

Large Scale Personalized Categorization of Financial Transactions

Christopher Lesner, Alexander Ran, Marko Rukonic, Wei Wang

Intuit Inc., Mountain View, CA

Abstract

A major part of financial accounting involves tracking and
organizing business transactions over and over each month
and hence automation of this task is of significant value to
the users of accounting software. In this paper we present a
large-scale recommendation system that successfully rec-
ommends company specific categories for several million
small businesses in US, UK, Australia, Canada, India and
France and handles billions of financial transactions each
year. Our system uses machine learning to combine frag-
ments of information from millions of users in a manner that
allows us to accurately recommend user-specific Chart of
Accounts categories. Accounts are handled even if named
using abbreviations or in a foreign language. Transactions
are handled even if a given user has never categorized a
transaction like that before. The development of such a sys-
tem and testing it at scale over billions of transactions is a
first in the financial industry.

 Introduction

A major part of financial accounting involves tracking and

organizing of business transactions using a customizable

filing system, which accountants call chart of accounts

(CoA). Every business transaction must be filed into some

suitable CoA account. This is a regular and tedious chore

for millions of accounting software users. Assuming it

takes a human about 3 seconds to pick the right CoA ac-

count for a typical financial transaction, last year the users

of Intuit's accounting software would have spent well over

a thousand man years on just this task if it were not auto-

mated by our systems.

Assigning correct categories to financial transactions is

important because errors on this task can lead to incorrect

financial statements, increased audit risk, tax and other

regulatory penalties, misinformed financial decisions and

displeased business owners / creditors / investors. For these

reasons the reliable automation of this task is of significant

economic value for everyone involved: business owners,

their accountants, vendors of accounting software, etc.

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper we present a large-scale recommendation

system that successfully recommends company specific

categories for several million small businesses in US, UK,

Australia, Canada, India and France and handles billions of

financial transactions each year. Our system uses machine

learning to combine fragments of information from mil-

lions of users in a manner that allows us to accurately rec-

ommend user-specific Chart of Accounts categories. Ac-

counts are handled even if named using abbreviations or in

a foreign language. Transactions are handled even if a giv-

en user has never categorized a transaction like that before.

The development of such a system and testing it at scale

over billions of transactions is a first in the financial indus-

try.

The rest of this paper is organized as follows: First we

classify the problem and identify a candidate solution from

related prior research. Next, we discuss what was neces-

sary to adopt this solution to our specific problem in order

to build the working system that has been serving millions

of Intuit QuickBooks customers for well over a year. We

then share results of experiments and our experience with

large scale model training and deployment. Here we em-

phasize the importance of different data representations:

one suitable for model training and another for model de-

ployment. Finally, we cover some practical aspects of

building a large-scale production system such as dealing

with firm real-time latency deadlines, and selecting and

optimizing servers for model builds vs. model deployment.

Last, we conclude with a discussion of user impact, bene-

fits and what we learned.

Understanding the Problem

Financial accounts track how much money was transferred

on a given date with a certain counterparty but unlike an

invoice or a receipt, a transaction from a bank or credit

card account generally does not have information about

items purchased or the services involved.

Despite this, it is still often possible to tell what a finan-

cial account transaction is about just by the attributes that

are available: (1) the financial institution that recorded the

9365

The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

transaction, (2) the financial account description, (3) the

date and time of the transaction, (4) the monetary amount

and (5) the counterparty with whom the transaction took

place. While transaction counterparty is the most important

attribute, it can be challenging to extract from financial

account transaction descriptions. This is because these de-

scriptions are strings of unknown structure that may con-

tain a mix of (1) counterparty name, (2) transaction loca-

tion, (3) time/date, (4) payer identity, (5) transaction refer-

ence ID #s, (6) payment method and (7) other details. The

structure and content of these descriptions may also depend

on the specific route from the point of sale to the bank that

issued the payment card.

A billion transactions with about ten million unique

counterparties yield about four hundred million unique

transaction descriptions and after normalization (case fold-

ing, digit folding, etc.) this reduces to about one hundred

million unique descriptions. As a consequence the transac-

tions of a single grocery merchant (at one location) appear

in well over 300 different formats. Fig 1 shows a few ex-

amples.

The State of Practice

It is possible to think of categorization of financial transac-

tions as a supervised classification problem. There are bil-

lions of transactions that have been categorized by small

businesses in the past that can be used as labeled data and

so a training and test set can be constructed for supervised

learning.

Unfortunately, learning from 10
9
 examples (categorized

financial transactions) how to classify on the order of 10
8

unique items (counterparties identified from transaction

descriptions) into 10
6
 (distinct accounts) is not likely to

result in a useful system simply because there is not nearly

enough data.

One could instead construct company specific classifiers

using as a labeled set the transactions that the business

owner has categorized in the past. Unfortunately, that also

does not change fundamentally the fact that there is not

enough data to achieve good coverage for future transac-

tions. Specifically, using historical data we know that on

average about 50% of the transactions are with new coun-

terparties. This means that even if future transactions with

the same counterparty are always categorized correctly and

new counterparty transactions are assigned to the most

popular account, the overall accuracy of such a classifier

would not exceed 60% in the common case.

Nevertheless company-specific classifiers are useful and

that is the state of the practice today among other vendors

of accounting software. While this simple approach solves

the easy part of the problem it is possible to do much better

by properly integrating the knowledge of how different

businesses categorize transactions into their own personal-

ized CoA.

Personalized Tag Recommendation

A well-studied problem that has a similar structure is

known as personalized tag recommendation (Hu, Lim, and

Jiang 2010), (Abel et al. 2011), (Steffen et al. 2009). A

typical use case involves users tagging a collection of re-

sources for social sharing (Jaeschke et al. 2007) such as for

example when users collaborate to tag websites, news or

research articles, photos, etc. (Sigurbjornsson and Van

Zwol 2008).

Unlike recommender systems that rely on a single

shared vocabulary as labels for resource categories, with

personalized tag recommendation users can have their

own, unique vocabulary of tags with new ones created

when necessary.

Personalized tag recommenders answer the question:

“Which personal tag of this user is most likely to apply to

this resource given the set of tags that have been assigned

to this resource by other users?” In financial account do-

main this corresponds to the question: “Which CoA ac-

count of this user is most likely to apply to this financial

transaction given the set of accounts to which this transac-

tion has been assigned by other users?”

A common approach to such questions is based on nor-

malized tag co-occurrence frequencies in resource annota-

tions using for example Jaccard index over tags when ap-

plied to the same resource.

For example, if are two tags that have been

applied to a number of different resources, their similarity

9366

SAFEWAY STORE 00000000

SAFEWAY STORE 00000000 SAN FRANCISCOCA

SAFEWAY STORE 00000000 SAN FRANCISCO CA

SAFEWAY STORE 00000000 SAN FRANC

SAFEWAY STORE 00000000 SAN FRANCISCO CA 00000 US

CHECK CRD PURCHASE 00/00 SAFEWAY STORE 00000000 SAN FRANCISCO CA

000000XXXXXX0000 000000000000000 ?MCC=0000 00

CHECK CRD PURCHASE 00/00 SAFEWAY STORE 00000000 SAN FRANCISCO CA

000000XXXXXXxxxxxxxxxxxx000 ?MCC=0000 000000000DA00

SAFEWAY STORE 00000000 SAN FRANCSAFEWAY STORE 00000000 SAN FRANCIS-

CO00000000000 000 Oct 00 @ 0:00pm

SAFEWAY STORE 00000000 SAN FRANCISCO, CA 00.00 USD @ 0.000000

PURCHASE
SAFEWAYSTORE 00000000 SAN FRANCISCO CA

SAFEWAY STORE 00000000 - SAN FRANCISCO, CA Reference Num-

ber:00000000000000000000000 Merchant Name: SAFEWAY STORE 00000000 Merchant

Information:SAN FRANCISCO CA Category: Retail/Department Stores

PURCHASE/ADVANCE (CHG-SAFEWAY STORE 00000000 SAN)To Principal: $00.00

SAFEWAY STORE 00000000POS PURCHASE MERCHANT PURCHASE TERMINAL

000000 SAFEWAY STORE 0000 0000 SAN FRANC CA 00-00-00 XXXXXXXXXXXX0000

Figure 1: Examples of transaction description variability.

can be expressed as the ratio between intersection of the

corresponding resource sets to their union:

 𝐽 = 𝐽 (,) =
| ∩ |

| ∪ |
 (1)

where stands for the set of resources to which tag
has been applied. Therefore, the problem of CoA account

recommendation can be thought of as a tensor:

 (2)

where U stands for the users, I for set of items and T for

the set of tags. A popular solution uses tensor factorization,

as described for example in (Steffen et al. 2009).

Personalized CoA Recommendation

Personalized tag recommendation had to be adopted to the

scale and structure of our problem domain:

1. Domain Scale: While in a typical social tagging

system 10
6
-10

8
 of items (resources) are tagged by

10
5
-10

6
 users using 10

4
-10

5
unique tags, personal-

ized transaction categorization handles 10
7
 counter-

parties (items) for 10
6
 users with 10

8
 accounts

(tags). This 10
3
-10

4
difference in scale requires care-

ful consideration of representation to maintain fea-

sibility of even the most effective of currently

known approaches.

2. Domain Structure: An important observation to be

made is that the number of distinct accounts exceeds

the number of distinct counterparties by a factor of

10-10
2
. At the same time the distribution of coun-

terparties per account and distribution of accounts

per counterparty have a definite asymmetry. See

Fig.2 and Fig.3.

As a result of scale difference and asymmetry of distri-

butions it is much more efficient to collect counterparty co-

occurrence statistics over accounts than account co-

occurrence statistics over counterparties.

Account Likelihood Ranking Model

Personalized transaction categorization assigns transaction

 to account according to maximum likelihood given

company specific CoA accounts and the transactions that

have been assigned to these CoA accounts so far.

For users who have already categorized transactions, we

use their previous counterparty => CoA accounts assign-

ment to guide future counterparty assignments – that is, if

the exact counterparty had been categorized before by a

given user, then their last used CoA account is our top rec-

ommendation. Otherwise we recommend the CoA account

with the collection of counterparties having the highest co-

occurrence with the transaction that is being classified.

More formally this can be described as follows. Let each

counterparty be represented as an n-dimensional vector of

its normalized co-occurrence with other counterparties:

 𝑇⃗ = (𝐽1 , 𝐽2 , … , 𝐽 , … , 𝐽𝑛) (3)

Where:

𝑖 = 1, 2, … , 𝑛

 0 ≤ 𝐽 ≤ 1

Then the likelihood for a counterparty to be categorized

into an account is given by:

 𝑃(𝒂 |𝒕) ∝ ∑ 𝑱𝒋𝒌
𝑻𝑘𝒂𝑖

 (4)

The final prediction then amounts to selecting n ac-

counts with the highest co-occurrence score.

We tested several different measures of counterparty co-

occurrence and evaluated their performance with a valida-

tion dataset.

One measure for counterparty co-occurrence is Kulczyn-

ski similarity index:

 𝐽 =
1

2
 (
| ∩ |

| ∩ |

| |
) (5)

9367

Figure 2: Counterparties per account
.

Figure 3: Accounts per counterparty.

Another is Jaccard index:

 𝐽 =
| ∩ |

| ∪ |
 =

| ∩ |

 | | − | ∩ |
 (6)

where is the number of accounts that have transac-

tions with counterparty ; | ∩ | is the number of ac-

counts that have transactions with both counterparty and

 ; | ∪ | is the number of accounts that have transac-

tions with either counterparty or .
Jaccard index being not null invariant is affected strong-

ly by asymmetry in frequencies of counterparties. That is,

the Jaccard similarity of a common counterparty with an

infrequent counterparty approaches 0 even though the two

counterparties are very likely to co-occur in the same ac-

count. In other words, Jaccard index loses information

from and for common counterparties.

The Kulczynski similarity index on the other hand is

null-invariant and preserves information even in the case of

asymmetric counterparty frequencies. In our experiments

however, we found that using Jaccard index gave us a

slightly better categorization accuracy. One explanation is

that our strategy gives preference to accounts that already

contain transactions with the given counterparty. If the user

has already categorized a given counterparty before, that

previous account assignment will be re-used as the predic-

tion when this counterparty needs to be categorized again.

That is for each user 𝑘,

 𝐽 = {
1, 𝑘

0,
 (7)

This strategy likely applies to transactions with a com-

mon counterparty thus masking the lack of null-invariance

of the Jaccard index.

Though the counterparty co-occurrence matrix

(𝑇⃗ 1, 𝑇⃗ 2, … , 𝑇⃗ 𝑛)
 could be in the order of 10

7
x 10

7
, it is very

sparse and can be efficiently reduced to fewer than 10
9

non-zero elements, making real time account scoring rela-

tively efficient.

In the real-time prediction, given a transaction from

user 𝑘, for every account which had transaction history,

we can calculate:

𝐽𝑎𝑖 = ∑ 𝑗𝑡̂𝑚
𝑚≠𝑡

(8)

where 𝑗𝑡̂𝑚 is the Jaccard index between counterparty
and (denotes all other counterparties that are coupled

with counterparty). And finally choose the account as:

 = m x
𝑎𝑖

(𝐽𝑎𝑖)

(9)

Figure 4: Distribution of precision and recall at individual ac-

count level for transaction categorization.

Figure 5: Categorization accuracy vs. overall model confidence.

Larger dots represent more transactions at given confidence.

Results from Experiments

Experiments were carried out using a sample of 10
9
 finan-

cial account transactions matched with their user assigned

CoA accounts.

Datasets were selected by full calendar month:

1. Training: 12 months of transactions were used to

generate the counterparty co-occurrence matrix

2. Validation: the month of transactions right after

training was used to calibrate model confidence

predictions.

3. Test: the month of transactions right after validation

was used to measure model performance.

Three metrics were tracked:

1. Accuracy: automatically categorized transactions

accepted by users without changes divided by the

total number of transactions imported by the users

from financial accounts.

2. Precision: number of transactions being categorized

correctly divided by the total number of predicted

transactions in a given user’s account.

3. Recall: number of transactions being categorized

correctly divided by the actual total number of

transactions in a given user’s account.

9368

As shown in Fig. 4 we care about the distribution of pre-

cision and recall, rather than just precision / recall as a sin-

gle number. Measured on the test set the model performs

consistently with accuracy above 70% having both high

precision and recall across users’ CoA accounts.

Model Confidence Prediction

Communicating prediction confidence to our users through

the UI allows them to build trust in the CoA account rec-

ommendations they review. The idea being that when us-

ers witness that high confidence predictions are almost

never wrong, their review of these transactions can be

quick and more of their time can be invested reviewing and

correcting just those transactions with low confidence CoA

recommendations.

Our model’s confidence is predicted in two ways:

1. For counterparties previously categorized, we

predict confidence using a linear function of the du-

ration since the last time a transaction with the same

counterparty was categorized by this same user. The

intuition being that the more recently a given user

categorized a given counterparty the more likely

they are to do it the same way again. For our da-

tasets a simple linear function fits our validation re-

sults reasonably well.

2. For counterparties not previously categorized

model confidence is predicted using the ratio of the

likelihood of most appropriate account vs. alterna-

tive accounts.

Fig. 5 shows that the confidence of our recommenda-

tions is highly correlated with the accuracy of recommen-

dations measured from user feedback. As intended, better

recommendations have higher predicted confidence and

users can indeed trust them more.

Figure 6: Stages of financial transaction processing.

How the Model is Used

QuickBooks offers users the ability to connect their finan-

cial accounts (banks / credit unions / investment / etc.) to

download transactions. What happens next is illustrated in

Fig 6. Upon download, each transaction undergoes analysis

to understand what it represents (withdrawal/deposit, pur-

chase/income, loan payment or disbursement, money trans-

fer, fee, etc.) and who the transaction is with (who the

counter-party is). Next our account likelihood ranking

model is applied and transactions are tentatively filed (au-

to-categorized) with respect to each user’s CoA filing sys-

tem
1
. In the final step users get an opportunity to ac-

cept/correct how their transactions have been filed and

their corrections are used to update the account likelihood

ranking model next time it is rebuilt.

Figure 7: Model Build Environment.

How the Model is Built

To keep production models fresh (and EU GDPR compli-

ant) we regularly rebuild them. This process has three main

steps as shown in Fig 7.

Data Extraction

Model builds start with extraction of just the table columns

that pertain to financial account transactions and CoA ac-

counts. From a data warehouse these columns are trans-

ferred to Vertica (Fig 7 step A) where additional projec-

1 Although accounting standards apply to CoAs, in practice what each
business tracks for accounting varies. Many users have distinct accounts
for their various business locations, rental properties, business vehicles,
etc. Consider how different a flower shop is from a law office from a
cement factory. CoAs also vary because what users are legally required
to track for government reporting varies between jurisdictions (county /
state / country – QuickBooks has users worldwide), and even in the same
jurisdiction CoAs can be impacted by new laws. For example, when tax
law changes what is and isn’t deductible, impacted business may have
accounts in their CoA that need to be split or new ones created.

9369

tions are added so that our model build data access patterns

are sequential (Knowledge Representation section explains

why this is important).

Model Build

The model build (computing the counterparty co-

occurrence sparse matrix – from here on also called the

coupling table) is carried out in Vertica as controlled by a

Python orchestration service. Once model tables are creat-

ed they are transferred from Vertica to Postgres (Fig 7 step

B) – in this step our knowledge representation is switched

from column store to row store. (See Knowledge Represen-

tation section).

Model Acceptance Testing

After model data is in Postgres an instance of the build

time model service is started, and a model service client

simulator is launched for model acceptance testing – it

replays a month of transactions. Model coverage and accu-

racy metrics are tracked and the model build is halted un-

less these metrics have acceptable values. On successful

test completion the model is compressed into RPM pack-

age files for distribution (Fig 7 Step C). The final step is to

install the RPMs on a node having hardware matching

what is used in production and to again launch the client

simulator to replay transaction history this time however

for model latency acceptance testing. Model acceptance

testing is split like this for two reasons:

1. Latency tests are not reliable unless they are per-

formed using OS and hardware matching production

runtime environment. (Further explained in Firm

Real-Rime Deadlines section.)

2. Model coverage and accuracy tests do not need pro-

duction hardware so these tests are launched right

away. If there is a model accuracy or coverage drop

(due to for example a change in some upstream sys-

tem that we do not control) automated tests catch

this early.

Firm Real-Time Deadlines

Some transactions involve merchants coupled to a small

number of other merchants. These are quick to classify

especially when the merchants involved are popular. Other

transactions involve merchants weakly coupled to hun-

dreds of merchants or to merchants which are relatively

rare. Such transactions take longer to classify because each

extra merchant requires a new b-tree index search and the

more obscure the merchant, the lower down in the cache

hierarchy the coupling table entries for that merchant are

likely to be.

On busy production servers popular merchants are likely

cached in RAM or even CPU, obscure merchants however

may be in parts of the index not cached. For this reason

some transactions can take 10
2

times longer to categorize

than others.

Due to this variability models must be latency tuned to

operate under firm real time deadlines. Deadlines are firm

because failing to show users their transactions on time is

far worse than if these transactions are missing account

recommendations.

Model Latency Tuning

Latency tuning involves pruning those entries from the

model tables which are least likely to influence recommen-

dations. Values that are tiny for example are unlikely to

make a difference.

With coupling tables smaller, fewer b-tree search steps

are needed and a larger portion of the coupling table b-tree

index can be cached so index searches are shorter and fast-

er. Yet small coupling tables contain less information and

as coupling table size is reduced model coverage and mod-

el accuracy both suffer.

During latency tuning we adjust this tradeoff between

model latency (due to coupling table size) and model cov-

erage/accuracy. Our goal in latency tuning is to make sure

models rarely if ever exceed firm real-time latency dead-

lines. If a deadline is missed, account predictions are late

they cannot be used; late predictions – even if correct – are

always counted as being incorrect.

Tuning coupling table sizes for latency also requires that

the tuning process sends transaction requests that are repre-

sentative of what happens in production:

1. transaction counterparties must be as diverse

2. counterparty order should be representative

Latency tuning with just a few transaction counterparties

is misleading because after the first hit the coupling table

entries associated with these are now high up the cache

hierarchy. A similar cache effect occurs even if you use all

possible counterparties but fail to mix up their order. To

avoid both of these problems, we tune models by using a

sequence of requests that plays back actual production

model usage from history.

Build vs. Runtime Servers

Our model is regularly refreshed to reflect changes in the

real world and comply with regulations such as GDPR. To

enable regular and timely model updates the build process

has to be performance optimized as well. However, the

characteristic patterns of data access during model training

are quite different from the interactive context at runtime:

1. Model build servers are selected and optimized for

sequential large IO throughput. These have RAID10

with small chunks and wide stripes (~12 HDDs

work in parallel). Filesystems are created with large

records and OS scheduler policies are set to favor

9370

throughput over latency. Four+ CPU socket servers

with NUMA work well.

2. Model runtime servers are selected and configured

to maximize number of small IO operations per se-

cond (IOPS). RAM is maximized and SSDs are

used for model data storage. The file system holding

the model is created with small records, and OS

scheduler policies are set to favor latency over

throughput. We avoid NUMA due to RAM latency

overheads it can impose.

Model runtime servers are dedicated for just one task, so

no other process competes for IO or cache. Virtual memory

/ swap are either disabled or model process memory is

locked to prevent being swapped out. This is all done so

that once a classifier node is running model response laten-

cies stay low and predictable.

Knowledge Representation

We represent knowledge differently when building models

vs. when using them:

1. During model builds knowledge is represented in-

side a column store database (Vertica) using projec-

tions in a de-normalized format with the same data

stored in various sort orders so access is sequential,

cache friendly and takes advantage of efficient col-

umn-wise compression boosting effective IO

throughput.

2. For model deployment knowledge is represented us-

ing tables in a row store database (Postgres). Here

tables are stored clustered on their primary key and

additional b-tree indexes are built such that the need

to access data beyond what is indexed is rare (“in-

dex only scans”).

The reason for this difference is twofold:

1. During model builds the data access patterns are

known in advance so in-memory and on-disk lay-

outs of data can be optimized for cache hierarchy

locality. However, when the model runs in produc-

tion we do not know in advance which users, ac-

counts and counterparties will be involved in any

incoming request hence our knowledge representa-

tion must be optimized to answer any request quick-

ly.

2. When the model runs in production there is a firm

real time latency deadline -- requests must be han-

dled in milliseconds because users are waiting; la-

tency concerns dominate over throughput concerns.

On the other hand, when a new model is being built

users are not waiting so latency is not a concern and

instead throughput concerns dominate because they

drive model refresh cost.

Model Deployment

Our model operates as a web service API deployed using a

cluster of identical classifier nodes all behind a load bal-

ancer as illustrated in Fig 8. Incoming requests first go to

the load balancer which then forwards the request to an

available classifier node. If the continuous load on the least

busy classifier node is too high, additional classifier nodes

are added. If the continuous load on the busiest classifier

node falls, the oldest classifier node is removed from the

load balancer pool and stopped. If a classifier node mal-

functions (e.g. timeouts on requests) the load balancer au-

tomatically replaces it with a new node thus healing the

service. This healing functionality is also used for zero

downtime upgrades such as when fresh models are de-

ployed – old classifier nodes are purposefully killed one at

a time and the load balancer replaces them with upgraded

versions.

Figure 8: Model Runtime Environment.

We use a shared nothing architecture because it makes

service deployment and scaling straightforward. For exam-

ple, when the number of incoming requests doubles the

number of running classifier instances is doubled. When

the number of incoming requests drops in half the number

of running classifier nodes is dropped in half. The ratio is

not quite exact because classifier node startup takes several

minutes so a number of classifiers nodes are always kept

around to handle spikes in demand while new nodes are

created.

User Impact and Benefits

The described ML-based categorization service was first

deployed to production for English language QuickBooks

(USA, Canada, UK: 2+ million users) in November 2016.

9371

Non-English global regions (France, India, etc.) were add-

ed in August 2017. Compared to the legacy systems that it

replaced, the new ML service classifies more transactions

(even those that are hard to classify) and at the same time it

does so at a higher accuracy.

Specifically, in direct A/B comparison tests the ML ser-

vice results in 56% fewer uncategorized transactions and

28% fewer errors. This represents a remarkable reduction

in the number of errors that must be corrected and in the

amount of manual work millions of QuickBooks users

have to do to file their financial transactions.

For a sense of scale, if – without automation – it takes 3

seconds to choose the right account for a financial transac-

tion then last year the users of Intuit's accounting software

would have spent well over 1,000 man years on this task.

Conclusions

We have presented a new method for automatic categoriza-

tion of financial transactions for small business accounting.

We shared lessons learnt with respect to differences in

data access patterns during model training and runtime

production deployment. We explained how these differ-

ences can be effectively supported by adopting column-

oriented data store for model training and row-oriented

store for runtime deployment.

We also discussed the requirements related to real-time

constraints on model runtime performance and suggested

ways to satisfy such constraints.

Our system has been deployed at scale and it handles

billions of financial transactions for millions of small busi-

nesses each year. Our solution combines fragments of in-

formation from millions of users in a manner that allows us

to accurately recommend user-specific Chart of Accounts

categories. Accounts are handled even if named using ab-

breviations or in a foreign language. Transactions are han-

dled even if a given user has never categorized a transac-

tion like that before. The development of such a system

and testing it at scale over billions of transactions is a first

in the financial industry.

Our work greatly benefited from research in machine

learning for personalized tag recommendations and tensor

factorization.

Our ability to scale the system relies heavily on training

and deploying the model on top of mature database tech-

nology that also supports efficient regular model updates

necessary to adapt to new merchants, new small businesses

and constant change in business and accounting practices.

References

Abel, F.; Araujo, S.; Gao, Q.; and Houben, G. 2011. Analyzing
Cross-System User Modeling on the Social Web. In Web Engi-

neering: 11th International Conference, 28-43. Springer-Verlag,
Berlin.

Jaeschke, L. B.; Marinho, A.; Hotho, L.; Schmidt-Thieme, L.; and
Stumme, G. 2007. Tag recommendations in folksonomies. In
Pro-ceedings of the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases, 506-514. Lecture
Notes in Computer Science, vol 4702. Springer, Berlin, Heidel-
berg.

Hu, M.; Lim, E.; and Jiang, J. 2010. A Probabilistic Approach to
Personalized Tag Recommendation. In 2010 IEEE Second Inter-
national Conference on Social Computing, 33-40. IEEE Comput-
er Society Washington, DC, USA.

Sigurbjornsson, B., and Van Zwol, R. 2008. Flickr tag recom-
mendation based on collective knowledge. In Proceedings of the
17th Inter-National Conference on World Wide Web, 327-336.
ACM New York, NY, USA.

Steffen, R.; Marinho, L.; Nanopoulos, A.; and Schimdt-Thieme,
L. 2009. Learning optimal ranking with tensor factorization for
tag recommendation. In KDD ’09: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 727-736. ACM New York, NY, USA.

9372

