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Abstract

Research on the microbiome is an emerging and crucial
science that finds many applications in healthcare, food
safety, precision agriculture and environmental studies. Huge
amounts of DNA from microbial communities are being se-
quenced and analyzed by scientists interested in extracting
meaningful biological information from this big data. Ana-
lyzing massive microbiome sequencing datasets, which em-
bed the functions and interactions of thousands of different
bacterial, fungal and viral species, is a significant computa-
tional challenge. Artificial intelligence has the potential for
building predictive models that can provide insights for spe-
cific cutting edge applications such as guiding diagnostics
and developing personalised treatments, as well as maintain-
ing soil health and fertility. Current machine learning work-
flows that predict traits of host organisms from their com-
mensal microbiome do not take into account the whole ge-
netic material constituting the microbiome, instead basing the
analysis on specific marker genes. In this paper, to the best
of our knowledge, we introduce the first machine learning
workflow that efficiently performs host phenotype prediction
from whole shotgun metagenomes by computing similarity-
preserving compact representations of the genetic material.
Our workflow enables prediction tasks, such as classification
and regression, from Terabytes of raw sequencing data that do
not necessitate any pre-prossessing through expensive bioin-
formatics pipelines. We compare the performance in terms of
time, accuracy and uncertainty of predictions for four differ-
ent classifiers. More precisely, we demonstrate that our ML
workflow can efficiently classify real data with high accuracy,
using examples from dog and human metagenomic studies,
representing a step forward towards real time diagnostics and
a potential for cloud applications.

Glossary
Phenotype: observable characteristics of an organism re-
sulting from the interaction of its gene products with the en-
vironment.
Microbiome: collective genomes of a microbial community
inhabiting a particular environment such as a surface of the
human body.
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Metagenomics: study of the genetic material of microorgan-
isms constituting the microbiome.
Read: inferred sequence of nucleotides corresponding to all
or part of a single DNA fragment, as measured in a sequenc-
ing experiment.
Whole metagenome shotgun sequencing: sequencing of
the total genetic material of a microbial community.
Taxonomy: the process of naming and classifying organ-
isms into groups within a larger system, according to their
similarities.
Marker genes: gene families that can be used to quantify
taxonomic diversity.
OTUs - Operational Taxonomy Units: cluster of microor-
ganisms grouped by sequence similarity of a specific marker
gene (such as 16S rRNA) and representing a taxon.

Introduction
A research objective of great interest in the last decade is to
be able to understand the structure, organization, and func-
tionality of the microbiome and how this affects, and is
affected by, the environment that surrounds it. The micro-
biome is made up of the whole genetic material and interac-
tions of a community of micro-organisms (bacteria, archaea,
viruses or fungi) that live in a natural environment. The envi-
ronment could be an entire organism (e.g. a human being or
a mouse), part of it (e.g. the intestine, the skin or the mouth)
or a natural habitat (e.g. water or soil).

Trillions of microbes have evolved and continue to live in
the human body and can play a positive or negative role in
determining the well-being of individuals. An imbalance in
the microbial community can lead to the development and
progression of various diseases, such as infections, respi-
ratory diseases, metabolic and even psychological illnesses
(e.g. depression and anxiety).

Understanding the relationship between microbial com-
munities and the health or disease state of individuals can
help with designing effective targeted treatments focused
on re-balancing the microbiome. On the other hand, micro-
organisms residing and interacting in the soil perform im-
portant processes such as support of the plant growth and cy-
cling of carbon and other nutrients (Jansson and Hofmockel
2018). Many beneficial functions carried out by the soil mi-
crobiome are currently threatened due to changing climate,
soil degradation and poor land management practices. Un-
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derstanding which species of micro-organisms are essential
for maintaining soil health and fertility is important to com-
prehend how to manipulate the soil microbiome and restore
ecosystem function.

The complex structure in which most of the micro-
organisms that make up the microbiome are organized rep-
resents an obstacle to traditional in vitro culture. However,
recent advances in high-throughput next generation DNA se-
quencing (NGS) technologies have enabled researchers to
characterize and compare microbial communities in diverse
natural environments, such as the human gut microbiome,
via the analysis of their nucleic acid content. Metagenomics,
the study of genetic material of micro-organisms constitut-
ing the microbiome, is proving very promising in research
studies on the environment, biomedicine and food safety.
This is exemplified by several large-scale sequencing initia-
tives such as the Human Microbiome Project (HMP Consor-
tium 2012), Global Ocean Survey (Rusch and al 2007) and
the Earth Microbiome Project (Consortium 2017).

Given the decreasing cost of NGS technologies and the
resultant increase in the amount of metagenomic sequenc-
ing data being generated, a compelling need for efficient an-
alytic tools able to manage and address the big data chal-
lenges of microbiome research arises. Machine learning cur-
rently offers some of the most promising tools for building
predictive models for classification or regression tasks from
biological data, such as metagenomic data. (Libbrecht and
Noble 2015) presents an overview of machine learning ap-
plications for the analysis of genome sequencing data sets.
Data produced in metagenomic studies are both unbalanced
and heterogeneous, thus reflecting the current challenges of
machine learning in the era of Big Data. (Soueidan and
Macha 2018) reviews the contribution of machine learning
methods for metagenomics research, focusing on answering
several important questions such as microbial species clus-
tering, taxonomic assignment, comparative metagenomics
and gene prediction.

In this paper, we focus on phenotype prediction tasks ap-
plying data driven machine learning to metagenomic data.
The phenotype is an observable characteristic or trait of the
microbial community or of the host organism.

The ability to predict the phenotype of a host organism
from the measured metagenomes of the microbial commu-
nity is a powerful analytic tool with many applications. For
example, making predictions of whether an individual is
healthy, has a condition or a predisposition to a condition
from their gut or skin microbiome would help diagnostics
and provide valuable insight for the design of personalized
treatments focused on re-equilibrating the microbiome. Be-
fore presenting our novel approach for phenotype prediction,
we set the scene by reviewing previous approaches.

Related works
Current microbiome analytics for phenotype prediction from
metagenomic data can be largely split into referenced-based
or de novo approaches. Reference-based approaches are
based on the sequencing of specific marker genes, typi-
cally those for the bacterial 16S rRNA. Sequencing gener-
ates stretches of DNA bases called reads, which are pro-

cessed through bioinformatics pipelines such as Quantita-
tive Insights Into Microbial Ecology (QIIME) and clustered
into groups called Operational Taxonomy Units (OTUs).
Each OTU represents a different microbial species or taxon.
OTU tables, summarizing the relative abundance of micro-
bial species for a set of biological samples, are sparse and
high dimensional data that have been recently used to train
machine learning models such as SVMs, RFs and NNs.

A 2016 machine learning framework (Pasolli et al. 2016)
uses quantitative microbiome profiles, including species-
level relative abundances and presence/absence of species-
and strain-specific markers, as features for ML models. The
authors evaluate the use of SVMs, RFs, Lasso and ENet to
predict five diseases (liver cirrhosis, colorectal cancer, in-
flammatory bowel diseases (IBD), obesity, and type 2 dia-
betes) from six available metagenomic datasets.

In (Carrieri, Haiminen, and Parida 2017) various normal-
ization methods for OTUs table and their impact on phe-
notype prediction are evaluated for human, mouse, and en-
vironmental studies. The authors also address the problem
of identifying the most relevant microbial features (OTUs)
that could give insight into the structure and function of the
differential microbial communities observed between phe-
notype groups.

The OTU representation of metagenomic data has several
disadvantages. Firstly, the construction of the OTU table in-
volves a very large number of sequence alignments, either
to the reference genomes (in closed reference strategies) or
among sequences present in the sample (de novo strategies),
which makes it computationally expensive (Cai et al. 2017).
Finally, the resulting OTU abundance tables are biased and
sensitive to the specific bioinformatic pipeline used to gen-
erate them (He et al. 2015). This could have an impact on
accuracy when attempting to predict phenotypes from OTU
tables (Ross et al. 2013), (Karlsson et al. 2013).

A recent work (Asgari et al. 2018) presents a refer-
ence and alignment-free approach for predicting the phe-
notype from microbial community samples based on k-mer
distributions in 16S rRNA marker gene sequences. K-mers
are short overlapping sequences extracted from reads which
collectively capture the genetic make-up of a genome or
metagenome. The authors apply deep learning methods as
well as traditional machine learning approaches for distin-
guishing among human body-sites, diagnosing Crohn’s dis-
ease, and predicting the environments from representative
16S gene sequences. The authors demonstrate that k-mer
features outperform Operational Taxonomic Unit (OTU)
features. However, large amounts of sequencing data are ex-
cluded from the analyses as these are based on the sequenc-
ing of a single marker gene (16S rRNA).

To our knowledge, current machine learning workflows
for phenotype prediction from microbiome data do not allow
the prediction of host organism traits from the whole genetic
material that is available as the metagenome.

Our approach
In this paper, we present a new fast machine learning work-
flow that performs phenotype prediction taking into ac-
count the whole genetic material in the microbiome and not
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only specific marker genes. Whole metagenome shotgun se-
quencing is, in fact, a more informative method which gen-
erates huge collections of short sequences called reads. De
novo approaches (e.g. k-mer composition) can be applied to
whole shotgun metagenomes for their analysis and compar-
ison. For example, the pairwise comparison of k-mer spec-
tra of metagenomes is a de novo analysis method that has
been widely used in recent years for efficiently clustering
microbiomes using dissimilarity measures (Dubinkina et al.
2016). K-mer spectra could be used as sets of features for
training machine learning models and attempting phenotype
prediction. However, considering that the size of a single
metagenome of one sample typically varies from 1GB to
tens of GB (depending on the amount of starting material
and sequence effort) the corresponding k-mer spectrum can
still take considerable time to compute and can be relatively
large in size making the training and prediction task chal-
lenging. The first step in our approach is therefore comput-
ing a compact representation, or signature, of whole shotgun
metagenomes that can be used as a set of features for train-
ing machine learning models.

Some very recent studies focused on developing methods
to generate representative sketches of metagenomes (Luo et
al. 2018), (Ondov et al. 2016). Mash (Ondov et al. 2016) is
a method that reduces large sequences to small, represen-
tative sketches. Mash extends the MinHash (Broder 1997)
dimensionality-reduction technique to include a pairwise
mutation distance and P value significance test, enabling the
efficient clustering and search of massive sequence collec-
tions. However, although MinHash-based tools like Mash
can be used to great effect for certain microbiome analytics,
there are limitations to standard MinHash techniques; such
as the loss of k-mer frequency information and the impact
of relative set size on Jaccard similarity estimates (Koslicki
and Zabeti 2017). We compute compact representations of
metagenomes by applying HULK (Histosketching Using
Little K-mers) (Rowe et al. 2018), a fast method that en-
ables the reduction of microbiome sequence data streams to
an updateable histosketch of the underlying k-mer spectrum
for a metagenome. We then use histosketches generated by
HULK to train several machine learning models and perform
for the first time, to the best of our knowledge, phenotype
prediction from whole shotgun metagenomes. We apply our
ML workflow to real public available data demonstrating we
are able to efficiently predict phenotypes from whole shot-
gun metagenomes with high accuracy, making a step for-
ward towards real time diagnostics.

Methods
In this section we describe in more detail the steps of our
machine learning workflow, as shown in Fig. 1.

Data
We apply our ML workflow to two different public datasets:
whole shotgun human metagenomes from the Human Mi-
crobiome Project (HMP Consortium 2012) and whole shot-
gun dog gut metagenomes (Coelho et al. 2018).

We downloaded the HMP metagenomes from https://
www.hmpdacc.org/hmp/HMASM/ randomly selecting 365

samples out of 690 samples, amounting to approximately
1.6 TB of DNA sequence files (or FASTQ files). The phe-
notype that we predict for this dataset is the body site as 163
are mouth metagenomes, 108 are skin metagenomes and 94
are stool metagenomes. In (HMP Consortium 2012) the au-
thors state that even healthy individuals differ remarkably
in the microbes that occupy habitats such as the gut, skin,
vagina and mouth, and so these sites should be distinguish-
able from metagenomic data. This is supported by (Ondov
et al. 2016) who show that samples cluster appropriately by
body site. We choose this data to demonstrate that our work-
flow is able to efficiently predict the phenotype from whole
metagenomes with high accuracy.

The second dataset we include in our analysis is dog gut
microbiome. In this case, we want to be able to predict if
dogs have been fed with an altered diet (high protein low
carb or high carb low protein). We analyze a total of 4450
metagenome FASTQ files (approximately 1.5 TB); about 50
sequencing runs per dog. We decide to treat each of the 4450
metagenomes as an individual sample in order to have more
training data for our ML models.

Histosketch generation
The first step of our machine learning workflow is to gener-
ate a compressed representation of each metagenome sam-
ple called a histosketch (Yang et al. 2017). To perform this
task, we apply a rapid sketching of metagenomic sequence
data as implemented in HULK (Histosketching Using Lit-
tle Kmers). HULK first converts the sequencing reads to
overlapping short sub-sequences called k-mers, which are
hashed uniformly across a set of bins giving a k-mer spec-
trum. The frequency value of each bin approximates the
observed k-mer frequency, which is an important measure
of the overall genetic content. Rather than store the full
k-mer spectrum, which would require significant compute
time and memory, HULK incrementally updates a fixed-size
similarity-preserving histosketch data structure. This com-
pressed representation of the k-mer spectrum utilizes consis-
tent weighting sampling (CWS) to incorporate the k-mer fre-
quency information. The histosketch is updatable as new se-
quence data is read in, and can be generated from streaming
data. The resulting histosketch consists of a set of elements
that are k-mer bins selected from the original spectrum ac-
cording to the CWS scheme, and associated hash values that
are used in the selection procedure. The number of elements
is the sketch size s, which determines the level of sampling.
More details about the histosketching method are provided
in (Rowe et al. 2018). We computed histosketches of 365
human metagenomes taken from multiple body sites (HMP
dataset) and of 4450 dog gut metagenomes. The sketches
were generated using k-mers of length k = 21 and a sketch
size of s = 512. The sketching of a typical 1GB file of
sequencing reads, reducing it to a 512 vector, takes about
24 seconds to compute using 4 cores on a standard desktop
computer running Mac OSX.

Multi-class and binary classification
In this paper, we focus on machine learning approaches for
multi-class and binary classification of microbiome samples
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Figure 1: ML workflow for phenotype prediction from
whole shotgun metagenomes

from whole shotgun metagenomics data. Metagenomic his-
tosketches, computed by HULK, are feature vectors that can
be used to train different machine learning models, and we
compare their performance in terms of prediction accuracy
and time. More precisely, we use the histosketch elements
(bin values) and we discard the associated hash values.

For the human microbiome dataset (HMP), we perform
multi-class classification to predict the body site from which
the microbial sample has been taken: mouth, stool or skin.
For the dog gut microbiome phenotype prediction task, we
instead perform binary classification to predict if dogs have
been fed with a baseline diet or with an altered diet.

There are a multitude of potential machine learning meth-
ods which can be used for these kinds of classification task.
Random Forests (RF) and Support Vector Machines (SVM),
in particular, have achieved widespread use on classifica-
tion tasks. They have been applied previously to microbiome
data (Statnikov et al. 2013), although using the OTU tables
for feature construction rather than whole metagenome his-
tosketches. Here, we use an SVM with a radial basis func-
tion (RBF) kernel and RFs.

We also include the Bayesian equivalent of the SVM, the
Relevance Vector Machine (RVM). Due to the Bayesian na-
ture of RVMs, they provide inbuilt uncertainty quantifica-
tion, and whilst more computationally intensive to train, we
believe that having error bars on predictions is worth the ex-
tra cost for situations in which a false prediction can have
severe consequences, such as in healthcare. Other Bayesian
methods, such as Gaussian process classifiers, do exist, how-
ever they were not investigated as their computational com-
plexity, and subsequent poor scaling, meant that they did not
fit our application criteria.

Finally, we investigated the application of the probabilis-
tic classifier Naive Bayes (NB) for the prediction of pheno-
type, since this technique is well known to be particularly
fast to train, and additionally, is able to predict a probability

distribution over the set of classes, rather than only the most
likely class that the sample belongs to.

For both datasets, we train each model using 80% of the
data for and retain 20% as a test set. We then use the training
set to perform 10 fold cross validation (CV) to flag problems
such as overfitting or underfitting, and to give an indication
of out of set performance, and thus model uncertainty. We
choose not to perform CV for RVMs as the uncertainty is
captured within the model itself.

In order to futher reduce the complexity of the problem,
and thus the flexibility of the resulting models, we also apply
feature selection, using LASSO (Tibshirani 1996). LASSO
removes irrelevant features by placing a constraint on the
sum of the absolute values of the model parameters, thus pe-
nalizing small coefficients for model parameters, shrinking
them to zero. We compare the prediction performance of the
different models considering the whole set of features (512
sketch elements) and only the ones selected by LASSO.

To perform our analyses, we use implementations of RFs,
SVMs, NBs, Lasso and CV in the Python library scikit-
learn (Pedregosa et al. 2011).

Results
In this section, we present the results obtained perform-
ing multi-class classification on the HMP dataset and bi-
nary classification on the dog gut dataset. The human mi-
crobiome dataset has 365 samples of which 163 are taken
from mouth, 108 are skin microbiome samples and 94 are
stool metagenomes. We then perform three-class classifica-
tion to predict the body site from which the sample comes
from. The dog gut microbiome dataset contains 4450 sam-
ples, where 2156 are associated with a baseline diet and the
rest with an altered diet. Table 1 shows the F1-scores ob-
tained from four different models on training and test sets
for the human and dog datasets. The last two columns for
each dataset report the mean and standard deviation of the
F1-score over 10-fold cross validation.

For the human microbiome data, all models except Naive
Bayes give high F1 scores (>= 0.89 when all features used)
on training and test sets. The accuracy results for the dog gut
microbiome samples are also promising, as all four models
give F1-scores >= 0.81. The best models, for this dataset,
seem again to be SVMs and RVMs with an F1 score of 0.91
on the test set when using all 512 features, followed by RFs
with a score of about 0.9. While all the other models lose
some accuracy when predicting the kind of dog diet using
only the features selected by Lasso, Naive Bayes suffers the
least loss from the original feature set, and is significantly
faster to train and deploy than any of the other methods.

Speed Accuracy Trade-Off
For a machine learning method to provide insight on a rel-
evant timescale, in addition to being accurate, it must also
be fast to train and infer from. Training time will affect the
ability to keep the model fresh as new training data is made
available, and inference time will affect the ability of the
model to be deployed in a real-time diagnostic situation. We
graphically demonstrate the tradeoff which takes place be-
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Table 1: F1 scores on training and test sets for HMP and dog gut data using the entire set of features (512 sketch elements) and
only the ones selected by Lasso (respectively 63 features for the HMP dataset and 43 features for the dog dataset). F1 mean and
standard deviation are also reported for 10 fold CV. The best F1 score on the test set is shown in bold.

HMP data - F1 score Dog data - F1 score
Train Test Mean CV Std CV Train Test Mean CV Std CV

RVMs All feat. 1 0.89 - - 1 0.91 - -
Lasso 1 0.83 - - 0.89 0.82 - -

SVMs All feat. 0.99 0.98 0.93 0.04 0.98 0.91 0.93 0.013
Lasso 0.98 0.90 0.90 0.03 0.86 0.82 0.81 0.01

RFs All feat. 0.99 0.97 0.95 0.03 0.99 0.90 0.89 0.01
Lasso 0.99 0.90 0.88 0.02 0.89 0.81 0.81 0.006

NB All feat. 0.79 0.73 0.76 0.08 0.82 0.82 0.81 0.07
Lasso 0.82 0.73 0.76 0.08 0.82 0.82 0.81 0.01

tween training speed and accuracy by plotting these func-
tions, as well as the model variance across cross validation
in Figure 2. In all cases, the speed of prediction by a trained
model is even faster than the creation of the histosketch for
a sample, and is not an issue in practice.

Figure 2: A bubble chart representing the tradeoff between
the training speed and accuracy for each model, as calcu-
lated for the HMP dataset. The optimal position for a model
to be is in the top right. The size of each bubble represents
the negative log-likelihood of the true labels given a prob-
abilistic classifier’s predictions. For the deterministic meth-
ods, this was calculated using Platt’s method, whilst for the
Bayesian methods the probability estimate was calculated
directly.

The uncertainties used to generate Figure 2 were calcu-
lated using Wu’s generalization of Platt scaling (Wu, Lin,
and Weng 2004). This method is known to not scale well,
and also has some theoretical concerns (Niculescu-Mizil and
Caruana 2005). It may therefore be the case that the slightly
worse performance of RVMs is preferred, as they include a
more robust definition of the uncertainty in their predictions.

Data Size Compression
An additional benefit of this workflow is the magnitude of
the data compression which is achieved through sketching.
This is important, as the initial metagenomic datasets are in
the GB to TB range, making it impossible to exploit, for
example, a cloud infrastructure. The histosketching signifi-
cantly reduces this size, with the size of a single sketch now
sitting in the hundreds to thousands of bytes range (see Ta-
ble 2). Lasso allows further compression although it comes
at the expense of predictive performance (see Table 2).

Data type Representative size
Whole Metagenome GB

Histosketch KB
Lasso-histosketch 0.1 KB

Table 2: Typical data sizes at each stage of the pipeline.
Whilst it is impractical to transfer GB of data to the cloud,
KB can be managed from even a poor internet connection.

Summary
In order for the promise of AI to move beyond academic
endeavour to real applications, it is necessary that the ma-
chine learning workload be accurate, fast and scalable. In
this work we have demonstrated how, for the first time, we
can build an AI workflow which ingests whole metagenomes
(at GB scale) and is able to reduce this data into small
histosketches. The latter compact representations of whole
metagenomes are small enough to be amenable to cloud
applications, and yet contain enough information for com-
mon machine learning methods to produce fast, yet accu-
rate, results. We investigated a range of different types of
machine learning algorithms, for their ability to provide ac-
curate solutions at a computational cost small enough to
enable the potential for real-time diagnostics. Finally, we
consider the cost of adding uncertainty quantification, ei-
ther through Bayesian methods, or through cross validation-
based approaches, since understanding the context of a pre-
diction in terms of its uncertainty is of high importance in
many situations in which AI may be deployed.
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