
use trainval split for training and test split for test. For per-
formance evaluation, two kinds of measurements are used:
1) localization protocol CorLoc (Deselaers, Alexe, and Fer-
rari 2012) evaluated on the training set; 2) PASCAL style
detection protocol (AP) evaluated on the test set.

Model Analysis We first conduct comparative experi-
ments with different configurations to reveal how each mod-
ule affects the localization performance. The ablation exper-
iments are performed on PASCAL VOC 2007 with model
M, and the results are shown in Table 1. For fair compar-
isons, we set up another baseline by using WSDDN for ini-
tialization, and simply training a fast-RCNN model to refine
the localization, which is similar with (Tang et al. 2017).
From the table we make the following observations:
• Multi-context features help. We empirically demon-

strate that introducing multi-context features improves lo-
calization performance of both WSDDN and our SD-LocNet
model consistently. For WSDDN, the performance increases
by 3.5% (55.1% → 58.6%), while the gain is 1.2%
(61.7% → 62.9%) when we train a fast-RCNN model us-
ing multi-context features. The reason is that multi-context
features represent object proposals with mixed context in-
formation, and are helpful in improving localization.
• Adaptive sampling is crucial. Adding the adaptive sam-

pling module brings another 2.8% (62.9% → 65.7%) im-
provement in localization. Adaptive sampling is able to au-
tomatically figure out the well localized instances for latent
variable update, and assign each instance a reliable weight
for network optimization. Thus the network is robust to
those noisy labeled instances.
• Prior propagation improves localization. Introducing

object prior propagation brings another 1.7% (65.7% →
67.4%) improvement. Note, the reliability of object priors
is important for performance improvement. For comparison,
we simply add similarity constraints by penalizing the dif-
ferences between mined objects and representative clusters,
which are obtained from all instances mined from the previ-
ous epoch, without discriminating their reliability. The per-
formance decreases to 63.1%, proving the necessity of se-
lecting trusted instances for prior propagation.

Parameter Analysis We now analyze the influences of
three parameters, i.e., the number of clusters K for each cat-
egory, the start update epoch T0, and the number of can-
didate positives Rp. For simplicity, the default settings for
three parameters areK = 3, T0 = 5, andRp = 100, and the
other two parameters are fixed during inspecting the target
parameter. The localization results w.r.t. different parameters
are shown in Fig. 3. We empirically find that: 1) The perfor-
mance improves by around 1% when K increases from 1
to 3, and is stable with larger K value. 2) The start update
epoch T0 is robust as the training process goes, as long as we
exclude the prediction history near the beginning epoches
(T0 = 3, 4). It is intuitive since the network has not learned
object priors during the initial few epoches. 3) Our method
achieves comparable results when only retain Rp = 100
(retaining over 99% probability contributions for classifica-
tion) samples on average, which excludes the majority of
negative samples for positive instance mining, and acceler-
ates the network training without sacrificing performance.
We compute the recall of Rp with respect to ground truth
boxes at different overlapping thresholds, obtained by the
proportion of ground truth boxes for which there exists a re-
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Figure 3: Localization results on PASCAL VOC 2007 versus (a) number of clusters K, (b) start updating epoch T0, and (c)
number of candidate positivesRp. In (d), we compute the recall ofRp at different overlapping thresholds.

Table 2: Localization precision (%) comparisons on PASCAL VOC 2007 trainval split

method aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mean

WSDDN(Bilen and Vedaldi 2016) 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

ConLocNet(Kantorov et al. 2016) 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

ODGA(Diba et al. 2017b) 85.5 75.0 66.9 47.5 43.6 67.4 83.6 61.7 36.8 75.1 29.8 55.9 70.4 80.6 29.0 52.9 71.0 31.2 66.9 58.1 59.4

OICR(Tang et al. 2017) 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

OICR Ens. (Tang et al. 2017) 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

SD-LocNet-M 76.6 78.0 66.2 47.4 51.8 81.7 86.7 79.6 36.7 72.6 60.0 61.6 80.4 88.8 43.4 54.0 73.9 64.3 78.4 65.1 67.4

SD-LocNet-L 81.5 83.5 70.0 46.4 52.9 80.1 89.1 73.6 37.3 75.2 73.0 62.5 85.0 91.4 51.3 63.7 79.2 72.9 80.5 68.8 70.9

Table 3: Detection precision (%) comparisons on PASCAL VOC 2007 test split

method aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

WSDDN(Bilen and Vedaldi 2016) 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

ConLocNet(Kantorov et al. 2016) 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

OICR(Tang et al. 2017) 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

ODGA(Diba et al. 2017b) 50.9 61.2 40.5 31.4 21.1 71.6 58.1 42.9 11.7 46.4 30.7 44.5 48.3 64.9 16.8 24.8 47.1 55.7 61.7 55.8 44.3

OICR Ens.(Tang et al. 2017) 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

SD-LocNet-M 59.2 67.2 46.1 29.6 21.6 65.7 68.0 61.4 17.3 53.1 50.6 38.3 67.7 69.1 26.8 25.1 49.2 52.2 60.9 39.6 48.4

SD-LocNet-L 65.1 72.5 50.3 31.3 24.2 68.3 70.9 65.1 19.0 51.0 53.4 47.5 70.2 69.9 25.9 25.6 45.8 57.9 71.2 40.9 51.3
Fast-RCNN(Girshick 2015) 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

Table 4: Comparisons on PASCAL VOC 2012.

Method CorLoc mAP
ConLocNet(Kantorov et al. 2016) 54.8 35.3

DSD(Jie et al. 2017) 58.8 38.3
OICR(Tang et al. 2017) 62.1 37.9

ZLDN (Zhang et al. 2018) 61.5 42.9
SD-LocNet 69.1 49.2

Fast-RCNN (Girshick 2015) - 65.7

Table 5: Comparisons on MS COCO 2014.

Methods CorLoc
mAP

@.5 @[.5,.95]
WSDDN(Bilen and Vedaldi 2016) 26.1 11.5 4.3

WCCN (Diba et al. 2017a) - 12.3 -
ODGA (Diba et al. 2017b) - 12.8 -

SD-LocNet 40.3 21.6 9.7
Fast-RCNN (Girshick 2015) - 38.6 18.9

gion proposal with overlap at least 0.5 and 0.75, respectively.
As shown in Fig. 3 (d), the recall is over 95% at threshold
0.5 when Rp = 100, which demonstrates that the candidate
positives contain the object with high probability.

Comparisons with State-of-the-arts We compare our re-
sults with state-of-the-arts for both localization and detec-
tion. Unless specified, all other results choose model L.
• CorLoc evaluation. Table 2 shows the localization re-

sults on PASCAL VOC 2007 trainval split in terms of

CorLoc (Deselaers, Alexe, and Ferrari 2012). Our method
achieves an accuracy of 67.4% with model M, which already
outperforms the state-of-the-art (Tang et al. 2017) (60.6%)
with a deeper model. Moreover, replacing with model L, we
achieve a CorLoc of 70.9%, 6.6% better than previous best-
performing result (Tang et al. 2017) (64.3%) using model
ensemble. We also report localization results on PASCAL
VOC 2012, shown in Table 4. SD-LocNet achieves 69.1%
CorLoc with model L, 7% point higher than previous best
result (Tang et al. 2017) (62.1%).
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Figure 4: Per-class frequency of error modes on PASCAL
VOC 2007 with WSDDN (Bilen and Vedaldi 2016) (left col-
umn in each group) and SD-LocNet (right column).

In order to better understand the localization errors, we
categorize each of our predicted bounding boxes (object hy-
potheses) into the following five cases: 1) correct localiza-
tion, i.e., IoU overlap is greater than 0.5 with the ground
truth. 2) hypothesis completely inside the ground truth, 3)
ground truth completely inside the hypothesis, 4) no overlap,
IoU equals to zero, and 5) low overlap, none of the above.
Fig. 4 illustrates the error distribution of WSDDN (Bilen and
Vedaldi 2016) and the proposed SD-LocNet across 20 cat-
egories on Pascal VOC 2007 trainval set. It can be shown
that SD-LocNet improves localization for all classes, but
the error modes vary according to different classes. For
deformable objects such as cat and person, the main er-
ror comes from localizing object parts (hypotheses in g.t.),
while for classes such as boat and chair, the majority of er-
ror is localizing too large region (g.t. in hypotheses), since
it is difficult to localize the object or object parts due to the
cluttered background or the small scale target. Some exam-
ple localizations are shown in Fig. 5 (top row). The results
of SD-LocNet are shown in green bounding boxes, and the
initial localization results returned by WSDDN are in red
bounding boxes. It can be seen that SD-LocNet is able to
refine the localizations that are noisily labeled.
• AP evaluation. Table 3 shows the detection performance

on VOC 2007 test split. Just using model M, our method
achieves an accuracy of 48.4%, 4.1% higher than the best-
performing method (Diba et al. 2017b) (44.3%) using a sin-
gle model. When switching to model L, the detection accu-
racy increases to 51.3%, which is about 4.3% better than the
best-performing result (Tang et al. 2017) (47.0%). For PAS-
CAL VOC 2012, the result is 49.2% with model L, 6.3%
more accurate than (Zhang et al. 2018) (42.9%).
• Comparisons with fully supervised fast-RCNN. It is in-

teresting to compare our weakly supervised detections with
the fast-RCNN (Girshick 2015) which uses ground truth
bounding box annotations for training. As shown in Table
3, the performance of SD-LocNet is around 15% lower than
fast-RCNN. However, for vehicles like motorbike and train,
the performance approaches (within 5% gap) the fully su-
pervised one (69.9% vs 73.0% for motorbike, and 71.2% vs
75.8% for train). This implies that it is possible to train cor-
responding detection models on these classes without requir-
ing object annotations. However, for classes such as chair
and person, the performance gap is still large. It remains a
further research orientation to correctly localize these ob-
jects for detection model training.

Figure 5: Example localization comparisons of WSDDN
(Bilen and Vedaldi 2016) (red bounding boxes) and SD-
LocNet (green bounding boxes) on PASCAL VOC 2007 (top
tow) and MS COCO 2014 (bottom row). SD-LocNet is able
to update the noisy labeled instances for better localization.

4.2 Experiments on MS COCO
To further validate the effectiveness of SD-LocNet, we eval-
uate it on a much larger dataset MS COCO 2014 (Lin et
al. 2014) with over 135k images spanning 80 categories, of
which around 80k images are used for train and around 40k
for val. We choose the train split for training and the val split
for test. Compared with PASCAL VOC 2012, MS COCO is
more challenging: it includes more images (135k vs 22k),
more categories (80 vs 20), more complex scenes (7.7 in-
stances per image vs 2.3 instances per image, averagely),
and more images with smaller objects. To our best knowl-
edge, few works have reported results on MS COCO under
weakly supervised paradigms.

Table 5 shows localization and detection results on MS
COCO 2014. We obtain 40.3% localization accuracy, im-
proving the baseline WSDDN (Bilen and Vedaldi 2016) by
14.2%. For detection, the PASCAL style evaluation (mAP
@.5) result is 21.6%, 8.8% better than (Diba et al. 2017b)
(12.8%). Some example localization results are shown in
Fig. 5 (bottom row). We also report the new COCO-style
criterion (mAP@[.5, .95]). Our method achieves 9.7% mAP
under the weakly supervised paradigm. For comparisons, the
last row shows results of fast-RCNN using ground truth ob-
ject annotations for training. Our results are promising con-
sidering the challenges of this dataset.

5 Conclusions
This paper proposed a robust optimization strategy to im-
prove localization accuracy in WSOL, which first selects re-
liable instances for model training, and then propagates ob-
ject priors of the reliable instances to the unreliable ones for
better localization. With our effective Localization Stability
Score measuring the reliability of candidate positive sam-
ples, we emphasize the reliable instances that are well local-
ized for robust learning. Then, we propagate object priors of
reliable instances to direct localization on difficult images
by explicitly imposing intra-similarity. An SD-LocNet is in-
stantiated from the proposed optimization strategy. Experi-
ments on benchmark datasets well confirm the effectiveness
of our proposed method.
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