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Abstract

Despite the remarkable progress in face recognition related
technologies, reliably recognizing faces across ages still re-
mains a big challenge. The appearance of a human face
changes substantially over time, resulting in significant intra-
class variations. As opposed to current techniques for age-
invariant face recognition, which either directly extract age-
invariant features for recognition, or first synthesize a face
that matches target age before feature extraction, we argue
that it is more desirable to perform both tasks jointly so
that they can leverage each other. To this end, we propose
a deep Age-Invariant Model (AIM) for face recognition in
the wild with three distinct novelties. First, AIM presents a
novel unified deep architecture jointly performing cross-age
face synthesis and recognition in a mutual boosting way. Sec-
ond, AIM achieves continuous face rejuvenation/aging with
remarkable photorealistic and identity-preserving properties,
avoiding the requirement of paired data and the true age of
testing samples. Third, we develop effective and novel train-
ing strategies for end-to-end learning the whole deep archi-
tecture, which generates powerful age-invariant face repre-
sentations explicitly disentangled from the age variation. Ex-
tensive experiments on several cross-age datasets (MORPH,
CACD and FG-NET) demonstrate the superiority of the pro-
posed AIM model over the state-of-the-arts. Benchmarking
our model on one of the most popular unconstrained face
recognition datasets IJB-C additionally verifies the promising
generalizability of AIM in recognizing faces in the wild.

Introduction
Face recognition is one of the most widely studied topics in
computer vision and artificial intelligence fields. Recently,
some approaches claim to have achieved (Taigman et al.
2014; Chen et al. 2017; Li et al. 2016a; Zhao et al. 2017) or
even surpassed (Schroff, Kalenichenko, and Philbin 2015;
Wang et al. 2018a; Zhao et al. 2018) human performance on
several benchmarks.

Despite the exciting progress, age variations still form a
major bottleneck for many practical applications. For ex-
ample, in law enforcement scenarios, finding missing chil-
dren after years, identifying wanted fugitives based on mug
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Figure 1: Disentangled Representation Learning and Photo-
realistic Cross-Age Face Synthesis for Age-Invariant Face
Recognition. Col. 1 & 8: Input faces of distinct identities
with various challenging factors (e.g., neutral, illumination,
expression, pose and occlusion). Col. 2 & 7: Synthesized
younger faces by our proposed AIM. Col. 3 & 6: Synthe-
sized older faces by our proposed AIM. Col. 4 & 5: Learned
facial representations by our proposed AIM, which are ex-
plicitly disentangled from the age variation. AIM can learn
age-invariant representations and synthesize photorealistic
cross-age faces effectively. Best viewed in color.

shots and verifying passports usually involve recognizing
faces across ages and/or synthesizing photorealistic age re-
gressed/progressed1 face images. These are extremely chal-
lenging due to several reasons: 1) Human face rejuvena-
tion/aging is a complex process whose patterns differ from
one individual to another. Both intrinsic factors (like hered-
ity, gender and ethnicity) and extrinsic factors (like environ-
ment and living styles) affect the aging process and lead to
significant intra-class variations. 2) Facial shapes and tex-
tures dramatically change over time, making learning age-
invariant patterns difficult. 3) Current learning based cross-
age face recognition models are limited by existing cross-
age databases (fgn 2007; Rothe, Timofte, and Gool 2015;
Chen, Chen, and Hsu 2015; Ricanek and Tesafaye 2006;

1Face regression (a.k.a face rejuvenation) and face progression
(a.k.a face aging) refers to rendering the natural rejuvenation/aging
effect for a given face, respectively.
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Moschoglou et al. 2017; Zhang and Qi 2017) due to their
small size, narrow elapse per subject and unbalanced gen-
ders, ethnicities and age span. As such, the performance of
most face recognition models degrades by over 13% from
general recognition on faces of (almost) the same age to
cross-age face recognition (Chen, Chen, and Hsu 2015). In
this work, we aim to improve automatic models for recog-
nizing unconstrained faces with large age variations.

According to recent studies (Gong et al. 2013; Wen, Li,
and Qiao 2016), face images of different individuals usu-
ally share common aging characteristics (e.g., wrinkles), and
face images of the same individual contain intrinsic features
that are relatively stable across ages. Facial representations
of a person in the latent space can hence be decomposed
into an age-specific component which reflects the aging ef-
fect and an identity-specific component which preserves in-
trinsic identity information. The latter would be invariant
to age variations and ideal for cross-age face recognition
when achievable. This finding inspires us to develop a novel
and unified deep neural network, termed as Age Invariant
Model (AIM). The AIM jointly learns disentangled iden-
tity representations that are invariant to age, and photore-
alistic cross-age face image synthesis that can highlight im-
portant latent representations among the disentangled ones
end-to-end. Thus they mutually boost each other to achieve
age-invariant face recognition. AIM takes as input face im-
ages of arbitrary ages with other potential distracting factors
like various illumination, expressions, poses and occlusion.
It outputs facial representations invariant to age variations
and meanwhile preserves discriminativeness across differ-
ent identities. As shown in Fig. 1, the AIM can learn age-
invariant representations and effectively synthesize natural
age regressed/progressed faces.

In particular, AIM extends from an auto-encoder based
Generative Adversarial Network (GAN) and includes a dis-
entangled Representation Learning sub-Net (RLN) and a
Face Synthesis sub-Net (FSN) for age-invariant face recog-
nition. RLN consists of an encoder and a discriminator that
compete with each other to learn discriminative and age-
invariant representations. It introduces cross-age domain ad-
versarial training to promote encoded features that are indis-
tinguishable w.r.t. the shift between multi-age domains, and
cross-entropy regularization with a label smoothing strat-
egy to constrain cross-age representations with ambiguous
separability. The discriminator incorporates dual agents to
encourage the representations to be uniformly distributed
to smooth the age transformation while preserving iden-
tity information. The representations are then concatenated
with a continuous age condition code to synthesize age re-
gressed/progressed face images, such that the learned rep-
resentations are explicitly disentangled from age variations.
FSN consists of a decoder and a local-patch based discrimi-
nator that compete with each other to synthesize photorealis-
tic cross-age face images. FSN uses an attention mechanism
to guarantee robustness to large background complexity and
illumination variance. The discriminator incorporates dual
agents to add realism to synthesized cross-age faces while
forcing the generated faces to exhibit desirable rejuvena-
tion/aging effects.

Extensive experiments on several standard cross-
age datasets (MORPH (Ricanek and Tesafaye 2006),
CACD (Chen, Chen, and Hsu 2015) and FG-NET (fgn
2007)) demonstrate the superiority of AIM over the state-
of-the-arts. Benchmarking AIM on one of the most popular
unconstrained face recognition datasets IJB-C (Maze et al.
2018) additionally verifies its promising generalizability in
recognizing faces in the wild.

Our contributions are summarized as follows.
• We propose a novel deep architecture unifying cross-age

face synthesis and recognition in a mutual boosting way.
• We develop effective end-to-end training strategies for

the whole deep architecture to generate powerful age-
invariant facial representations explicitly disentangled
from the age variations.

• The proposed model achieves continuous face rejuvena-
tion/aging with remarkable photorealistic and identity-
preserving properties, avoiding the requirement of paired
data and true age of testing samples.

Related Work
Age-Invariant Representation Learning
Conventional approaches often leverage robust local de-
scriptors (Ramanathan and Chellappa 2006a; Gong et al.
2013; Sungatullina et al. 2013; Gong et al. 2015; Li et al.
2016b) and metric learning (Weinberger and Saul 2009;
Ling et al. 2010; Chen et al. 2013) to tackle age vari-
ance. For instance, (Ramanathan and Chellappa 2006a) de-
velop a Bayesian classifier to recognize age difference and
perform face verification across age progression. (Gong et
al. 2013) propose Hidden Factor Analysis (HFA) for age-
invariant face recognition that separates aging variations
from identity-specific features. (Weinberger and Saul 2009)
improve the performance by distance metric learning. (Ling
et al. 2010) propose Gradient Orientation Pyramid (GOP)
for cross-age face verification. In contrast, deep learning
models often handle age variance through using a single
age-agnostic or several age-specific models with pooling
and specific loss functions (Wen, Li, and Qiao 2016; Zheng,
Deng, and Hu 2017; Xu, Liu, and Ye 2017; Lin et al. 2017;
Wang et al. 2018b). For instance, (Cheng et al. 2017) pro-
pose an enforced softmax optimization strategy to learn ef-
fective and compact deep facial representations with re-
duced intra-class variance and enlarged inter-class distance.
(Wen, Li, and Qiao 2016) propose a Latent Factor guided
Convolutional Neural Network (LF-CNN) model to learn
age-invariant deep features. (Zheng, Deng, and Hu 2017)
propose an Age Estimation guided CNN (AE-CNN) model
to separate aging variations from identity-specific features.
(Wang et al. 2018b) propose an Orthogonal Embedding
CNN (OE-CNN) model to decompose deep facial represen-
tations into two orthogonal components to represent age-
and identity-specific features.

Cross-Age Face Synthesis
Previous methods can be roughly divided into physical mod-
eling based and prototype based. The former approaches
model the biological patterns and physical mechanisms of
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aging, including muscles (Suo et al. 2012), wrinkles (Ra-
manathan and Chellappa 2008), and facial structure (Ra-
manathan and Chellappa 2006b). However, they usually re-
quire massive annotated cross-age face data with long elapse
per subject which are hard to collect, and they are compu-
tationally expensive. Prototype-based approaches (Burt and
Perrett 1995; Kemelmacher-Shlizerman, Suwajanakorn, and
Seitz 2014) often divide faces into groups by ages and se-
lect the average face of each group as the prototype. The
differences in prototypes between two age groups are then
considered as the aging pattern. However, the aged face
generated from the averaged prototype may lose person-
ality information. Most of subsequent approaches (Wang
et al. 2012; Yang et al. 2016) are data-driven and do not
rely much on the biological prior knowledge, and the ag-
ing patterns are learned from training data. Though im-
prove the results, these methods suffer ghosting artifacts
on the synthesized faces. More recently, deep generative
networks are exploited. For instance, (Wang et al. 2016)
propose a smooth face aging process between neighboring
groups by modeling the intermediate transition states with
Recurrent Neural Network (RNN). (Zhang and Qi 2017)
propose a Conditional Adversarial Auto-Encoder (CAAE)
and achieve face age regression/progression in a holis-
tic framework. (Zhu et al. 2018) propose a Conditional
Multi-Adversarial Auto-Encoder with Ordinal Regression
(CMAAE-OR) to predict facial rejuvenation and aging.
(Song et al. 2018) propose a Dual conditional GANs (Dual
cGANs) where the primal cGAN transforms a face image to
other ages based on the age condition, while the dual one
learns to invert the task.

Our model differs from them in following aspects: 1) AIM
jointly performs cross-age face synthesis and recognition
end-to-end to allow them to mutually boost each other for
addressing large age variance in unconstrained face recog-
nition. 2) AIM achieves continuous face rejuvenation/aging
with remarkable photorealistic and identity-preserving prop-
erties, and do not require paired data and true age of test-
ing samples. 3) AIM generates powerful age-invariant face
representations explicitly disentangled from age variations
through cross-age domain adversarial training and cross-
entropy regularization with a label smoothing strategy.

Age-Invariant Model
As shown in Fig. 2, the proposed Age-Invariant Model
(AIM) extends from an auto-encoder based GAN, and con-
sists of a disentangled Representation Learning sub-Net
(RLN) and a Face Synthesis sub-Net (FSN) that jointly learn
discriminative and robust facial representations disentangled
from age variance and perform attention-based face rejuve-
nation/aging end-to-end. We now detail each component.

Disentangled Representation Learning
Matching face images across ages is demanded in many
real-world applications. It is mainly challenged by vari-
ations of an individual at different ages (i.e. large intra-
class variations) or caused by aging (e.g. facial shape and
texture changes), and inevitable entanglement of unrelated

(statistically independent) components in the deep features
extracted from a general-purpose face recognition model.
Large intra-class variations usually result in erroneous cross-
age face recognition and entangled facial representations po-
tentially weaken the model’s robustness in recognizing faces
with age variations. We propose a GAN-like Representation
Learning sub-Net (RLN) to learn discriminative and robust
identity-specific facial representations disentangled from
age variance, as illustrated in Fig. 2.

In particular, RLN takes the encoder GθE (with learn-
able parameters θE) as the generator : RH×W×C 7→ RC′

for facial representation learning, where H , W , C and C ′
denote the input image height, width, channel number and
the dimensionality of the encoded feature f , respectively. f
preserves the high-level identity-specific information of the
input face image through several carefully designed regu-
larizations. We further concatenate f with a continuous age
condition code to synthesize age regressed/progressed face
images, such that the learned representations are explicitly
disentangled from age variations.

Formally, denote the input RGB face image as x and the
learned facial representation as f . Then

f := GθE (x). (1)

The key requirements for GθE include three aspects. 1)
The learned representation f should be invariant to age vari-
ations and also well preserve the identity-specific compo-
nent. 2) It should be barely possible for an algorithm to iden-
tify the domain of origin of the observation x regardless of
the underlying gap between multi-age domains. 3) f should
obey uniform distribution to smooth the age transformation.

To this end, we propose to learn θE by minimizing the
following composite losses:

LGθE
= −λ1Lcad + λ2Lcer − λ3Ladv1

+ λ4Lip

− λ5Ladv2
+ λ6Lae + λ7Lmc + λ8Ltv + λ9Latt,

(2)
where Lcad is the cross-age domain adversarial loss for fa-
cilitating age-invariant representation learning via domain
adaption, Lcer is the cross-entropy regularization loss for
constraining cross-age representations with ambiguous sep-
arability, Ladv1

is the adversarial loss for imposing the uni-
form distribution on f , Lip is the identity preserving loss for
preserving identity information,Ladv2

is the adversarial loss
for adding realism to the synthesized images and alleviating
artifacts, Lae is the age estimation loss for forcing the syn-
thesized faces to exhibit desirable rejuvenation/aging effect,
Lmc is the manifold consistency loss for encouraging input-
output space manifold consistency, Ltv is the total variation
loss for reducing spiky artifacts,Latt is the attention loss for
facilitating robustness enhancement via an attention mecha-
nism, and {λk}k=9

1
are weighting parameters among differ-

ent losses.
In order to enhance the age-invariant representation learn-

ing capacity, we adopt Lcad to promote emergence of fea-
tures encoded by GθE that are indistinguishable w.r.t. the
shift between multi-age domains, which is defined as

Lcad =
1

N

∑
i

−yilog[Cϕ(fi)]− (1− yi)log[1−Cϕ(fi)], (3)
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Figure 2: Age-Invariant Model (AIM) for face recognition in the wild. AIM extends from an auto-encoder based GAN and
includes a disentangled Representation Learning sub-Net (RLN) and a Face Synthesis sub-Net (FSN) that jointly learn end-
to-end. RLN consists of an encoder (GθE ) and a discriminator (Dφ1 ) that compete with each other to learn discriminative
and robust facial representations (f ) disentangled from age variance. It is augmented by cross-age domain adversarial train-
ing (Lcad) and cross-entropy regularization with a label smoothing strategy (Lcer). FSN consists of a decoder (GθD ) and a
local-patch based discriminator (Dφ2

) that compete with each other to achieve continuous face rejuvenation/aging (x̂) with
remarkable photorealistic and identity-preserving properties. It introduces an attention mechanism to guarantee robustness to
large background complexity and illumination variance. Note AIM does not require paired training data nor true age of testing
samples. Best viewed in color.

where ϕ denotes the learnable parameters for the domain
classifier, and yi ∈ {0, 1, . . . } indicates which domain fi is
from. Minimizing Lcad can reduce the domain discrepancy
and help the generator achieve similar facial representations
across different age domains, even if training samples from
a domain are limited. Such adapted representations are pro-
vided by augmenting the encoder of GθE with a few stan-
dard layers as the domain classifier Cϕ, and a new gradient
reversal layer to reverse the gradient during optimizing the
encoder (i.e., gradient reverse operator as in Fig. 2), as in-
spired by (Ganin et al. 2016).

If using Lcad alone, the results tend to be sub-optimal,
because searching for a local minimum of Lcad may go
through a path that resides outside the manifold of de-
sired cross-age representations with ambiguous separability.
Thus, we combine Lcad with Lcer to ensure the search re-
sides in that manifold and produces age-invariant facial rep-
resentations, where Lcer is defined as

Lcer =
1

N

∑
i

−ȳilog[Rψ(fi)]− (1− ȳi)log[1−Rψ(fi)], (4)

where ψ denotes the learnable parameters for the regularizer,
and ȳi ∈ { 1n ,

1
n , . . . } denotes the smoothed domain indica-

tor.
Ladv1

is introduced to impose a prior distribution (e.g.,
uniform distribution) on f to evenly populate the latent

space with no apparent “holes”, such that smooth age trans-
formation can be achieved:

Ladv1 =
1

N

∑
i

−yilog[Dφ1(fi)]− (1− yi)log[1−Dφ1(f∗
i )],

(5)
where φ1 denotes the learnable parameters for the discrim-
inator, f∗i ∼ U(f) denotes a random sample from uniform
distribution U(f), and yi denotes the binary distribution in-
dicator.

To facilitate this process, we leverage a Multi-Layer
Perceptron (MLP) as the discriminator Dφ1

, which is very
simple to avoid typical GAN tricks. We further augment Dφ1

with an auxiliary agent Lip to preserve identity information:

Lip =
1

N

∑
i

−yilog[Dφ1(fi)]− (1−yi)log[1−Dφ1(fi)], (6)

where yi denotes the identity ground truth.

Attention-based Face Rejuvenation/Aging
Photorealistic cross-age face images are important for face
recognition with large age variance. A natural scheme is to
generate reference age regressed/progressed faces from face
images of arbitrary ages to match target age before feature
extraction or serve as augmented data for learning discrimi-
native models. We then propose a GAN-like Face Synthesis
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sub-Net (FSN) to learn a synthesis function that can achieve
both face rejuvenation and aging in a holistic, end-to-end
manner, as illustrated in Fig. 2.

In particular, FSN leverages the decoder GθD (with
learnable parameters θD) as the generator: RC′+C′′ 7→
RH×W×C for cross-age face synthesis, where C ′′ denotes
the dimensionality of the age condition code concatenated
with f . The synthesized results present natural effects of re-
juvenation/aging with robustness to large background com-
plexity and bad lighting conditions through the carefully de-
signed learning schema.

Formally, denote the age condition code as c and the syn-
thesized face image as x̂. Then

x̂ := GθD (f, c). (7)
The key requirements for GθD include two aspects. 1) The

synthesized face image x̂ should visually resemble a real one
and preserve the desired rejuvenation/aging effect. 2) Atten-
tion should be paid to the most salient regions of the image
that are responsible for synthesizing the novel aging phase
while keeping the rest elements such as glasses, hats, jewel-
ery and background untouched.

To this end, we propose to learn θD by minimizing the
following composite losses:
LGθD

= −λ10Ladv2 + λ11Lae + λ12Lmc + λ13Ltv + λ14Latt,
(8)

where {λk}k=14
10

are weighting parameters among different
losses.
Ladv2

is introduced to push the synthesized im-
age to reside in the manifold of photorealistic age re-
gressed/progressed face images, prevent blur effect, and pro-
duce visually pleasing results:

Ladv2
=

1

N

∑
i

−yilog[Dφ2 (x̂i, ci,j)]− (1−yi)log[1−Dφ2 (x
R
i , ci,j)],

(9)

where φ2 denotes the learnable parameters for the discrim-
inator, ci,j denotes the age condition code to transform fi
into the jth age phase, and xRi denotes a real face image
with (almost) the same age with x̂i (not necessarily belong
to the same person).

To facilitate this process, we modify a CNN backbone as
a local-patch based discriminator Dφ2

to prevent GθD from
over-emphasizing certain image features to fool the cur-
rent discriminator network. We further augment Dφ2 with
an auxiliary agent Lae to preserve the desired rejuvena-
tion/aging effect. In this way, GθD not only learns to render
photorealistic samples but also learns to satisfy the target age
encoded by c:

Lae =
1

N

∑
i

‖ĉi,j − ci,j‖22 + ‖cRi,j − ci,j‖22, (10)

where ĉi,j and cRi,j denote the estimated ages from x̂i and
xRi , respectively.
Lmc is introduced to enforce the manifold consistency be-

tween the input-output space, defined as ‖x̂−x‖22/|x|, where
|x| is the size of x. LTV is introduced as a regularization
term on the synthesized results to reduce spiky artifacts:

LTV =

H,W∑
i,j

‖x̂i,j+1 − x̂i,j‖22 + ‖x̂i+1,j − x̂i,j‖22. (11)

In order to make the model focus on the most relevant
features, we adopt Latt to facilitate robustness enhancement
via an attention mechanism:

Latt =

H,W∑
i,j

‖xAi,j+1−xAi,j‖22 +‖xAi+1,j−xAi,j‖22 +‖xAi,j‖22, (12)

where xA denotes the attention score map which serves as
the guidance, and attends to the most relevant regions during
cross-age face synthesis.

The final synthesized results can be obtained by

x̂ = xA · xF + (1− xA) · x, (13)

where xF denotes the feature map predicted by the last
fractionally-strided convolution block.

Training and Inference
The goal of AIM is to use sets of real targets to learn
two GAN-like sub-nets that mutually boost each other and
jointly accomplish age-invariant face recognition. Each sep-
arate loss serves as a deep supervision within the hinged
structure benefiting network convergence. The overall ob-
jective function for AIM is

LAIM = −λ1Lcad + λ2Lcer − λ3Ladv1
+ λ4Lip

− λ5Ladv2
+ λ6Lae + λ7Lmc + λ8Ltv + λ9Latt.

(14)
During testing, we simply feed the input face image x

and desired age condition code c into AIM to obtain the
disentangled age-invariant representation f from GθE and
the synthesized age regressed/progressed face image x̂ from
GθD . Example results are visualized in Fig. 1.

Experiments
We evaluate AIM qualitatively and quantitatively under var-
ious settings for face recognition in the wild. In particular,
we evaluate age-invariant face recognition performance on
the MORPH (Ricanek and Tesafaye 2006), CACD (Chen,
Chen, and Hsu 2015) and FG-NET (fgn 2007) benchmark
datasets. We also evaluate unconstrained face recognition re-
sults on the IJB-C benchmark dataset (Maze et al. 2018) to
verify the generalizability of AIM.

Evaluations on the MORPH Benchmark
MORPH is a large-scale public longitudinal face database,
collected in real-world conditions with variations in age,
pose, expression and lighting conditions. It has two sepa-
rate datasets: Album1 and Album2. Album 1 contains 1,690
face images from 515 subjects while Album 2 contains
78,207 face images from 20,569 subjects. Both albums in-
clude meta data for age, identity, gender, race, eye coordi-
nates and date of acquisition. For fair comparisons, Album2
is used for evaluation. Following (Li, Park, and Jain 2011;
Gong et al. 2013), Album2 is partitioned into a training set
of 20,000 face images from 10,000 subjects with each sub-
ject represented by two images with largest gap, and an in-
dependent testing set consisting of a gallery set and a probe
set from the remaining subjects under two settings. Setting-
1 consists of 20,000 face images from 10,000 subjects with
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MORPH CAAE AIM (Ours)
AgingRejuvenation AgingRejuvenationInput

FG-NET CAAE AIM (Ours)
AgingRejuvenation AgingRejuvenationInput

IJB-C CAAE AIM (Ours)
AgingRejuvenation AgingRejuvenationInput

CACD CAAE AIM (Ours)
AgingRejuvenation AgingRejuvenationInput

Figure 3: Qualitative comparison of face rejuvenation/aging results on MORPH, CACD, FG-NET and IJB-C.

Table 1: Rank-1 recognition rates (%) on MORPH Album2.

Method Setting-1/Setting-2
HFA (Gong et al. 2013) 91.14/-

CARC (Chen, Chen, and Hsu 2014) 92.80/-
MEFA (Gong et al. 2015) 93.80/-

GSM (Lin et al. 2017) -/94.40
MEFA+SIFT+MLBP (Gong et al. 2015) 94.59/-

LPS+HFA (Li et al. 2016b) 94.87/-
LF-CNN (Wen, Li, and Qiao 2016) 97.51/-

AE-CNN (Zheng, Deng, and Hu 2017) -/98.13
OE-CNN (Wang et al. 2018b) 98.55/98.67

AIM (Ours) 99.13/98.81

each subject represented by a youngest face image as gallery
and an oldest face image as probe while Setting-2 consists of
6,000 face images from 3,000 subjects with the same crite-
ria. Evaluation systems report the Rank-1 identification rate.

The face recognition performance comparison of the pro-
posed AIM with other state-of-the-arts on MORPH (Ricanek
and Tesafaye 2006) Album2 in Setting-1 and Setting-2 is re-
ported in Tab. 1. With the mutual boosting learning scheme
of age-invariant representation and attention-based cross-
age face synthesis, our method outperforms the 2nd-best
by 0.58% and 0.14% for Setting-1 and Setting-2, respec-
tively. This confirms that our AIM is highly effective for
age-invariant face recognition. Visual comparison of face re-
juvenation/aging results by AIM and CAAE (Zhang and Qi
2017) is provided in Fig. 3 1st block, also validating advan-
tages of AIM over existing solutions.

Evaluations on the CACD Benchmark
CACD is a large-scale public dataset for face recognition
and retrieval across ages, with variations in age, illumina-
tion, makeup, expression and pose, aligned with the real-
world scenarios better than MORPH (Ricanek and Tesafaye
2006). It contains 163,446 face images from 2,000 celebri-
ties. The meta data include age, identity and landmark. How-
ever, CACD contains some incorrectly labeled samples and
duplicate images. For fair comparison, following (Chen,
Chen, and Hsu 2015), a carefully annotated version CACD
Verification Sub-set (CACD-VS) is used for evaluation. It
consists of 10 splits including 4,000 image pairs in total.

Table 2: Face recognition performance comparison on
CACD-VS.

Method Acc (%)
CAN (Xu, Liu, and Ye 2017) 92.30
VGGFace (Parkhi et al. 2015) 96.00
Center Loss (Wen et al. 2016) 97.48
MFM-CNN (Wu et al. 2018) 97.95

LF-CNN (Wen, Li, and Qiao 2016) 98.50
Marginal Loss (Deng, Zhou, and Zafeiriou 2017) 98.95

DeepVisage (Hasnat et al. 2017) 99.13
OE-CNN (Wang et al. 2018b) 99.20

Human, avg. (Chen, Chen, and Hsu 2015) 85.70
Human, voting (Chen, Chen, and Hsu 2015) 94.20

AIM (Ours) 99.38

Table 3: Face recognition performance comparison on FG-
NET.

Method Rank-1 (%)
Park et al. (Park, Tong, and Jain 2010) 37.40

Li et al. (Li, Park, and Jain 2011) 47.50
HFA (Gong et al. 2013) 69.00

MEFA (Gong et al. 2015) 76.20
CAN (Xu, Liu, and Ye 2017) 86.50

LF-CNN (Wen, Li, and Qiao 2016) 88.10
AIM (Ours) 93.20

Each split contains 200 genuine pairs and 200 imposter pairs
for cross-age verification task. Evaluation systems report
Acc and ROC as 10-fold cross validation.

The face recognition performance comparison of the pro-
posed AIM with other state-of-the-arts on CACD-VS (Chen,
Chen, and Hsu 2015) is reported in Tab. 2. Our method dra-
matically surpasses human performance and other state-of-
the-arts. In particular, AIM improves the Acc of the 2nd-best
by 0.18%. AIM also outperforms human voting performance
by 5.18%. To our best knowledge, this is the new state-of-
the-art, including unpublished technical reports. This shows
the learned facial representations by AIM are discriminative
and robust even with in-the-wild variations. Visual compari-
son of face rejuvenation/aging results by AIM and the state-
of-the-art method is provided in Fig. 3 2nd block, which
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Table 4: Face recognition performance comparison on IJB-C.

Method TAR@FAR=10−5 TAR@FAR=10−4 TAR@FAR=10−3 TAR@FAR=10−2

GOTS (Maze et al. 2018) 0.066 0.147 0.330 0.620
FaceNet (Schroff, Kalenichenko, and Philbin 2015) 0.330 0.487 0.665 0.817

VGGFace (Parkhi et al. 2015) 0.437 0.598 0.748 0.871
VGGFace2 ft (Cao et al. 2018) 0.768 0.862 0.927 0.967

MN-vc (Xie and Zisserman 2018) 0.771 0.862 0.927 0.968
AIM 0.826 0.895 0.935 0.962

again verifies effectiveness of our method for high-fidelity
cross-age face synthesis.

Evaluations on the FG-NET Benchmark
FG-NET is a popular public dataset for cross-age face recog-
nition, collected in realistic conditions with huge variability
in age covering from child to elder. It contains 1,002 face
images from 82 non-celebrity subjects. The meta data in-
clude age, identity and landmark. Since the size of FG-NET
is small, we follow the leave-one-out setting of (Li, Park,
and Jain 2011; Gong et al. 2013) for fair comparisons with
previous methods. In particular, we leave one image as the
testing sample and train (finetune) the model with remain-
ing 1,001 images. We repeat this procedure 1,002 times and
report the average rank-1 recognition rate.

The face recognition performance comparison of the pro-
posed AIM with other state-of-the-arts on FG-NET (fgn
2007) is reported in Tab. 3. AIM improves the 2nd-best by
5.10%. Qualitative comparisons for face rejuvenation/aging
are provided in Fig. 3 3rd block, which well shows the
promising potential of our method for challenging uncon-
strained face recognition contaminated with age variance.

Evaluations on the IJB-C Benchmark
IJB-C contains 31,334 images and 11,779 videos from 3,531
subjects, which are split into 117,542 frames, 8.87 images
and 3.34 videos per subject, captured from in-the-wild envi-
ronments to avoid the near frontal bias. For fair comparison,
we follow the template-based setting and evaluate models
on the standard 1:1 verification protocol in terms of True
Acceptance Rate (TAR)@False Acceptance Rate (FAR).

The face recognition performance comparison of the pro-
posed AIM with other state-of-the-arts on IJB-C (Maze
et al. 2018) unconstrained face verification protocol is re-
ported in Tab. 4. Our AIM beats the 2nd-best by 5.50% in
TAR@FAR=10−5, which verifies its remarkable generaliz-
ability for recognizing faces in the wild. Qualitative compar-
isons for face rejuvenation/aging are provided in Fig. 3 4th

block, which further shows the superiority of our method for
cross-age face synthesis under unconstrained condition.

Conclusion
We proposed a novel Age-Invariant Model (AIM) for
joint disentangled representation learning and photorealis-
tic cross-age face synthesis to address the challenging face
recognition with large age variations. Through carefully
designed network architecture and optimization strategies,

AIM learns to generate powerful age-invariant facial rep-
resentations explicitly disentangled from the age variation
while achieving continuous face rejuvenation/aging with re-
markable photorealistic and identity-preserving properties,
avoiding requirements of paired data and true age of testing
samples. Comprehensive experiments demonstrate the su-
periority of AIM over the state-of-the-arts. We envision the
proposed method would drive the age-invariant face recogni-
tion research towards real-world applications with presence
of age gaps and other complex unconstrained distractors.
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