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Abstract
Talking face generation aims to synthesize a sequence of face
images that correspond to a clip of speech. This is a chal-
lenging task because face appearance variation and seman-
tics of speech are coupled together in the subtle movements
of the talking face regions. Existing works either construct
specific face appearance model on specific subjects or model
the transformation between lip motion and speech. In this
work, we integrate both aspects and enable arbitrary-subject
talking face generation by learning disentangled audio-visual
representation. We find that the talking face sequence is ac-
tually a composition of both subject-related information and
speech-related information. These two spaces are then explic-
itly disentangled through a novel associative-and-adversarial
training process. This disentangled representation has an ad-
vantage where both audio and video can serve as inputs for
generation. Extensive experiments show that the proposed ap-
proach generates realistic talking face sequences on arbitrary
subjects with much clearer lip motion patterns than previous
work. We also demonstrate the learned audio-visual repre-
sentation is extremely useful for the tasks of automatic lip
reading and audio-video retrieval.

1 Introduction
Understanding talking faces visually is of great importance
to machine perception and communication. Humans can not
only guess the semantic meaning of words by observing lip
movement but also imagine the scenario when a specific
subject talks (i.e. face generation). Recent advances have
focused on automatic lip reading, which surpasses human-
level performance in certain domains. Here, we explore gen-
erating a video of arbitrary-subject speaking, which per-
fectly syncs with a specific speech where the speech infor-
mation can be represented by either a clip of audio or video.
We refer this problem as arbitrary-subject talking face gen-
eration, as shown in Fig. 1.

However, generating identity-preserving talking faces that
clearly conveys certain speech information is a challenging
task, since the continuous deformation of the face region
relates to both intrinsic subject traits (Liu et al. 2015) and
extrinsic speech vibrations. Previous efforts in this direc-
tion are mainly from computer graphics (Xie and Liu 2007;
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Figure 1: Problem description. Given a single face image of
a target person, this work aims to generate the talking video
based on the given speech information that is represented by
either a clip of video or an audio.

Wang et al. 2010; Fan et al. 2015; Suwajanakorn, Seitz,
and Kemelmacher-Shlizerman 2017; Thies et al. 2016). Re-
searchers construct specific 3D face model for a chosen
subject and the talking faces are animated by manipulating
3D meshes of the face model. However, these approaches
strongly rely on the 3D face model and are hard to scale
up to arbitrary identities. More recent attempts (Chung, Ja-
maludin, and Zisserman 2017) leverage the power of deep
generative model and learn to generate talking faces from
scratch. Though the resulting models can be applied to an ar-
bitrary subject, the generated face sequences are sometimes
blurry and not temporally meaningful. One important reason
is that the subject-related and speech-related information are
coupled together such that the talking faces are difficult to
learn in a purely data-driven manner.

To address the aforementioned problems, we integrate
the identity-related and speech-related information by learn-
ing disentangled audio-visual representation, as illustrated
in Fig. 2. We aim to disentangle a talking face sequence into
two complementary representations, one containing identity
information while the other containing speech information.
However, directly separating these two parts is not a trivial
task because the variations of face deformation can be ex-
tremely large considering the diversity of potential subjects
and speeches.

The key idea here is using audio-visual speech recogni-
tion (Chung and Zisserman 2016b; 2017) (i.e. recognizing
words from talking face sequence and audios, aka lip read-
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Figure 2: We propose to guide the information flow by using
labels to ensure the spaces contain discriminative semantic
information dispelling from each other. With the assumption
that Word-ID space is shared between visual and audio in-
formation, our model can reconstruct faces base on either
video or audio.

ing) as a probe task for associating audio-visual represen-
tations, and then employing adversarial learning to disen-
tangle the subject-related and speech-related information in-
side them. Specifically, we first learn a joint audio-visual
space where talking face sequence and its corresponding au-
dio are embedded together. It is achieved by enforcing the
lip reading result obtained from talking faces aligns with the
speech recognition result obtained from audio. Next, we fur-
ther utilize lip reading task to disentangle subject-related and
speech-related information through adversarial learning (Liu
et al. 2018b). Notably, we enforce one of the representations
extracted from talking faces to fool the lip reading system,
in the sense that it only contains subject-related information,
but not speech-related information. Overall, with the aid
of associative-and-adversarial training, we can jointly em-
bed audio-visual inputs and disentangle subject and speech-
related information of talking faces.

The contributions of this work can be summarized as
follows. (1) A joint audio-visual representation is learned
through audio-visual speech discrimination by associat-
ing several supervisions. Experiments show that the joint-
embedding improves the baseline of lip reading result on
LRW dataset (Chung and Zisserman 2016a). (2) Thanks to
the discriminative nature of our joint representation, we dis-
entangle the person-identity and speech information through
adversarial learning for better talking face generation. (3) By
unifying audio-visual speech recognition and audio-visual
synchronizing, we achieve arbitrary-identity talking face
generation from either video or audio speech as inputs in an
end-to-end framework, which synthesizes high-quality and
temporally-accurate talking faces.

2 Related Work
Generating Talking Faces. The work of synthesizing lip
motion from either audio (Xie and Liu 2007; Wang et
al. 2010; Fan et al. 2015; 2016; Suwajanakorn, Seitz,

and Kemelmacher-Shlizerman 2017; Chung, Jamaludin,
and Zisserman 2017) or generating moving faces from
videos (Thies et al. 2016; Liu et al. 2017b; Wiles, Koepke,
and Zisserman 2018) has long been a task of concern in both
the community of computer vision and graphics. However,
most synthesis works from audio require a large amount of
video footage of the target person for training, modeling, or
sampling. They could not transfer the speech information to
an arbitrary photo in the wild.

Chung, Jamaludin, and Zisserman (2017) use a setting
that is different from the traditional ones. They try to directly
generate the whole face image with different lip motions in
an image-to-image translation manner based on audios.

But their method base on data-driven training using an au-
toencoder, which leads to blurry results and lacks continuity.
More recently, Song et al. (2018) propose to use conditional
RNN adversarial network, and Chen et al. (2018) propose to
use correlation loss and three-stream GAN.

(Wiles, Koepke, and Zisserman 2018) use flow to gener-
ate high precision arbitrary-identity talking face based on
videos and claim to be able to produce videos based on
audios, but with no results shown. However, as a common
problem, without specific disentangling face and lip motion
information, they all cannot generate high-quality results.
Learning Audio-Visual Representation. The task of audio-
visual speech recognition is a recognition problem uses ei-
ther one or both video and audio as inputs. Using visual
information only for recognition is also referred to as Lip
Reading. A review of traditional methods for tackling this
task has been made in Zhou et al. (2014) thoroughly. In re-
cent years, this field develop quickly with the usage of con-
volutional neural networks (CNNs) and recurrent neural net-
works (RNNs) for end-to-end word-level (Chung and Zisser-
man 2016a; Stafylakis and Tzimiropoulos 2017), sentence-
level (Assael et al. 2016; Chung et al. 2017), and multi-
view (Chung and Zisserman 2017) lip reading. In the mean-
time, the exploration of this topic has been greatly pushed
forward by the build-up of large-scale word-level lip read-
ing dataset (Chung and Zisserman 2016a), and the large
sentence-level multi-view dataset (Chung and Zisserman
2017).

For the correspondence between human faces and audio
clips, a number of works have been proposed to solve the
problem of the audio-video synchronization between mouth
motion and speech (McAllister et al. 1997; Chung and Zis-
serman 2016b). Particularly, SyncNet (Chung and Zisser-
man 2016b; 2017) used two stream CNNs to sync audio
mfcc with 5 consecutive frames. In Chung and Zisserman
(2017), they further fixed the sync image feature as the pre-
training for lip reading, but the two tasks are still separate
from each other. Recently, works from (Nagrani, Albanie,
and Zisserman 2018b; 2018a) also attempt to learn the asso-
ciation between a human face and voice for identity recog-
nition instead of semantic level synchronization.

3 Approach
We propose Disentangled Audio-Visual System (DAVS),
an end-to-end trainable network for talking face genera-
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Figure 3: Illustration of our framework. Ev
p is the encoder that encodes Person-ID information from visual source to the pid

space, Ev
w and Ea

w are the Word-ID encoders that extract speech content information to wid space from video and audio.
Decoder G takes any combination of features in pid and wid space to generate faces. Dseq is a discriminator used for GAN
loss. The adversarial training part contains two extra classifiers Cw

p and Cp
w. The details of embedding the wid space and

adversarial training are shown in Fig 4 and 5.

tion by learning disentangled audio-visual representations,
as shown in Fig. 3.

We leverage both talking video Sv and its corresponding
audio Sa as training inputs. For learning the disentangled
audio-visual representations between Person-ID space (pid)
and the Word-ID space (wid), there are three encoder net-
works involved:

• Video to Word-ID space encoder (Ev
w): Ev

w learns to
embed the video frame sv into a visual representation
fvw which only contains speech-related information. It is
achieved by learning a joint embedding space which asso-
ciates video and audio that correspond to the same word.

• Audio to Word-ID space encoder (Ea
w): Ea

w learns to em-
bed the speech sa into an audio representation faw, which
resides in the shared space with fvw as introduced above.

• Video to Person-ID space encoder (Ev
p): Ev

p learns to em-
bed the video frame sv into a representation fvp which
only contains subject-related information. It is achieved
by the adversarial training process, forcing our target rep-
resentation fvp to fool the speech recognition system.

The whole idea of our pipeline is to first learn the dis-
criminative audio-visual joint space wid, then disentangle
it from the pid space. Finally to combine features from the
two spaces to get generation results. Specifically, for learn-
ing the wid space, we employ three supervisions: the super-
vision of Word-ID labels with shared classifier Cw for as-
sociating audio and visual signals with semantic meanings;
contrastive loss LC for pulling paired video and audio sam-
ples closer; and an adversarial training supervision on au-
dio and video features to make them indistinguishable. As
for the pid space, Person-ID labels from extra labeled face
data are used. For disentangling wid and pid spaces, adver-
sarial training is employed. As for generation, we introduce
L1-norm reconstruction loss LL1

and temporal GAN loss
LGAN for sharpness and continuity.

3.1 Learning Joint Audio-Visual Representation
We learn a joint audio-visual space that associates represen-
tations from both sources. We constrain the extracted audio
representation to be close to its corresponding visual rep-
resentation, forcing the embedded features to share a same
distribution and restricting faw ' fvw, so that G(fvp , f

v
w) '

G(fvp , f
a
w) can be achieved. While requiring information of

person facial identity flows from the pid space, the other
space of wid would have to be person-ID invariant. The task
of audio-visual speech recognition benefits us in achieving
the shared latent space assumption and creating a discrim-
inative space through mapping videos and audios to word
labels. The implementation of learning the space is shown
in Fig 4 (a). Then with the discriminative embedding, we
can take the advantage of adversarial training for thoroughly
information disentangling as described in Sec. 3.2
Sharing Classifier. After the embedded features are ex-
tracted from the wid encoders Ea

w, Ev
w to get F v

w =
[fvw(1), · · · , fvw(n)] and F a

w = [faw(1), · · · , faw(n)], normally
they would be fed into different classifiers for visual and au-
dio speech recognition. Here we share the classifier for both
the modalities to enforce them to share their distributions.
As a classifier’s weight wj tend to fall into the center of the
clustering of the features belonging to the j’th class, through
sharing the weights, the features between both modalities are
pulled towards the centroid of the class (Liu et al. 2018a).
The supervision is denoted as Lw.
Contrastive Loss. As the problem of mapping audio and
visual together is very similar to feature mapping (Chopra,
Hadsell, and LeCun 2005), retrieval and particularly the
same as lip sync (Chung and Zisserman 2016b), we adopted
the contrastive loss which aims at bringing closer paired
data while dispelling unpaired as a baseline. During train-
ing, for a batch of N audio-video samples, the mth and nth
sample are drawn with labels lm=n = 1 while the others
lm6=n = 0. The distance metric used to measure the dis-
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Figure 4: Illustration of embedding the audio-visual shared
space wid. The encoded features F v

w = [fvw(1), · · · , fvw(n)]

and F a
w = [faw(1), · · · , faw(n)] are constrained by contrastive

loss Lc, classification loss Lw and domain adversarial train-
ing LD

adv .

tance between F a
w(m) and F v

w(n) here is the euclidean norm
dmn = ‖F v

w(m)−F a
w(n)‖2. The objective can be written as:

LC =

N,N∑
n=1,m=1

(lmndmn + (1− lmn)max(1− dmn, 0))

(1)

During our implementation, all features F v
w, F

a
w used in this

loss are normalized first.
Domain Adversarial Training. To further push the face and
audio features to be in the same distribution, we apply a do-
main adversarial training. An extra two-class domain classi-
fier is appended for distinguishing the source of the feature.
The audio and face encoders are then trained to prevent the
classifier from success. This is mostly a simple version of
the adversarial training described in section 3.2. We refer to
the objective of this method as LD

adv .

3.2 Adversarial Training for Latent Space
Disentangling

In this section, we describe how we disentangle the subject-
related and speech-related information in the joint embed-
ding space using adversarial training.

Specifically, we would like the Person-ID feature fvp to
be free of Word-ID information. The discriminator could
be formed to be a classifier Cw

p to map the collection of
F v
p = [fvp (1)

, · · · , fvp (n)
] to the Nw Word-ID classes. The

objective function for training the classifier is the same as
softmax cross-entropy loss. However, the parameter updat-
ing is only performed on Cw

p , where pwj is the one-hot label
of the identity classes:

Lwdis
p (Cw

p |Ev
p) = −

Nw∑
j=1

pw
j log(softmax(Cw

p (F
v
p ))j). (2)

Then we update the encoder while fixing the classifier. The
way to ensure that the features have lost all information
about speech information is that it produces the same predic-
tion for all classes after being sent into Cw

p . One way to form
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Figure 5: Procedure of adversarial training for dispelling
wid information from pid space. The training for classifier
Cw
p is illustrated on the left and encoder Ev

p on the right.
The weights are updated on solid lines but not on the dashed
lines.

this limitation is to assign the probabilities of each word-
label to be 1

Nw
in softmax cross-entropy loss. The problem

of this loss is that it would still backward gradient for updat-
ing parameters even if it reaches the minimum, so we pro-
pose to implement the loss using Euclidean distance:

Lw
p (E

v
p|Cw

p ) =

Nw∑
j=1

‖softmax(Cw
p (F

v
p ))j −

1

Nw
‖22. (3)

The dual feature fvw should also be free of pid information
accordingly, so the loss for encoding pid information from
each fvw using classifier Cp

w and loss for wid encoder Ev
w to

dispel pid information can be formed as follows:

Lpdis
w (Cp

w|Ev
w) = −

Np∑
j=1

pp
j log(softmax(Cp

w(f
v
w))j), (4)

Lp
w(E

v
w|Cp

w) =

Np∑
j=1

‖softmax(Cp
w(f

v
w))j −

1

Np
‖22. (5)

Np is the number of person identities in the training set for
embedding pid space. We summarize the adversarial train-
ing procedure for classifier Cw

p and encoder Ev
p as Fig. 5.

3.3 Inference: Arbitrary-Subject Talking Face
Generation

In this section, we describe how we generate arbitrary-
subject talking faces using the disentangled representations
learned above. Combining pid feature fvp with either of the
video wid feature fvw or audio wid feature faw, our system
can generate a frame using the decoder G. The newly gener-
ated frame can be expressed as G(fvp , f

v
w), G(fvp , f

a
w).

Here we take synthesizing talking faces from
audio wid information as example. The genera-
tion results can be expressed as G(fvp (k)

, F a
w) =

{G(fvp (k)
, faw(1)), · · · ,G(fvp (k)

, faw(n))}, where fvp (k)

is the pid feature of the random kth frame, which acts

9302



Full input audio:

Input video:

Guidance input:

Generation from audio:

Generation from video:

Guidance input:

Figure 6: Qualitative results. The guidance input image is on the left . The upper half is the generation from video and lower
half is the generation from audio information.

as identity guidance. Our overall loss function consists
of a L1 reconstruction loss and a temporal GAN loss,
where a discriminator Dseq takes the generated sequence
G(fvp (k)

, F a
w) as input. These two terms can be formulated

as follows:

LL1
= ‖Sv − G(fvp (k)

, F a
w)‖1, (6)

LGAN = ESv [logDseq(S
v)] +

EFv
p ,Fa

w
[log(1− Dseq(G(fvp (k)

, F a
w)] (7)

The overall reconstruction loss can be written as LRe, α is a
hyper-parameter that leverages the two losses.

LRe = LGAN + αLL1
. (8)

The same procedure can be applied to generation from video
information by substituting F a

w with F v
w. As the reconstruc-

tion from audio and video can perform at the same time dur-
ing training, we use LRe to denote the overall reconstruction
loss function.

4 Experiments
Datasets. Our model is trained and evaluated on the LRW
dataset (Chung and Zisserman 2016a), which is currently the
largest word-level lip reading dataset with 1-of-500 diverse
word labels. For each class, there are more than 800 train-
ing samples and 50 validation/test samples. Each sample is
a one-second video with the target word spoken. Besides,

the identity-preserving module of the network is trained on
a subset of the MS-Celeb-1M dataset (Guo et al. 2016). All
the talking faces in the videos are detected and aligned us-
ing RSA algorithm (Liu et al. 2017a), and then resized to
256 × 256. For the audio stream, we follow the implemen-
tation in (Chung and Zisserman 2016b) to extract the mfcc
features at the sampling rate of 100Hz. Then we match each
image with a mfcc audio input with the size of 12 ∗ 20.

Network Architecture. We adopted a modified VGG-
M (Chatfield et al. 2014) as the backbone for encoder
Ev
p, and for encoder Ev

w, we modified a simple version of
FAN (Bulat and Tzimiropoulos 2017). The encoder Ea

w has
a similar structure as that used in Chung and Zisserman
(2016b). Meanwhile, our decoder contains 10 convolution
layers with 6 bilinear upsampling layers to obtain a full-
resolution output image. All the latent representations are
set to be 256-dimensional.

Implementation Details. We implemented DAVS using Py-
torch. The batch size is set to be 18 with 1e-4 learning rate
and trained on 6 Titan X GPUs. It takes about 4 epochs
for the audio-visual speech recognition and person-identity
recognition to converge and another 5 epochs for further tun-
ing the generator. The whole training process takes about a
week. Due to the alignment of the training set, the directly
generated results may suffer from a scale changing problem,
so we apply the subspace video stabilization (Liu et al. 2011)
for smoothness.
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Table 1: PSNR and SSIM scores for generation from audio
and video wid information with and without GAN loss.

Approach \ Score PSNR SSIM

Audio (LL1
) 25.4 0.859

Video (LL1
) 25.7 0.865

Audio (LRe) 26.7 0.883
Video (LRe) 26.8 0.884

Table 2: User study of our generation results and reproduced
baseline. The results are averaged over person and time.

Method \ Rate Realistic Lip-Audio Sync

Reproduced Baseline 44.1% 58.0%
Ours (Generation from Audio) 51.5% 72.3%
Ours (Generation from Video) 87.8% 88.4%

4.1 Results of Arbitrary-Subject Talking Face
Generation

At test time, the input identity guidance svp to Ev
p is any per-

son’s face image and only one of the source for speech infor-
mation Sv

w, Sa
w is needed to generate a sequence of images.

Quantitative Results. To verify the effectiveness of our
GAN loss for improving image quality, we evaluate the
PSNR and SSIM (Wang et al. 2004) score on the test set of
LRW based on reconstruction. We compare the results with
and without the GAN loss in Table 1. We can see that both
the scores are improved by changing LL1

to LRe.
Qualitative Results. Video results can be found on our
project page1. Here we show image results in Fig 6. The in-
put guidance photos are celebrities chosen randomly from
the Internet. Our model is capable of generating talking
faces based on both audios or videos. The focus of our
work is to improve audio guided generation results by using
joint audio-visual embedding, so we compare our work with
Chung, Jamaludin, and Zisserman (2017) at Fig 7. It can be
clearly seen that our results outperform theirs from both the
perspective of identity preserving and image quality.
User Study. We also conduct user study to investigate the
visual quality of our generated results comparing with a fair
reproduction of Chung, Jamaludin, and Zisserman (2017)
with our network structure. They are evaluated w.r.t two dif-
ferent criteria: whether participants could regard the gener-
ated talking faces as realistic (true or false), and how much
percent of the time steps the generated talking faces tempo-
rally sync with the corresponding audio. We generate videos
with the identity guidance to be 10 different celebrity pho-
tos. As for speech content information, we use clips from
the test set of LRW dataset and selections from the Voxceleb
dataset (Nagrani, Chung, and Zisserman 2017), which is not
used for training. There are overall 10 participants involved,
and the results are average over persons and video time
steps. The ground-truth is not included in the user study.

1https://liuziwei7.github.io/projects/TalkingFace

(i) Input (ii) Chung et al. (iii) Ours

Figure 7: Qualitative results comparing with Chung et al.
The mouth shapes are arbitrary.

Different subjects may behave different lip motion given the
same audio clip and it is not desirable for the ground-truth to
interfere with the participants’ perception. When conducting
the user study for lip sync evaluation, we asked the partici-
pants to only focus on whether the lip motion and given au-
dio are temporally synchronized. Their ratings indicate that
our generation results outperform the baseline by synchro-
nizing rate and the extent of realistic, according to Table 2.

4.2 Effectiveness of Audio-Visual Representation
In order to inspect the quality of our embedded audio-visual
representation, we evaluate the discriminative power and the
closeness of our co-embedded features.
Word-level Audio-Visual Speech Recognition. We report
audio-visual speech recognition accuracy on the test set of
LRW dataset. Containing the task of visual recognition (lip
reading) and audio recognition (speech recognition).

Our model structure for lip reading is similar to the
Multiple-Towers method which reaches the highest lip read-
ing results in Chung and Zisserman (2016a), so we con-
sider it as a baseline. The difference is that the concatena-
tion of features is performed at the spacial size of 1 × 1 in
our setting. This would not be a reasonable choice for this
task alone for the spatial information in images would be
lost across time. However, as shown in Table 3, our results
adding the contrastive loss alone outperforms the baseline.
With the help of sharing classifier and domain adversarial
training, the results improve a large margin.
Audio-Video Retrieval. To evaluate the closeness between
the audio and face features, we borrow protocols used in
the retrieval community. The retrieval experiments are con-
ducted on the test set of LRW with 25000 samples, which
means that given a test target video (audio), we try to find
the closest audio (video) based on the distance of wid fea-
tures F v

w, F a
w among all the test samples. Here we report the

R@1, R@10 and Med R measurements which is the same
as Faghri et al. (2017). As we can see in Table 3, with all
supervisions, the highest results can be achieved.
Qualitative Results. Figure 8 shows the sequence genera-
tion quality from audio with different supervisions provided
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Table 3: Audio-Visual Speech Recognition and 1:25000 audio-video retrieval results with different supervisions. The first
column is the supervisions, we use LC to represent contrastive loss, SC for sharing classifier, LD

adv for the adversarial training.

Audio-Visual Speech Recognition Video to Audio Retrieval Audio to Video Retrieval
Approach Visual acc. Audio acc. Combine acc. R@1 R@10 Med R R@1 R@10 Med R

(Chung and Zisserman 2016a) 61.1% - - - - - - - -
Ours (LC ) 61.8% 81.7 90.8% 29.3 56.3 6.0 29.8 56.3 6.0
Ours (LC + SC) 65.6% 91.6% 94.9% 38.8 66.4 3.0 44.5 70.9 2.0
Ours (LC + LD

adv) 63.5% 88.1% 93.7% 39.3 67.9 3.0 42.2 69.2 2.0
Ours (LC + SC + LD

adv) 67.5% 91.8% 95.2% 64.2 84.7 1.0 67.7 85.8 1.0

Table 4: Ablation study on disentangle mechanism.
Audio Generation to Source Video Generation to Source

Experiment Retrieval R@1 Landmark L2 ID Squared L2 Retrieval R@1 Landmark L2 ID Squared L2

Direct Replication 2.5 4.27 - 2.5 4.31 -
Without Disentanglement 53.8 3.94 0.212 90.8 3.60 0.194
With Disentanglement 60.5 3.48 0.188 95.3 2.85 0.174

above. We can observe from the figure that given the same
clip of audio, the duration of the mouth opening and to what
extent it is opened is affected by different supervisions. Shar-
ing the classifier apparently lengthens the time and strength
of the mouth opening to make the image closer to the ground
truth. Combining with the adversarial training makes the im-
age quality improves. Note that it is not a one-to-one map-
ping between audio and lip motion; different subjects may
behave different lip motion given the same audio clip so the
final results may not perform the same as the ground truth.

4.3 Identity-Speech Disentanglement
To validate our adversarial training is able to disentangle
speech information from person-ID branch, we use person-
ID encoder on every frame of a video and concatenate them
to get F v

p = {fvp(1), ..., f
v
p(n)}. Then we train an SVM to

map training samples to their wid labels and test the results,
which implies that we attempt to find the wid information
left in the pid encoder. The whole procedure is repeated be-
fore and after the feature disentanglement. Before the disen-
tanglement, 27.8% of the test set can be assigned to the right
class, but only 9.7% left after, indicating that considerable
speech content information within the encoder Ev

p is gone.
We then highlight the merits of adversarial disentangle-

ment from two aspects, identity preserving and lip sync
quality. For identity preserving, we use OpenFace’s squared
L2 similarity score as an indicator and compare the iden-
tity distance between the generated faces and the original
ones (lower indicates more similar). For lip sync quality, we
detect 20 landmarks using dlib library (King 2009) around
the lips to characterize its deviation from ground truth, mea-
sured by the averaged L2-norm (lower is better). Then we
conduct retrieval experiments between all generated results
and source videos based on extracted F v

wid features. Exper-
iments are also conducted on a direct replication of every
video clip, to prove that the retrieval results are affected by
lip motion rather than appearance features. From Table 4, we

Full input audio:

Corresponding video:

Guidance InputSupervision Generation from audio

Figure 8: Qualitative results for different types of supervi-
sions. The left indicates different supervisions. All the gen-
erations are audio-based.

can observe that adversarial disentanglement indeed helps
improves lip sync quality.

5 Conclusion
In this paper, we propose a novel framework called Disen-
tangled Audio-Visual System (DAVS), which generates high
quality talking face videos using disentangled audio-visual
representation. Specifically, we first learn a joint audio-
visual embedding space wid with discriminative speech in-
formation by leveraging the word-ID labels. Then we disen-
tangled the wid space from the person-ID pid space through
adversarial learning. Compared to prior works, DAVS has
several appealing properties: (1) A joint audio-visual rep-
resentation is learned through audio-visual speech discrim-
ination by associating several supervisions. The disentan-
gled audio-visual representation significantly improves lip
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reading performance; (2) Audio-visual speech recognition
and audio-visual synchronizing are unified in an end-to-end
framework; (3) Most importantly, arbitrary-subject talking
face generation with high-quality and temporal accuracy can
be achieved by our framework; both audio and video speech
information can be employed as input guidance.
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